
Multivariate mixed-effects models for reflectance of forest trees

Lauri Mehtätalo1

1University of Eastern Finland, School of Computing (Statistics)

lauri.mehtatalo@uef.fi

Based on joint work with
Ilkka Korpela (Academy research fellow, UH)

Anne Seppänen (Researcher, UEF/UH)
Lauri Markelin (Senior researcher, FGI)

Annika Kangas(Professor, UH)

Mehtätalo (UEF) Mixed-effects models for reflectance 4 March, 2013 1 / 19



Outline

1 Background

2 Material
Empirical data
Structure of aerial image data

3 Methods
A simple mixed-effects model
Multivariate mixed-effects model

4 Results

5 Discussion

Mehtätalo (UEF) Mixed-effects models for reflectance 4 March, 2013 2 / 19



Background

Background

BACKGROUND –  
The hard task 

• Tree species is crucial (allometry, canopy structure, wood properties, ecology,..)  
 
• Pulsed LiDAR (time-stamped photons) - fair solutions by dense sampling,  
   in single trees  
  
• Aerial passive imaging (free HS, RGN, RGBN, RGN-PAN photons) for  
  single trees and tree groups, spectral and also textural,  
  human and machine vision since 1930s.  

Pine 
Spruce 
Birch 
Rowan 
Oak? 
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Background

Background

Spectrally invariant features for species classification? 

The sad truth about trees 
 
Separability – easier if classes are 
described by distinct, observable 
features. Trees show high within-species 
variation in spectral refl. (structure) 
 
Observations – in forest we have 
shading, multiple scattering and 
occlusions, and the atmosphere 
constitutes  an additional challenge.  

Jääskeläinen et al. 1992 
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Material Empirical data

Study material

20 partially overlapping strips collected by an aircraft-mounted line sensor. These strips are
called (aerial) images

The raw data was postprocessed to provide atmospherically corrected reflectance data on
four channels: RED, GRN, BLU and NIR.

N = 15188 dominant trees discernible in images formed the reference tree data (5914
Scots pines, 7105 Norway spruces, 2169 Birches)

Airborne laser scanning data were used to map the individual trees on different images and
find a certain tree on different images.

The individual pixels within tree crowns were divided to sunlit and self-shaded pixels. The
mean reflectances in these parts were analyzed separately

For details, see Korpela et al. (2010; 2011).
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Material Structure of aerial image data

Structure of aerial image data on a forest

Image data are hierarchical
Images within a geographical area
Recognized individual crowns within an image
Individual pixels within a tree crown

The hierarchy may be an issue if it results in correlation among observations
Observations from a given image are similar due to e.g. the atmospheric correction effects
Trees of a given geographical area are similar to each other due to the structure of the landscape
Individual pixels in a tree are similar to each other due to tree-specific properties.

Such hierarchical datasets where the groups represent a sample from a population of groups are
often modeled modeled using mixed-effects models

Certain special cases are called variance component models, random effects models or
random coefficient models.
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Material Structure of aerial image data

Nested and crossed groupings

Consider a data with grouping structure including two grouping factors, e.g. images, trees and
pixels. The observation may be e.g. the (mean) reflectance of the object at a given wavelength
(e.g. Near-Infrared, NIR)

The grouping can be nested or crossed.
In the nested grouping, the levels of grouping can ge hierarchically ordered

The members of a certain group at a lower level of hierarchy always belong to the same group at
an upper hierarchical level.
Pixels on crowns on non-overlapping aerial images

In the crossed grouping, the groups cannot be ordered hierarchically
members of a certain group may belong to several groups at other levels of grouping.
Tree crowns on overlapping aerial images
The same tree may be seen on several images
The same image includes several trees

Our data has a crossed grouping structure
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Methods A simple mixed-effects model

Simple mixed-effects model with crossed random effects

A simple mixed-effects model for two crossed groups and random constant can be written as

yit = f (xit |b) + αi + βt + εit ,

where

yit is be the observed mean reflectance for the pixels of an individual crown t (of a given
species) on image i

f (x it |b) is a function of fixed predictors (e.g. related to the view-illumination geometry)

αi ∼ N(0, σ2
α) is a random image-effect

βt ∼ N(0, σ2
β) is a random tree-effect

εit ∼ N(0, σ2) is a random residual.

The model can also be written as

yit = f (xit) + eit ,

by defining eit = αi + βt + εit .

The random effects at different levels of grouping are independent, therefore
var(eit) = σ2

α + σ2
β + σ2

Also note: cov(yit , yi′ t′) = 0, cov(yit , yit′) = σ2
β and cov(yit , yi′ t) = σ2

α.
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Methods A simple mixed-effects model

Why random effects?

The random effects divide the total variability into components arising from different levels
of grouping.

The division of the variance according to the level of grouping straightforwardly yields
estimates for the covariance and correlation of the observations. These may be utilized in
species classification (Mahalanobis distance).

More reliable inference on the model parameters (i.e., the effect of potential fixed predictors
on the ressponse)

Possibility to compute the predictions at different levels of grouping
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Methods A simple mixed-effects model

Image and tree effects in classification
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) Model of species 2

Model of species 1

If the correlation arising from the
image and tree effects would not
be used, the tree shown by the
red marks had dhorter distance to
the model of species 2 whereas
the other red tree had equally long
distance to both models.

But the order of the trees is similar
on both images, therefore part of
the difference in levels might be
due to image effects.

Or the red tree might be of species
1, just with a large tree effect.

Estimated mixed-effects models
provide variance-covariance
structures that allow taking into
account these effects in computing
the Mahalanobis distance.
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Methods Multivariate mixed-effects model

Multivariate extension of the simple mixed-effects model

The reflectance may be observed for different wavelengths (RED, GRN, BLU, NIR) and
separately for sunlit (SL) and self-shaded (SS) parts of the crown. Each of these 8 responses
need a separate model, but the random effects and residuals of the model might be correlated.
To allow this, a multivariate version of the model is specified as

y1it = f1(xit |b1) + α1i + β1t + ε1it

y2it = f2(xit |b2) + α2i + β2t + ε2it

... (1)

y8it = f8(xit |b8) + α8i + β8t + ε8it

where

(α1i , α2i , . . . , α8i)
′ = αi ∼ MVN(0,A8×8) is a random vector of image-effects

(β1t , β2t , . . . , β8t)
′ = βt ∼ MVN(0,B8×8) is a random vector of tree-effects

(ε1it , ε2it , . . . , ε8it)
′ = εit ∼ MVN(0,E8×8) is a random vector of residuals.

Model fitting (using e.g. Restricted Maximum Likelihood, REML) yields estimates b̂, Â, B̂
and Ê

Predictions of random effects α̃i , and β̃t is possible for all groups with observarions as well
(also afterwards).
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and Ê
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Methods Multivariate mixed-effects model

Mahalanobis distance

Let y it be an observed vector (length=8) of the reflectances of one tree t on the 8 channels
on one image i . The squared Mahalanobis distance between y it and µit is

d2
it = (y it − µit)

′(A + B + E)−1(y it − µit)

This distance takes into account the correlation of reflectance among different channels,
and is (at least under multivariate normality of the reflectance data) in a way optimal for
single tree on single image.

A simple solution to account for the multiple images is to compute the mean of
image-specific distances. This solution does not take into account the correlation due to
tree effects and image effects.
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Methods Multivariate mixed-effects model

Mahalanobis distance for multiple images

To compute the Mahalanobis distance between observations from multiple images, let
y ·t = (y ′1t , . . . , ymt) be an observed vector (with length of 8m) of the reflectances of one
tree t on the 8 channels of m images. The squared Mahalanobis distance between y ·t and
µ·t is

d2
·t = (y ·t − µ·t)

′D−1
·t (y ·t − µ·t) ,

where the 8m × 8m variance-covariance matrix is

D·t =


A + B + E B . . . B

B A + B + E B
...

. . .
...

B B . . . A + B + E


This distance accounts for the correlation arising from the common tree effects

Natural extensions for the distance that would take into account the correlation arising from
the image effects (common for different trees of same image) would be possible as well.
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Results

Mean reflectances

Illumination - 

Species 
RED GRN BLU NIR 

SS-Pine 0.030 0.041 0.037 0.169 

SS-Spruce 0.024 0.035 0.035 0.155 

SS-Birch 0.031 0.044 0.038 0.227 

SL-Pine 0.037 0.051 0.040 0.220 

SL-Spruce 0.032 0.047 0.038 0.224 

SL-Birch 0.043 0.060 0.042 0.322 

To-NADIR-adjusted reflectance factors (~dark-pixel 
method, ”HDRFs”) for sunlit and self-shaded crown 
patches 

Korpela, I., Heikkinen, V., Honkavaara, E., Rohrbach F., Tokola, T. 2011. Variation and anisotropy of reflectance of forest trees in radiometrically 
calibrated airborne line sensor images – implications for species classification in digital aerial images. Remote Sensing of Environment. 
 

Trees are dark, but 
show their bright 
side in NIR  
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Results

The role of the fixed part

I.e. Usable additional information, here? 

Forward 
scattering 

Backscattering 
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Results

Estimated variance components

 sunlit  shade  sunlit  shade sunlit   shade  sunlit  shade 

Fixed (Xβ)-% 33 11 32 13 45 29 7 -0 

Tree-% 42 42 43 41 18 13 62 64 

Image-% 4 12 5 14 27 46 6 2 

Residual-% 21 35 20 32 10 13 25 34 

Total 100 100 100 100 100 100 100 100 

Variance components, real data, 200 000 observations (%) 

* Fixed  part: The anisotropy trends explained SL >> SS,  
            BLU > GRN > RED > NIR. In NIR, anisotropy is low.  
 
* Tree-effect: The correlations are strong, both for SL and SS. A bright tree is bright 
           across views and bands. In NIR > 60% of variance explained!! 
 
* Image-effect: Substantial in BLU, SS > SL.  Includes effects from solar  
         elevation changes (07-09 GMT), atmospheric correction errors.    

Ilkka Korpela, Oct 2012 
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Results

Classification accuracy

The correlations among the multiple responses were strong, therefore using them in the
distance is justified

Using the simple mean over image-specific distances provided improved classification
accuracy with increasing number of images

Tentative results on the use of the Mahalanobis distance in the classification provided much
stronger improvement compared to the simple mean method
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Discussion

Discussion

Mixed-effects models are useful tools for analyzing grouped datasets in different contexts.

The benefit from the use of mixed-effects models depends on the application.

In classification problems, the mixed-effects models provide a justified means to estimate
the required varaince-covariance matrix (See e.g. Fieuws et al 2008).

If the aim is to test treatment effects, taking into account the correlation structure leads to
more reliable inference (p-values)

If the aim is prediction, then possibility to make predictions for different levels of grouping
may be crucial, given that observartion(s) from teh group in question is available.
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