Mixed-effect models for nonlinear natural processes

Lauri Mehtätalo¹ Anna Laine² Heli Peltola³ Eeva-Stiina Tuittila³ Antti Kilpeläinen³

¹University of Eastern Finland, School of Computing

²University of Oulu, Department of Biology

³University of Eastern Finland, School of Forest Sciences

IUFRO 125th Anniversary Congress, Freiburg September 18-22, 2017

Outline

- Models for nonlinear relationship
- 2 Example 1: Peatland photosynthesis
- 3 Example 2: Modeling the thinning effects
- 4 Conclusions

Models for a nonlinear relationship

There are two options to model a nonlinear relationship between a response variable y and predictor (vector) x:

The linear model

$$y_i = \beta_0 + \beta_1 f_1(\boldsymbol{x}_i) + \ldots + \beta_K f_K(\boldsymbol{x}_i) + \boldsymbol{e}_i$$

where β_1, \ldots, β_K are parameters to be estimated, $f_1(\mathbf{x}_i), \ldots, f_K(\mathbf{x}_i)$ are nonlinear transformations of predictors \mathbf{x}_i , y_i is the (possibly transformed) response, and e_i is residual error for sampling unit i.

- Often $f_k()$'s are one-to-one nonlinear functions of a single component of x_i , such as logarithmic and power transformations or spline components¹.
- Term linear in the model refers to linearity in β_k 's, not in x_i .
- Can successfully model any nonlinear relationship between y and x through transformations $f_k(\cdot)$.

¹ Harrell F., 2001: Regression modeling strategies, Springer,

Models for a nonlinear relationship

There are two options to model a nonlinear relationship between a response variable v and predictor (vector) x:

The linear model

$$y_i = \beta_0 + \beta_1 f_1(\boldsymbol{x}_i) + \ldots + \beta_K f_K(\boldsymbol{x}_i) + \boldsymbol{e}_i$$

where β_1, \ldots, β_K are parameters to be estimated, $f_1(\mathbf{x}_i), \ldots, f_K(\mathbf{x}_i)$ are nonlinear transformations of predictors x_i , y_i is the (possibly transformed) response, and e_i is residual error for sampling unit i.

- \blacksquare Often $f_k()$'s are one-to-one nonlinear functions of a single component of x_i , such as logarithmic and power transformations or spline components¹.
- Term linear in the model refers to linearity in β_k 's, not in x_i .
- Can successfully model any nonlinear relationship between y and x through transformations $f_k()$.
- The nonlinear model

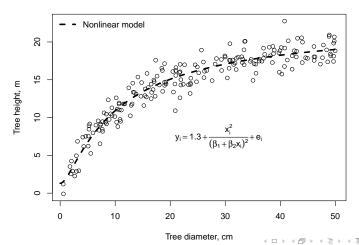
$$y_i = f(\mathbf{x}_i; \boldsymbol{\beta}) + \mathbf{e}_i \,,$$

■ Where f() is a function of predictors and model parameters.

¹ Harrell F., 2001; Regression modeling strategies, Springer, 4 D > 4 A P + 4 B > B 9 9 0

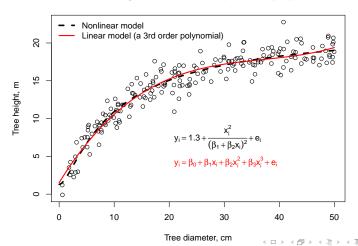
Illustration

Tree Height-DBH relationship of a sample plot



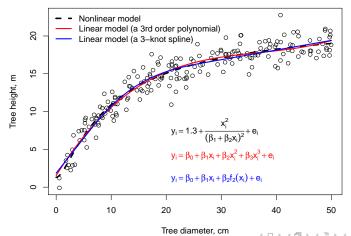
Illustration

Tree Height-DBH relationship of a sample plot



Illustration

Tree Height-DBH relationship of a sample plot



Why nonlinear models?

No improvement to model fit is expected with nonlinear models compared to the linear model. Why then to use a nonlinear model?

- Building the model on the subject-matter theory on the process is elegant (recall what Göran Ståhl said on Monday),
- leads to parameters that are as such of interest and have interesting interpretations, and
- allows in-depth analyses on the effects of different predictors (e.g. treatments or continuous predictors) on the parameters of the process.
- The models are also more robust in extrapolation and
- parameter-parsimonious.

Nonlinear mixed-effect model formulation

■ In a nonlinear fixed-effects model, one of the predictors (t_i) is often a primary predictor of the process (e.g. time in a growth model, or photosynthetically active radiation (PAR) in a model of net photosynthesis). The other secondary predictors x_i describe the variability in the primary parameters of the process. This leads to model

$$y_i = f(t_i; \alpha_i) + e_i,$$
 where $\alpha = (\alpha_i^{(1)}, \dots, \alpha_i^{(K)})$ and $\alpha_i^{(k)} = \beta_k' \mathbf{x}_i^{(k)}$ for $k = 1, \dots, K$.

Nonlinear mixed-effect model formulation

■ In a nonlinear fixed-effects model, one of the predictors (t_i) is often a primary predictor of the process (e.g. time in a growth model, or photosynthetically active radiation (PAR) in a model of net photosynthesis). The other secondary predictors x_i describe the variability in the primary parameters of the process. This leads to model

$$y_i = f(t_i; \boldsymbol{\alpha}_i) + \boldsymbol{e}_i$$
,

where $\alpha=(\alpha_i^{(1)},\ldots,\alpha_i^{(K)})$ and $\alpha_i^{(k)}=\beta_k' \mathbf{x}_i^{(k)}$ for $k=1,\ldots,K$.

■ The nonlinear mixed-effect model for a single level of grouping is defined as

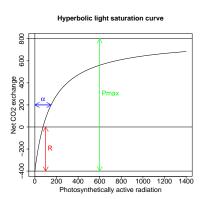
$$y_{ij}=f(t_{ij};\alpha_{ij})+e_{ij},$$

where the linear sub-models of $\alpha_{ij}^{(k)}$ include also random group effects:

$$\alpha_{ij}^{(k)} = \boldsymbol{\beta}_k' \boldsymbol{x}_{ij}^{(k)} + \boldsymbol{b}_i^{(k)} \boldsymbol{z}_{ij}^{(k)}.$$

We assume $\boldsymbol{b}_i = (\boldsymbol{b}_i^{(1)\prime}, \dots, \boldsymbol{b}_i^{(K)\prime})' \sim N(\boldsymbol{0}, \boldsymbol{D})$ and $e_{ij} \sim N(0, \sigma_{ij}^2)$ with an appropriate variance function. Also spatial or temporal dependence of residual errors can be modeled parametrically. The extension to multiple levels is straightforward.

The model for the process



$$f(PAR; Pmax, R, \alpha) = -R + \frac{Pmax \times PAR}{\alpha + PAR}$$

where

- PAR: photosynthetically active radiation
- *Pmax*: Maximum gross CO₂ exchange
- R: Respiration
- α: PAR at the 50% of gross CO₂ exchange
- $Pmax, R, \alpha > 0$

Research question and data

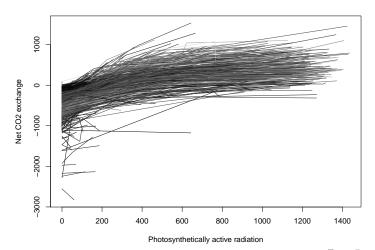
- The effect of some categorical predictors (treatments) on the parameter Pmax, R and α .
- The nuisance caused by varying Leaf Area Index (LAI), air temperature, and soil temperature on these parameters should also be taken into account (and this was the most interesting part to me).

Research question and data

- The effect of some categorical predictors (treatments) on the parameter Pmax, R and α .
- The nuisance caused by varying Leaf Area Index (LAI), air temperature, and soil temperature on these parameters should also be taken into account (and this was the most interesting part to me).
- The data are collected using chamber measurements. At a given time, the net CO₂ exchange has been measured at 1-7 different levels of PAR.
- A total of 210 plots. Each plot is monitored for two years, with 5-10 measurements per year.
- LAI is also monitored by counting all plants of the plot and measuring the mean area of the leaves in surrounding plants.

Photo: Juho Kettunen.

The raw data



The model

$$y_{ij} = -R_{ij} + \frac{Pmax_{ij} \times PAR_{ij}}{\alpha_{ij} + PAR_{ij}}$$

where

$$egin{align} \log(extit{R}_{ij}) &= eta_{R}^{\prime} oldsymbol{x}_{ij}^{(R)\prime} + b_{i}^{(R)} \ \log(extit{Pmax}_{ij}) &= eta_{P}^{\prime} oldsymbol{x}_{ij}^{(P)\prime} + b_{i}^{(P)} \ \log(lpha_{ij}) &= \mu_{lpha} + b_{i}^{(lpha)} \ \end{pmatrix}$$

We start with the model where the predictor vectors include treatments only.

The model

$$y_{ij} = -R_{ij} + rac{Pmax_{ij} \times PAR_{ij}}{lpha_{ij} + PAR_{ij}}$$

where

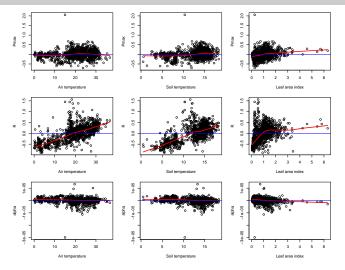
$$\log(R_{ij}) = eta_R' \mathbf{x}_{ij}^{(R)\prime} + b_i^{(R)}$$

 $\log(Pmax_{ij}) = eta_R' \mathbf{x}_{ij}^{(P)\prime} + b_i^{(P)}$
 $\log(\alpha_{ij}) = \mu_{\alpha} + b_i^{(\alpha)}$

We start with the model where the predictor vectors include treatments only.

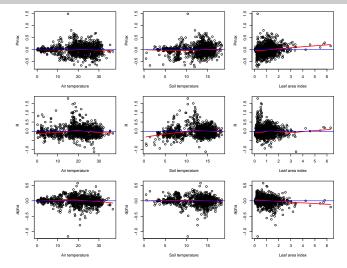
Let us see whether the predicted random effects have trends with respect to the plot-specific candidate predictors.

The random effect on potential predictors + a lowess curve



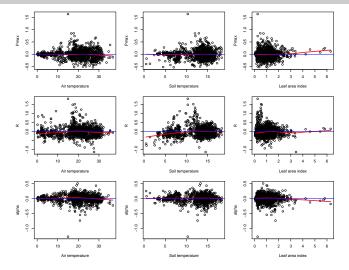
Include log(LAI) and air T to log(R) and a polynomial air T to log(Pmax)

The random effects on potential predictors + a lowess curve



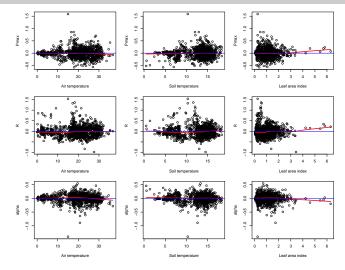
Include log(1 - exp(-LAI)) to model the self-shading LAI of leaves in log(Pmax).

The random effects on potential predictors + a lowess curve



Soil temperature still seems to affect on Respiration, add it

The random effects on potential predictors + a lowess curve



Seems to be quite ok.

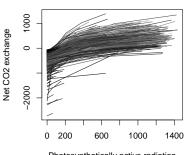
The final model

```
mod4co2<-nlme(nee~valovaste(par, 1P, 1R, 1a),
       fixed=list(lP~1+Year+treat1+treat2+group+tcham+I(tcham^2)+llai2,
                  lR~1+Year+treat1+treat2+group+tcham+log(lai)+pmin(t15,10),
                  la~1).
       random=list(occasion=pdDiag(1P+1R+la~1)).
       data=co2dat.
                                         Random effects:
       start=c(log(1000),0,0,0,0,0,0,0,0,0,
                                         Formula: list(1P ~ 1, 1R ~ 1, la ~ 1)
               log(500),0,0,0,0,0,0,0,0,0,
                                          Level: occasion
               log(300)).
                                          Structure: Diagonal
       verbose=TRUE)
                                                 1P.(Intercept) 1R.(Intercept)
                                                                                      la Residual
                                         StdDev:
                                                                     0.3063666 0.3239001 78.14503
                                                       0.262121
                                         Fixed effects: list(lP ~ 1 + Year + treat1 + treat2 + group +
                                                                               DF t-value p-value
                                                              Value Std. Error
                                         1P.(Intercept)
                                                           6.471230 0.12974689 2241 49.87580 0.0000
                                         1P. Year 2013
                                                           0.152669 0.02444492 2241
                                                                                      6.24544 0.0000
                                         1P treat12
                                                          -0.004140 0.02765285 2241 -0.14970 0.8810
                                         1P.treat13
                                                          -0.061529 0.03045692 2241
                                                                                     -2.02020 0.0435
   0.0716/(2*0.00146)=24.5
                                         1P.treat21
                                                          -0.055281 0.02328987 2241
                                                                                     -2.37362 0.0177
                                         1P.group2
                                                          -0.097561 0.02371712 2241 -4.11354 0.0000
                                         1P.tcham
                                                           0.071658 0.00994940 2241
                                                                                     7.20220 0.0000
                                         1P.I(tcham^2)
                                                          -0.001465 0.00021403 2241
                                                                                     -6.84522 0.0000
                                         IP Hai2
                                                           0.418375 0.03855223 2241 10.85215 0.0000
                                         1R.(Intercept)
                                                           4.050615 0.10769026 2241
                                                                                     37.61357
                                                                                               0.0000
                                         1R. Year 2013
                                                           0.248282 0.02461425 2241
                                                                                     10.08690 0.0000
                                         1R.treat12
                                                          -0.046315 0.03004181 2241 -1.54168 0.1233
                                         1R.treat13
                                                           0.282602 0.02936815 2241
                                                                                      9.62274 0.0000
                                         1R treat21
                                                          -0.157959 0.02393427 2241
                                                                                      -6.59970 0.0000
                                         1R.group2
                                                          -0.362806 0.02344484 2241 -15.47487
                                                                                               0.0000
                                         1R.tcham
                                                           0.030448 0.00210702 2241
                                                                                     14.45084 0.0000
                                         lR.log(lai)
                                                           0.102099 0.02229508 2241
                                                                                      4.57942
                                                                                               0.0000
                                         1R.pmin(t15, 10)
                                                           0.147759 0.01140993 2241 12.95000 0.0000
                                         la
                                                           5.740796 0.02891320 2241 198.55275 0.0000
```

The raw data and fitted values

Original data 1000 Net CO2 exchange 0 -1000 -3000 200 600 1000 1400 Photosynthetically active radiation

Fitted values with predicted re's

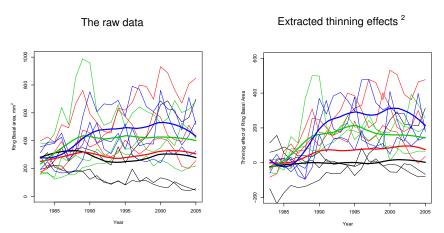


Photosynthetically active radiation

Study material

- Scots pine plots where one of the four following thinning treatments were applied to each plot in 1986: Control, Light, Moderate and Heavy.
- 88 trees were felled in 2006, and the diameter increments between 1983 and 2006 was measured for each tree using an X-ray densiometer.
- The diameter growths were transformed to basal area growths (assuming circular boles), because Volume ~ Diameter² Height

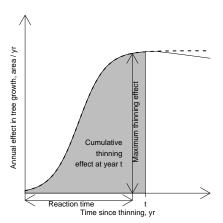
Raw data and the estimated thinning effects in Ring Basal Area (RBA)



Thick lines: the treatment-specific trends. Thin lines: 12 randomly selected trees. Treatments: Control, Light, Moderate, and Heavy.

²Extraction was based on a mixed-effect model with crossed random effects, see Mehtätalo et al. (2014) for details. 🗇 🕨 4 😇 🕨 4 💆 🔻 💆

Nonlinear mixed-effects model for thinning effect



The thinning effect of tree *i* at time *j* was modeled using a logistic curve

$$d_{ij}=rac{M_i}{1+\exp\left(4-8rac{x_{ij}}{B_i}
ight)}+e_{ij}$$
 where

- d_{ij} thinning effect
- \blacksquare x_{ij} time since thinning
- $M_i = \mu_0 + \mu_1 T_2 + \mu_2 T_3 + \mu_4 x_{ij} + m_k$ - maximum thinning effect
- \blacksquare T_2, \ldots, T_3 treatments
- \blacksquare $R_i = \rho_0 + \rho_1 z_i + r_i$ reaction time
- z_i standardized diameter

$$\blacksquare \left[\begin{array}{c} m_i \\ r_i \end{array}\right] \sim N(\mathbf{0}, \mathbf{D}_{2x2})$$

 \mathbf{e}_{ij} - normal heteroscedastic residual with AR(1) structure within a tree.

The fitted model

■ The reaction time was 6 years. It did not significantly vary among treatments but was shorter for large trees.

Fixed parameters	Estimate	s.e.	p-value
μ_0	112.8	23.29	0.0000
μ_1	91.91	30.45	0.0026
μ_2	169.2	32.14	0.0000
μ_3	-3.214	1.006	0.0014
$ ho_0$	5.749	0.4458	0.0000
$ ho_1$	-1.461	0.4568	0.0014
Random parameters			
$var(r_k)$	93.012		
$var(m_k)$	2.0852		
$cor(r_k, m_k)$	0.203		
Residual			
σ^2	8.157*10-4		
δ_1	8.746*104		
δ_2	1.886		
δ_3	0.5888		< □ > < @

The fitted model

- The reaction time was 6 years. It did not significantly vary among treatments but was shorter for large trees.
- The maximum thinning effect increased with thinning intensity, being 282 mm/yr for treatment IV, which indicates a 87% increase in the basal area growth compared to the control.

Fixed parameters	Estimate	s.e.	p-value
μ_0	112.8	23.29	0.0000
μ_1	91.91	30.45	0.0026
μ_2	169.2	32.14	0.0000
μ_3	-3.214	1.006	0.0014
$ ho_0$	5.749	0.4458	0.0000
$ ho_1$	-1.461	0.4568	0.0014
Random parameters			
$var(r_k)$	93.012		
$var(m_k)$	2.0852		
$cor(r_k, m_k)$	0.203		
Residual			
σ^2	8.157*10-4		
δ_1	8.746*104		
δ_2	1.886		
δ_3	0.5888		

Nonlinear models are an elegant tool for processes where a theoretically justified function for the process is nonlinear with respect to its parameters is.

- Nonlinear models are an elegant tool for processes where a theoretically justified function for the process is nonlinear with respect to its parameters is.
 - The models are both process-based and statistical..

- Nonlinear models are an elegant tool for processes where a theoretically justified function for the process is nonlinear with respect to its parameters is.
 - The models are both process-based and statistical..
 - ..and random effects make them a compromise between Bayesian and frequentists models.

- Nonlinear models are an elegant tool for processes where a theoretically justified function for the process is nonlinear with respect to its parameters is.
 - The models are both process-based and statistical..
 - ..and random effects make them a compromise between Bayesian and frequentists models.
- I especially like the formulation where the process is driven by a primary predictor and the parameters of this process are linear combinations of other predictors (recall also Sonja Vospernik's talk on Tuesday evening)
- If you want to play with CO2 data modeling, see data foto of R- package lmfor.

References etc.

- Mehtätalo, L., Peltola, H., Kilpeläinen, A. and Ikonen, V.-P. 2014. The effect of thinning on the basal area growth of Scots Pine: a longitudinal analysis of tree-specific series using nonlinear mixed-effects model. For.Sci. 60(4):636-644
- Laine, A., Mehtätalo, L., Tolvanen, A., Tuittila, E.-S. Combined effect of drainage, rewetting and warming on peatland greenhouse gas fluxes and leaf area. In preparation.
- Mehtätalo, L. and Lappi, J. Forest Biometrics with examples in R. In preparation for Chapman&Hall / CSC. http://cs.uef.fi/ lamehtat/textbook.htm.

Thank you for your interest!

lauri.mehtatalo@uef.fi http://cs.uef.fi/ lamehtat/ https://www.researchgate.net/profile/Lauri_Mehtaetalo

Would like to see you in the International Biometric Conference, Barcelona, Spain in July 2018, where I will organize an invited session "Modeling grouped environmental data"