Height-Diameter curves from longitudinal data

Lauri Mehtätalo lauri.mehtatalo@yale.edu

May 9, 2006, Yale School of F & ES

< ∃ >

Outline of the presentation

Aims of the study and data

The aim of the study Study material

The model

Model development Estimated model

Utilizing the model

Linear predictor in this case Example Predicting DGM in the future

Final remarks

< ∃ →

The aim of the study Study material

The aim of this study

The aim was to estimate such a Height-Diameter model that could be used for prediction using the fixed predictors and height sample tree measurements from various points in time.

More specifically, the model should be able to

1. predict H-D curve when no sample tree heights are known,

< ∃ →

The aim of the study Study material

The aim of this study

The aim was to estimate such a Height-Diameter model that could be used for prediction using the fixed predictors and height sample tree measurements from various points in time.

More specifically, the model should be able to

- 1. predict H-D curve when no sample tree heights are known,
- 2. use measured height sample trees to improve the prediction,

The aim of the study Study material

The aim was to estimate such a Height-Diameter model that could be used for prediction using the fixed predictors and height sample tree measurements from various points in time.

More specifically, the model should be able to

- 1. predict H-D curve when no sample tree heights are known,
- 2. use measured height sample trees to improve the prediction,
- 3. use old height sample trees to improve the prediction of current point in time,

The aim of the study Study material

The aim was to estimate such a Height-Diameter model that could be used for prediction using the fixed predictors and height sample tree measurements from various points in time.

More specifically, the model should be able to

- 1. predict H-D curve when no sample tree heights are known,
- 2. use measured height sample trees to improve the prediction,
- 3. use old height sample trees to improve the prediction of current point in time,
- 4. predict the H-D curve in the future,

The aim of the study Study material

- Data includes (almost) randomly selected stands from all around the Finland
- We are using Norway spruces, which is a shade tolerant tree species

< ∃→

The aim of the study Study material

- Data includes (almost) randomly selected stands from all around the Finland
- ▶ We are using Norway spruces, which is a shade tolerant tree species
- Data inclusdes 249 stands, 1-4 measurement occasions with 5 years intervals
- ► A total of 18056 height measurements, 3-49 trees per stand

< ∃→

э.

Model development Estimated model

Model for tree i in stand k at time t

Starting point is the Korf function

 $H = a \exp(-bD^{-c})$

< ≣ >

Model development Estimated model

Model for tree i in stand k at time t

Starting point is the Korf function

$$H = a \exp(-bD^{-c})$$

I reparameterized D and linearized the model to get

$$\ln(H_{kti}) = A_{kt} + B_{kt} x_{kti} + \epsilon_{kti}$$
(1)

The reparameterization of D_{kti} was

$$x_{kti} = \frac{(D_{kti} + \lambda)^{-C} - (DGM + 10 + \lambda)^{-C}}{(30 + \lambda)^{-C} - (10 + \lambda)^{-C}},$$

where $\lambda = 7 cm$ and C = 1.564.

< ∃→

Model development Estimated model

Model for tree i in stand k at time t

Starting point is the Korf function

$$H = a \exp(-bD^{-c})$$

I reparameterized D and linearized the model to get

$$\ln(H_{kti}) = A_{kt} + B_{kt} x_{kti} + \epsilon_{kti}$$
(1)

The reparameterization of D_{kti} was

$$x_{kti} = \frac{(D_{kti} + \lambda)^{-C} - (DGM + 10 + \lambda)^{-C}}{(30 + \lambda)^{-C} - (10 + \lambda)^{-C}},$$

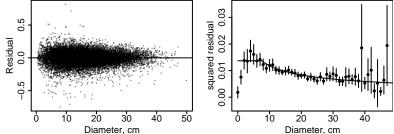
where $\lambda = 7 cm$ and C = 1.564.

Interpretations

A is the expected logarithmic height of thickest trees in the stand B is the difference in ln(H) between trees of diameters 30 and 10 cm

Model development Estimated model

The variance function



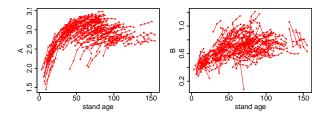
The variance function I used was

$$\operatorname{var}(\epsilon_{kti}) = \sigma^2 (\max(D_{kti}, 7.5))^{-2\delta}$$
(2)

∃ ⊳

Model development Estimated model

Separate fits



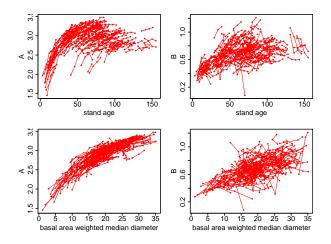
く注≯

æ

< 冊

Model development Estimated model

Separate fits



< ≣ >

Model development Estimated model

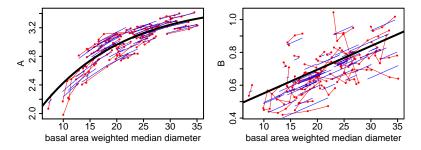
Trend functions

A: Champman-Richards

$$A_{kt} = p_{1a} + p_{2a} \left(1 - \exp(-p_{3a} DGM_{kt}) \right)^{p_{4a}} + \alpha_k + \alpha_{kt}$$
(3)

B: linear

$$B_{kt} = p_{1b} + p_{2b} DGM_{kt} + \beta_k + \beta_{kt}$$



< ∃⇒

Model development Estimated model

Complete model

I wrote the trend functions to model 1 to obtain

$$\begin{aligned} \ln(H_{kti}) &= p_{1a} + \alpha_k + \alpha_{kt} + p_{2a} z_{kt} \\ &+ (p_{1b} + \beta_k + \beta_{kt} + p_{2b} DGM_{kt}) x_{kti} + \epsilon_{kti} \,, \end{aligned}$$

where z_{kt} is the nonlinear part of trend function 3, which is treated as a transformation of DGM_{kt} :

$$z_{kt} = \left(1 - \exp(-0.0651 DGM_{kt})\right)^{0.999}$$

 α_k and β_k are correlated, normal, stand specific random parameters, α_{kt} and β_{kt} are correlated, normal, measurement occasion specific random parameters, and ϵ_{kti} are normal tree level errors with variance as given in 2.

4 E b

Model development Estimated model

Estimates

The parameter estimates and their standard errors were as follows

estimate p_{1a} p_{2a} p_{1b} p_{2b} estimate 1.40 2.15 0.384 0.0157standard error 0.026 0.035 0.017 0.001 $var \begin{bmatrix} \alpha_k \\ \beta_k \end{bmatrix} = \begin{bmatrix} 0.108^2 & (0.269) \\ 0.0028 & 0.0958^2 \end{bmatrix}$ $var \begin{bmatrix} \alpha_{kt} \\ \beta_{kt} \end{bmatrix} = \begin{bmatrix} 0.0168^2 & (-0.681) \\ -0.0003 & 0.0223^2 \end{bmatrix}$ $var(\epsilon_{kti}) = 0.401^2 (max(D_{kti}, 7.5))^{-1.068}$

프 🖌 🔺 프 🕨

Linear predictor in this case Example Predicting DGM in the future

Prediction of random effects

The sample tree heights of a new stand can be described by

$$\mathbf{y} = \boldsymbol{\mu} + \mathbf{Z}\mathbf{b} + \boldsymbol{\epsilon} \,,$$

where

y includes the observed sample tree heights,

 μ is the fixed part,

b = ($\alpha_k \quad \beta_k \quad \alpha_{k1} \quad \beta_{k1} \quad \alpha_{k2} \quad \beta_{k2} \quad \dots$) ' includes the random effects, **Z** is the corresponding design matrix, and

 ϵ includes the residuals.

Let us denote $var(\mathbf{b}) = \mathbf{D}$ and $var(\boldsymbol{\epsilon}) = \mathbf{R}$.

Linear predictor in this case Example Predicting DGM in the future

Utilizing the model

The variances and covariances between random effects and observed heights can be written as

$$\left[\begin{array}{c} \mathbf{b} \\ \mathbf{y} \end{array} \right] \sim \left(\left[\begin{array}{c} \mathbf{0} \\ \boldsymbol{\mu} \end{array} \right], \left[\begin{array}{c} \mathbf{D} & \mathbf{DZ'} \\ \mathbf{ZD} & \mathbf{ZDZ'} + \mathbf{R} \end{array} \right] \right)$$

The Empirical Best Linear Unbiased predictor of random effects is

$$\widehat{\mathbf{b}} = \mathbf{D}\mathbf{Z}'(\mathbf{Z}\mathbf{D}\mathbf{Z'} + \mathbf{R})^{-1}(\mathbf{y} - \mu)$$
 .

and the variance of prediction errors is

$$\operatorname{var}(\widehat{\mathbf{b}} - \mathbf{b}) = \mathbf{D} - \mathbf{D}\mathbf{Z}'(\mathbf{Z}\mathbf{D}\mathbf{Z}' + \mathbf{R})^{-1}\mathbf{Z}\mathbf{D}$$

- ∢ ≣ ▶

Linear predictor in this case Example Predicting DGM in the future

Example

Heights of one tree was measured 5 years ago and 2 trees at this year. The matrices and vectors are

$$\boldsymbol{\mu} = \begin{bmatrix} 2.59\\ 2.11\\ 2.99 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 2.77\\ 2.35\\ 3.19 \end{bmatrix}$$

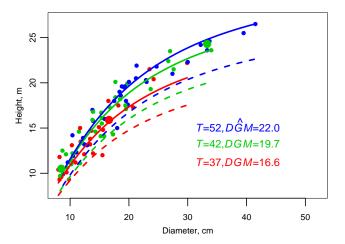
$$\mathbf{Z} = \begin{bmatrix} 1 & -0.36 & 1 & -0.36 & 0 & 0 \\ 1 & -1.22 & 0 & 0 & 1 & -1.22 \\ 1 & 0.058 & 0 & 0 & 1 & 0.058 \end{bmatrix} \quad \mathbf{R} = \begin{bmatrix} 0.008 & 0 & 0 \\ 0 & 0.016 & 0 \\ 0 & 0 & 0.004 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} \alpha_k \\ \beta_k \\ \alpha_{k1} \\ \beta_{k1} \\ \alpha_{k2} \\ \beta_{k2} \end{bmatrix} \quad \mathbf{D} = \begin{bmatrix} 0.0118 & 0.0028 & 0 & 0 & 0 & 0 \\ 0.0028 & 0.0092 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.0003 & 0.0004 & 0 & 0 \\ 0 & 0 & 0 & 0.0005 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.0003 & 0.0004 \\ 0 & 0 & 0 & 0 & 0.0004 & 0.0005 \end{bmatrix}$$

< ≣⇒

Linear predictor in this case Example Predicting DGM in the future

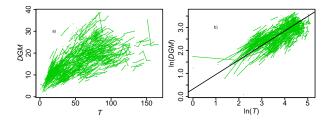
Example



∢ ≣ ≯

Linear predictor in this case Example Predicting DGM in the future

Model for DGM



The model for DGM was

 $\ln(DGM_{kt}) = u + v \ln T_{kt} + u_k + e_{kt},$

where u = 0.33, v = 0.63, $var(u_k) = 0.32^2$ and $var(e_{kt}) = 0.069^2$.

∃ ⊳

Final remarks

The mixed modeling for longitudinal data was a good approach in this context. It makes it possible to flexibly move forward and backward in time, and to utilize mesurements from different points in time in prediction.

< ≣⇒

Final remarks

- The mixed modeling for longitudinal data was a good approach in this context. It makes it possible to flexibly move forward and backward in time, and to utilize mesurements from different points in time in prediction.
- It is very important to plot predictions and residuals in different ways to find good model formulae. Here it helped me to find how parameter A developes over time.

Image: Second second

Final remarks

- The mixed modeling for longitudinal data was a good approach in this context. It makes it possible to flexibly move forward and backward in time, and to utilize mesurements from different points in time in prediction.
- It is very important to plot predictions and residuals in different ways to find good model formulae. Here it helped me to find how parameter A developes over time.
- The development of *H-D* curves was best modeled as a function of a variable describing the mean (or median) size of trees in the stand, instead of stand age. That could be a good approach also in other models.

4 E b

Final remarks

- The mixed modeling for longitudinal data was a good approach in this context. It makes it possible to flexibly move forward and backward in time, and to utilize mesurements from different points in time in prediction.
- It is very important to plot predictions and residuals in different ways to find good model formulae. Here it helped me to find how parameter A developes over time.
- The development of *H-D* curves was best modeled as a function of a variable describing the mean (or median) size of trees in the stand, instead of stand age. That could be a good approach also in other models.
- R-sowtware has many good properties that make this kind of analysis easy in R: function 'unique', packages 'nlme' and 'lme', possibility to handle several datasets and models at same time.

Image: Second second