Modelling Height-Diameter Curves For Prediction

Lauri Mehtätalo, University of Eastern Finland

March 2, 2016

Mehtätalo L, de-Miguel S, and Gregoire, T.G. 2015. Modeling height-diameter curves for prediction. Canadian Journal of Forest Research, 45(7): 826-837, 10.1139/cjfr-2015-0054

Lauri Mehtätalo, University of Eastern Finland

A D F A P F A E

3

Outline

1 Introduction

- 2 Marginal vs. plot-specific relationship
- 3 Simple vs. generalized relationship
- 4 Material

5 Results

6 Discussion and conclusions

Height-Diameter (H-D) relationship is one of the first models one need to fit in forest inventories.

The aims of this study were

- To emphasize the differences between
 - marginal (population-averaged of one kind) and plot-specific H-D relationship and
 - simple and generalized relationship
- Explore the fit of 16 nonlinear functions for the H-D relationship in 28 different datasets of different tree species from different regions.
- Develop generalized models for four example datasets for demonstration purposes
- Produce easy-to-use R functions with sensible defaults for height imputation

Height-Diameter (H-D) relationship is one of the first models one need to fit in forest inventories.

The aims of this study were

- To emphasize the differences between
 - marginal (population-averaged of one kind) and plot-specific H-D relationship and
 - simple and generalized relationship
- Explore the fit of 16 nonlinear functions for the H-D relationship in 28 different datasets of different tree species from different regions.
- Develop generalized models for four example datasets for demonstration purposes
- Produce easy-to-use R functions with sensible defaults for height imputation

Height-Diameter (H-D) relationship is one of the first models one need to fit in forest inventories.

The aims of this study were

- To emphasize the differences between
 - marginal (population-averaged of one kind) and plot-specific H-D relationship and
 - simple and generalized relationship
- Explore the fit of 16 nonlinear functions for the H-D relationship in 28 different datasets of different tree species from different regions.
- Develop generalized models for four example datasets for demonstration purposes
- Produce easy-to-use R functions with sensible defaults for height imputation

Height-Diameter (H-D) relationship is one of the first models one need to fit in forest inventories.

The aims of this study were

- To emphasize the differences between
 - marginal (population-averaged of one kind) and plot-specific H-D relationship and
 - simple and generalized relationship
- Explore the fit of 16 nonlinear functions for the H-D relationship in 28 different datasets of different tree species from different regions.
- Develop generalized models for four example datasets for demonstration purposes
- Produce easy-to-use R functions with sensible defaults for height imputation

A typical H-D dataset

Marginal H-D relationship

Simple fixed-effects model

 $h_{ij} = f(d_{ij}; \beta) + e_{ij}$

- An easy way to estimate the marginal relationship.
- The model is improperly formulated: the model ignores the grouped structure

Marginal H-D relationship

Simple fixed-effects model

 $h_{ij} = f(d_{ij}; \beta) + e_{ij}$

An easy way to estimate the marginal relationship.

The model is improperly formulated: the model ignores the grouped structure

Marginal H-D relationship

Simple fixed-effects model

$$h_{ij} = f(d_{ij}; \beta) + e_{ij}$$

An easy way to estimate the marginal relationship.

The model is improperly formulated: the model ignores the grouped structure

Plot-specific H-D relationship

Simple random-effects model

$h_{ij} = f(d_{ij}; \beta_i) + e_{ij}$, where $\beta_i = \mathbf{B} + \mathbf{b}_i$ and $\mathbf{b}_i \sim N(\mathbf{0}, \mathbf{D})$

- An easy way to estimate the plot-specific relationship.
- Still improperly formulated model: the random effect mean depends on the mean diameter of the plot.

Lauri Mehtätalo, University of Eastern Finland

Plot-specific H-D relationship

Simple random-effects model

- $h_{ij} = f(d_{ij}; \beta_i) + e_{ij}$, where $\beta_i = \mathbf{B} + \mathbf{b}_i$ and $\mathbf{b}_i \sim N(\mathbf{0}, \mathbf{D})$
 - An easy way to estimate the plot-specific relationship.

Still improperly formulated model: the random effect mean depends on the mean diameter of the plot.

Lauri Mehtätalo, University of Eastern Finland

Plot-specific H-D relationship

Simple random-effects model

 $h_{ij} = f(d_{ij}; \beta_i) + e_{ij}$, where $\beta_i = \mathbf{B} + \mathbf{b}_i$ and $\mathbf{b}_i \sim N(\mathbf{0}, \mathbf{D})$

- An easy way to estimate the plot-specific relationship.
- Still improperly formulated model: the random effect mean depends on the mean diameter of the plot.

Plot-specific H-D relationship and fixed part

Simple random-effects model

 $h_{ij} = f(d_{ij}; \beta_i) + e_{ij}$, where $\beta_i = \mathbf{B} + \mathbf{b}_i$ and $\mathbf{b}_i \sim N(\mathbf{0}, \mathbf{D})$

Lauri Mehtätalo, University of Eastern Finland Modelling Height-Diameter Curves For Prediction ▲ロト▲聞ト▲臣ト▲臣ト 臣 のべ⊙

Two fixed-effect predictions

8 ainal relationshi 55 20 e r 5 ated RE mode 9 40 0 0 10 20 30 40 50 d. cm

Simple FE and RE model

$$h_{ij} = f(d_{ij}; \boldsymbol{\beta}) + e_{ij}$$

$$h_{ij} = f(d_{ij}; \boldsymbol{\beta}_i) + e_{ij}, \text{ where } \boldsymbol{\beta}_i = \mathbf{B} + \mathbf{b}_i \text{ and } \mathbf{b}_i \sim N(\mathbf{0}, \mathbf{D})$$

< □ > < 同

æ

A generalized model: fixed part

Generalized RE model

 $h_{ij} = f(d_{ij}; \beta_i) + e_{ij}$, where $\beta_i = \beta' \mathbf{x}_i + \mathbf{b}_i$ and $\mathbf{b}_i \sim N(\mathbf{0}, \mathbf{D})$

< □ > < / →

A generalized model: fixed + random part

Generalized RE model

 $h_{ij} = f(d_{ij}; \beta_i) + e_{ij}$, where $\beta_i = \beta' \mathbf{x}_i + \mathbf{b}_i$ and $\mathbf{b}_i \sim N(\mathbf{0}, \mathbf{D})$

- Model properly formulated
- Could provide also marginal relationship (not shown).

A generalized model: fixed + random part

Generalized RE model

 $h_{ij} = f(d_{ij}; \beta_i) + e_{ij}$, where $\beta_i = \beta' \mathbf{x}_i + \mathbf{b}_i$ and $\mathbf{b}_i \sim N(\mathbf{0}, \mathbf{D})$ Model properly formulated

Could provide also marginal relationship (not shown).

A generalized model: fixed + random part

Generalized RE model

 $h_{ij} = f(d_{ij}; \beta_i) + e_{ij}$, where $\beta_i = \beta' \mathbf{x}_i + \mathbf{b}_i$ and $\mathbf{b}_i \sim N(\mathbf{0}, \mathbf{D})$

- Model properly formulated
- Could provide also marginal relationship (not shown).

The applied functions

Number	Function name	Equation	References
2-param	eter functions		
1	Näslund	$H(D) = BH + \frac{D^2}{\left(aD + b\right)^2}$	Näslund (1937), Peschel (1938)
2	Curtis	$H(D) = BH + \frac{aD}{\left(1 + D\right)^b}$	Curtis (1967)
3	Schumacher	$H(D) = BH + a \exp(-bD^{-1})$	Schumacher (1939), Michailoff (1943), Curtis (1967)
4	Meyer	$H(D) = BH + a(1 - \exp(-bD))$	Meyer (1940), Curtis (1967)
5	Power	$H(D) = BH + aD^b$	Stoffels and van Soest (1953)
6	Michaelis-Menten	H(D) = BH + aD/(b + D)	Menten and Michaelis (1913), Huang et al. (1992)
7	Wykoff	$H(D) = BH + \exp(a - b(D + 1)^{-1})$	Wykoff et al. (1982)
3-param	eter functions		
8	Prodan	$H(D) = BH + \frac{D^2}{aD^2 + bD + c}$	Strand (1959)
9	Logistic	$H(D) = BH + \frac{a}{1 + b \exp(-cD)}$	Pearl and Reed (1920), Huang et al. (1992)
10	Chapman-Richards	$H(D) = BH + a(1 - \exp(-bD))^{c}$	Richards (1959), Huang et al. (1992)
11	Weibull	$H(D) = BH + a(1 - \exp(-bD^{c}))$	Weibull (1951), Huang et al. (1992)
12	Gomperz	$H(D) = BH + a \exp(-b \exp(-cD))$	Gomperz (1825), Huang et al. (1992)
13	Sibbesen	$H(D) = BH + aD^{bD^{-c}}$	Sibbesen (1981), Huang et al. (1992)
14	Korf	$H(D) = BH + a \exp(-bD^{-c})$	Lundqvist (1957), Flewelling and de Jong (1994)
15	Ratkowsky	$H(D) = BH + a \exp\left(\frac{-b}{D+c}\right)$	Ratkowsky (1990), Huang et al. (1992)
16	Hossfeld IV	$H(D) = BH + \frac{a}{1 + \frac{1}{bD^c}}$	Peschel (1938)

Note: The references give the original reference and the first use in H–D modeling. Naming follows Zeide (1993) when applicable. H = tree height, D = tree diameter at breast height, BH = breast height, a, b, c = parameters of the equation.

< 注→

Lauri Mehtätalo, University of Eastern Finland

Material

Table 1. Summar	y of t	the moo	deling	datasets
-----------------	--------	---------	--------	----------

Data set	Latin name	Country	N	K	$\overline{n_i}$	d _{min}	đ	d _{max}	h_{min}	ħ	h _{max}
Scots pine A	Pinus Sylvestris	Finland	4234	103	41	1.5	14.5	51.0	1.4	13.2	35.1
Norway spruce A	Picea abies	Finland	2513	51	49	2.9	17.2	57.0	2.1	13.7	29.8
Scots pine B	Pinus Sylvestris	Finland	1644	66	25	3.0	20.0	49.1	1.6	17.3	33.1
Norway spruce B	Picea abies	Finland	3020	66	46	0.9	11.5	52.3	1.4	9.9	33.2
Birch A	Betula pendula. B. pubescens	Finland	1673	72	23	1.6	8.7	48.8	1.8	10.0	29.8
Norway spruce C	Picea abies	Finland	1252	31	40	5.0	14.3	68.8	1.5	12.9	34.3
Turkish red pine	Pinus brutia	Syria. Lebanon	1283	114	11	5.0	27.3	96.9	3.5	13.7	35.1
Aleppo pine	Pinus halepensis	Spain	16378	1016	16	7.5	32.6	174.0	2.0	14.6	41.0
Canarian island pine	Pinus canariensis	Spain	7327	870	8	7.5	19.5	74.8	2.0	7.7	23.0
Loblolly pine 1	Pinus taeda	VA, USA	5634	99	57	1.3	13.9	34.3	1.5	10.9	23.8
Loblolly pine 2	Pinus taeda	VA, USA	4895	99	49	3.3	18.2	37.6	4.6	15.8	26.8
Loblolly pine 3	Pinus taeda	VA, USA	4171	99	42	5.1	20.8	42.9	4.9	18.8	31.4
Lodgepole pine 1	Pinus contorta	BC, Canada	10817	140	77	0.1	6.0	25.5	1.3	7.4	21.3
Lodgepole pine 2	Pinus contorta	BC, Canada	9336	141	66	0.3	8.9	31.0	1.3	8.7	22.8
Lodgepole pine 3	Pinus contorta	BC, Canada	5903	93	63	0.7	12.6	29.8	1.4	12.4	24.2
Eucalyptus clone	Eucalyptus urograndis	Brazil	1141	191	6	6.2	19.4	34.1	12.0	30.0	41.0
Blue gum A	Eucalyptus globulus	Bolivia	6554	50	131	0.1	3.8	18.2	1.4	6.0	19.1
Blue gum B1	Eucalyptus globulus	Bolivia	884	6	147	1.0	9.5	31.7	1.9	9.6	28.5
Blue gum B2	Eucalyptus globulus	Bolivia	1261	6	210	1.0	10.1	33.7	1.7	11.1	30.0
Centrolobium 1	Centrolobium tomentosum	Bolivia	2199	46	48	1.2	11.2	28.3	1.8	11.1	20.5
Centrolobium 2	Centrolobium tomentosum	Bolivia	2167	46	47	1.2	12.6	30.3	2.2	12.6	22.1
Centrolobium 3	Centrolobium tomentosum	Bolivia	2023	44	46	2.5	13.4	31.3	2.2	13.6	25.8
Brasilian firetree	Schizolobium parahyba	Bolivia	2631	46	57	0.8	8.8	33.2	1.4	8.7	27.0
Teak 1	Tectona grandis	Bolivia	4928	62	79	1.0	6.6	41.5	1.4	6.5	29.6
Teak 2	Tectona grandis	Bolivia	3444	43	80	1.0	8.1	44.3	1.4	7.9	29.5
Mixed tropical	Multi-species	Bolivia	15049	41	367	8.2	23.7	115.6	2.5	12.6	36.9
Balsa 1	Ochroma pyramidale	Bolivia	2943	53	56	0.8	8.7	19.8	1.5	8.6	21.7
Balsa 2	Ochroma pyramidale	Bolivia	715	23	31	1.5	9.9	22.7	1.4	9.8	17.5

Note: Whenever two datasets of same species have been used, a capital letter is used to denote different independent datasets and an Arabic number to denote different measurement occasions of the same dataset. N: the number of trees, K: the number of sample plots; R; mean number of trees per plot; d_max, the minimum, mean and maximum height, m.

<ロト < 四ト < 回ト < 回ト < 回ト

Lauri Mehtätalo, University of Eastern Finland

Ranking of the functions

	Criteria	Näslund	Curtis	Schumacher	Meyer	Power	MicMent.	Wykoff
Mixed-effects	1st ranks	12	7	8	0	1	0	1
	Ranks 1–3	15	26	20	5	2	3	16
	Mean rank (sd)	2.7 (1.5)	2.3 (1.2)	3.0 (1.9)	4.7 (1.4)	5.9 (1.5)	5.8 (1.4)	3.6 (1.3)
	Conv. Prob's	0	0	0	0	0	1	0
Fixed-effects	1st ranks	13	5	0	6	2	3	0
	Ranks 1–3	23	19	8	12	6	10	8
	Mean rank (sd)	1.9 (1.1)	2.8 (1.3)	4.2 (1.5)	2.5 (1.5)	4.3 (2.0)	2.5 (1.5)	4.1 (1.1)
	Conv. Prob's	4	3	5	12	11	16	3

Table 3. Evaluation of the simple two-parameter models according to the four criteria.

Note: The criteria are: 1st ranks is the number of first ranks among the datasets; ranks 1–3 gives the number of rankings among three best models; mean rank of the model (the number in parentheses is the standard deviation of the ranks; Conv. Prob's gives the number of unsuccessful fits. The three best models according to each criteria are highlighted.

	Criteria	Prodan	Logistic	Ch-Ri	Weibull	Gomperz	Sibbesen	Korf	Ratkowsky	Hossf. IV
Mixed-effects	1st ranks	11	6	1	0	4	0	0	6	0
	Ranks 1–3	18	12	10	8	18	0	2	14	2
	Mean rank (sd)	3.0 (2.3)	4.0(2.2)	4.3 (1.8)	4.8 (1.7)	2.8 (1.4)	8.1 (1.3)	7.3 (1.7)	3.6 (2.0)	6.1 (1.3)
	Conv. Prob's	0 .	0	1	0	0	18	6	0	1
Fixed-effects	1st ranks	3	3	4	3	3	0	3	3	4
	Ranks 1–3	9	4	13	9	11	4	4	9	10
	Mean rank (sd)	3.3 (1.6)	5.3 (2.6)	2.7 (1.4)	3.3 (1.7)	3.9(2.2)	3.5 (1.6)	4.1(2.1)	2.8 (1.6)	2.7 (1.5)
	Conv. Prob's	9	10	10	13	6	22	15	16	13

Table 4. Evaluation of the simple three-parameter models according to the four criteria.

Note: For notations, see Table 3.

The best-fitting functions for plot-specific relationship

Table 5. The best plot-specific fits of the 2- and 3- parameter models and the related RMSE in different datasets.

	Model name and RMSE (m)							
Dataset	2-parameter model	3-parameter model						
Scots pine A	Curtis	1.39	Logistic	1.37				
Norway spruce A	Näslund	1.62	Prodan	1.60				
Scots pine B	Näslund	1.64	Prodan	1.64				
Norway spruce B	Näslund	1.27	Prodan	1.21				
Birch	Näslund	1.97	Logistic	1.92				
Norway spruce C	Näslund	2.01	Gomperz	1.95				
Turkish red pine	Wykoff	1.95	Prodan	1.95				
Canarian island pine	Curtis	1.99	Logistic	1.94				
Aleppo pine	Näslund	0.97	Prodan	0.97				
Loblolly pine 1	Näslund	0.82	Gomperz	0.82				
Loblolly pine 2	Schumacher	0.97	Gomperz	0.97				
Loblolly pine 3	Schumacher	1.14	Prodan	1.13				
Lodgepole pine 1	Curtis	0.61	Ratkowsky	0.61				
Lodgepole pine 2	Curtis	0.68	Ratkowsky	0.68				
Lodgepole pine 3	Schumacher	0.85	Ratkowsky	0.85				
Eugalyptus clone	Schumacher	0.90	Prodan	0.83				
Blue gum A	Näslund	1.17	Prodan	1.16				
Blue gum B1	Näslund	2.27	Ratkowsky	2.26				
Blue gum B2	Näslund	2.29	Logistic	2.20				
Centrolobium 1	Curtis	1.26	Prodan	1.25				
Centrolobium 2	Schumacher	1.28	Ratkowsky	1.25				
Centrolobium 3	Schumacher	1.42	Ratkowsky	1.39				
Brasilian firetree	Curtis	1.54	Prodan	1.53				
Teak 1	Curtis	1.10	Logistic	1.08				
Teak 2	Näslund	1.10	Gomperz	1.08				
Mixed tropical	Näslund	2.81	Logistic	2.79				
Balsa 1	Schumacher	1.23	Ratkowsky	1.23				
Balsa 2	Schumacher	1.24	Prodan	1.24				

Note: The model with lower BIC value between the 2- and 3- parameter models is indicated by **boldface** and the model with lower AIC by *italics*.

Lauri Mehtätalo, University of Eastern Finland

Best generalized model for four datasets

Scots Pine A/ Logistic:

(7)
$$h_{ij} = 1.3 + \frac{(\alpha_0 + \alpha_1 \overline{d}_i + a_i)}{1 + (\beta_0 + \beta_1 \overline{d}_i + b_i) \exp[(\gamma_0 + \gamma_1 \overline{d}_i + c_j) d_{ij}]} + e_{ij}$$

Loblolly pine/ Näslund:

(8)
$$h_{ij} = 1.3 + \frac{d_{ij}^2}{\left[(\alpha_0 + \alpha_1 \ln \overline{d}_i + a_i) d_{ij} + \beta_0 + b_i + \beta_1 \ln \overline{d}_i \right]^2} + e_{ij}$$

Teak / Curtis:

(9)
$$h_{ij} = 1.3 + \frac{(\alpha_0 + \alpha_1 \overline{d}_i + a_i)d_{ij}}{(1 + d_{ij})^{\beta_0 + \beta_1 \overline{d}_i + b_i}} + e_{ij}$$

- Centrolobium / Schumacher: (10) $h_{ij} = 1.3 + (\alpha_0 + \alpha_1 \overline{d}_i + a_i) \exp[(\beta_0 + b_i) d_{ij}^{-1}] + e_{ij}$
- Some data sets had constant residual variance, others had increasing or decreasing as a function of fitted value.

- Differences between two and three-parameter models were slight in most cases. Two parameters was usually enough.
- Curtis' and Näslunds functions were most commonly the best functions for plot-specific H-D relationship
- The generalized models were very different in different datasets with respect to functional form, random effects and variance function.
- Functions for height imputation are available in R-package lmfor.

- Differences between two and three-parameter models were slight in most cases. Two parameters was usually enough.
- Curtis' and Näslunds functions were most commonly the best functions for plot-specific H-D relationship
- The generalized models were very different in different datasets with respect to functional form, random effects and variance function.
- Functions for height imputation are available in R-package lmfor.

- Differences between two and three-parameter models were slight in most cases. Two parameters was usually enough.
- Curtis' and Näslunds functions were most commonly the best functions for plot-specific H-D relationship
- The generalized models were very different in different datasets with respect to functional form, random effects and variance function.

イロト イポト イヨト イヨト

• Functions for height imputation are available in R-package lmfor.

- Differences between two and three-parameter models were slight in most cases. Two parameters was usually enough.
- Curtis' and Näslunds functions were most commonly the best functions for plot-specific H-D relationship
- The generalized models were very different in different datasets with respect to functional form, random effects and variance function.
- Functions for height imputation are available in R-package lmfor.