Modelling Height-Diameter Curves For Prediction

Lauri Mehtätalo, University of Eastern Finland

March 2, 2016

Mehtätalo L, de-Miguel S, and Gregoire, T.G. 2015. Modeling height-diameter curve[s for](#page-0-0) p[red](#page-1-0)[iction.](#page-0-0) [C](#page-1-0)[anad](#page-0-0)[ia](#page-1-0)[n J](#page-2-0)[our](#page-0-0)[nal](#page-1-0) [o](#page-2-0)[f](#page-0-0) Forest Research, 45(7): 826-837, 10.1139/cjfr-2015-0054 イロト (何) (ほ) (ほ)

 2990

Lauri Mehtätalo, University of Eastern Finland

 QQ

э

비둘 게

4 日 > 4 伊 $\,$ $\,$ 重

Outline

[Introduction](#page-2-0)

- 2 [Marginal vs. plot-specific relationship](#page-6-0)
- 3 [Simple vs. generalized relationship](#page-15-0)
- 4 [Material](#page-19-0)

5 [Results](#page-21-0)

Height-Diameter (H-D) relationship is one of the first models one need to fit in forest inventories.

The aims of this study were

- \blacksquare To emphasize the differences between
	- marginal (population-averaged of one kind) and plot-specific H-D relationship and
	- simple and generalized relationship
- Explore the fit of 16 nonlinear functions for the H-D relationship in 28 different datasets of different tree species from different regions.
- **Develop generalized models for four example datasets for** demonstration purposes
- **Produce easy-to-use R functions with sensible defaults for height** imputation す口→ す部→ すき > すき > 。

 QQ

Height-Diameter (H-D) relationship is one of the first models one need to fit in forest inventories.

The aims of this study were

- \blacksquare To emphasize the differences between
	- marginal (population-averaged of one kind) and plot-specific H-D relationship and
	- simple and generalized relationship
- Explore the fit of 16 nonlinear functions for the H-D relationship in 28 different datasets of different tree species from different regions.
- **Develop generalized models for four example datasets for** demonstration purposes
- **Produce easy-to-use R functions with sensible defaults for height** imputation すロト (御) すきとすきとう

 $2Q$

Height-Diameter (H-D) relationship is one of the first models one need to fit in forest inventories.

The aims of this study were

- \blacksquare To emphasize the differences between
	- marginal (population-averaged of one kind) and plot-specific H-D relationship and
	- simple and generalized relationship
- Explore the fit of 16 nonlinear functions for the H-D relationship in 28 different datasets of different tree species from different regions.
- Develop generalized models for four example datasets for demonstration purposes
- **Produce easy-to-use R functions with sensible defaults for height** imputation すロト (御) すきとすきとう

 $2Q$

Height-Diameter (H-D) relationship is one of the first models one need to fit in forest inventories.

The aims of this study were

- \blacksquare To emphasize the differences between
	- marginal (population-averaged of one kind) and plot-specific H-D relationship and
	- simple and generalized relationship
- Explore the fit of 16 nonlinear functions for the H-D relationship in 28 different datasets of different tree species from different regions.
- Develop generalized models for four example datasets for demonstration purposes
- **Produce easy-to-use R functions with sensible defaults for height** imputation *ロト→個→→ *目→ *目→

 $2Q$

A typical H-D dataset

Marginal H-D relationship

Simple fixed-effects model

 $h_{ij} = f(d_{ij}; \beta) + e_{ij}$

- \blacksquare An easy way to estimate the marginal relationship.
- \blacksquare The model is improperly formulated: the model ignores the grouped structure 4 日 > 4 伊 $\,$ $\,$

 2990

Marginal H-D relationship

Simple fixed-effects model

 $h_{ij} = f(d_{ij}; \beta) + e_{ii}$

 \blacksquare An easy way to estimate the marginal relationship.

The model is improperly formulated: the model ignores the grouped structure 4 口) 4 伺

 2990

Marginal H-D relationship

Simple fixed-effects model

$$
h_{ij}=f(d_{ij};\boldsymbol{\beta})+e_{ij}
$$

An easy way to estimate the marginal relationship. П

The model is improperly formulated: the model ignores the $\mathcal{C}^{\mathcal{A}}$ grouped structure 4 0 8 4

 2990

Plot-specific H-D relationship

Simple random-effects model

$h_{ij} = f(d_{ij}; \beta_i) + e_{ij}$, where $\beta_i = \mathbf{B} + \mathbf{b}_i$ and $\mathbf{b}_i \sim N(\mathbf{0}, \mathbf{D})$

 \blacksquare An easy way to estimate the plot-specific relationship.

Still improperly formulated model: the random effect mean

 2990

depends on the mean diameter of the plot.

Lauri Mehtätalo, University of Eastern Finland

Plot-specific H-D relationship

Simple random-effects model

- $h_{ij} = f(d_{ij}; \beta_i) + e_{ij}$, where $\beta_i = \mathbf{B} + \mathbf{b}_i$ and $\mathbf{b}_i \sim N(\mathbf{0}, \mathbf{D})$
	- \blacksquare An easy way to estimate the plot-specific relationship.

Still improperly formulated model: the random effect mean depends on the mean diameter of the plot.

 2990

Lauri Mehtätalo, University of Eastern Finland

Plot-specific H-D relationship

Simple random-effects model

 $h_{ij} = f(d_{ij}; \beta_i) + e_{ij}$, where $\beta_i = \mathbf{B} + \mathbf{b}_i$ and $\mathbf{b}_i \sim N(\mathbf{0}, \mathbf{D})$

- \blacksquare An easy way to estimate the plot-specific relationship.
- Still improperly formulated model: the random effect mean depends on the mean diameter of the plot.

 2990

Lauri Mehtätalo, University of Eastern Finland

Plot-specific H-D relationship and fixed part

Simple random-effects model

 $h_{ii} = f(d_{ii}; \beta_i) + e_{ii}$, where $\beta_i = \mathbf{B} + \mathbf{b}_i$ and $\mathbf{b}_i \sim N(\mathbf{0}, \mathbf{D})$

Lauri Mehtätalo, University of Eastern Finland

Two fixed-effect predictions

g 25 \approx ϵ $\frac{10}{2}$ ϵ \circ 10 \overline{a} ∞ 30 40 d. cm

Simple FE and RE model

$$
h_{ij} = f(d_{ij}; \beta) + e_{ij}
$$

\n
$$
h_{ij} = f(d_{ij}; \beta_i) + e_{ij}
$$
, where $\beta_i = \mathbf{B} + \mathbf{b}_i$ and $\mathbf{b}_i \sim N(\mathbf{0}, \mathbf{D})$

 $2Q$

メ 店 \rightarrow ≣

Kロ > Kn \mathbf{p}

A generalized model: fixed part

Generalized RE model

 $h_{ij} = f(d_{ij}; \beta_i) + e_{ij}$, where $\beta_i = \beta' \mathbf{x}_i + \mathbf{b}_i$ and $\mathbf{b}_i \sim N(\mathbf{0}, \mathbf{D})$

4 0 8 4 伊 2990

A generalized model: fixed + random part

Generalized PE model

 $h_{ij} = f(d_{ij}; \beta_i) + e_{ij}$, where $\beta_i = \beta' \mathbf{x}_i + \mathbf{b}_i$ and $\mathbf{b}_i \sim N(\mathbf{0}, \mathbf{D})$

• Model properly formulated

■ Could provide also marginal relationship (not shown)

つくい

A generalized model: fixed + random part

Generalized PE model

 $h_{ij} = f(d_{ij}; \beta_i) + e_{ij}$, where $\beta_i = \beta' \mathbf{x}_i + \mathbf{b}_i$ and $\mathbf{b}_i \sim N(\mathbf{0}, \mathbf{D})$ • Model properly formulated

■ Could provide also marginal relationship (not shown)

つくい

A generalized model: fixed + random part

Generalized PE model

- $h_{ij} = f(d_{ij}; \beta_i) + e_{ij}$, where $\beta_i = \beta' \mathbf{x}_i + \mathbf{b}_i$ and $\mathbf{b}_i \sim N(\mathbf{0}, \mathbf{D})$
	- Model properly formulated
	- Could provide also marginal relationship (not shown).

つへへ

Lauri Mehtätalo, University of Eastern Finland

The applied functions

Note: The references give the original reference and the first use in H-D modeling. Naming follows Zeide (1993) when applicable. H = tree height, D = tree diameter at breast height, BH = breast height, a , b , c = parameters of the equation.

∢ 끝→

 QQ

₿

Lauri Mehtätalo, University of Eastern Finland

Material

Note: Whenever two datasets of same species have been used, a capital letter is used to denote different independent datasets and an Arabic number to denote different measurement occasions of the same dataset. N: the number of trees; K: the number of sample plots; $\overline{n_i}$ mean number of trees per plot; d_{min} , \overline{d} , d_{max} ; the minimum, mean and maximum diameter, cm; h_{min} , \bar{h} , h_{max} ; the minimum, mean and maximum height, m.

イロト イ何ト イヨト

비로 게

つへへ

≣

Lauri Mehtätalo, University of Eastern Finland

Ranking of the functions

Table 3. Evaluation of the simple two-parameter models according to the four criteria.

Note: The criteria are: 1st ranks is the number of first ranks among the datasets; ranks 1-3 gives the number of rankings among three best models; mean rank gives the mean rank of the model (the number in parentheses is the standard deviation of the ranks; Conv. Prob's gives the number of unsuccessful fits. The three best models according to each criteria are highlighted.

	Criteria	Prodan	Logistic	Ch-Ri	Weibull	Gomperz	Sibbesen	Korf	Ratkowsky	Hossf. IV
Mixed-effects	1st ranks	11					0			
	Ranks 1-3	18	12	10		18			14	
	Mean rank (sd)	3.0(2.3)	4.0(2.2)	4.3(1.8)	4.8(1.7)	2.8(1.4)	8.1(1.3)	7.3(1.7)	3.6(2.0)	6.1(1.3)
	Conv. Prob's						18			
Fixed-effects	1st ranks						o			
	Ranks 1-3			13		11				10
	Mean rank (sd)	3.3(1.6)	5.3(2.6)	2.7(1.4)	3.3(1.7)	3.9(2.2)	3.5(1.6)	4.1(2.1)	2.8(1.6)	2.7(1.5)
	Conv. Prob's	9	10	10	13		22	15	16	13

Table 4. Evaluation of the simple three-parameter models according to the four criteria.

Note: For notations, see Table 3.

Lauri Mehtätalo, University of Eastern Finland

The best-fitting functions for plot-specific relationship

Table 5. The best plot-specific fits of the 2- and 3- parameter models and the related RMSE in different datasets

Note: The model with lower BIC value between the 2- and 3- parameter models is indicated by boldface and the model with lower AIC by italics.

Lauri Mehtätalo, University of Eastern Finland

Best generalized model for four datasets

■ Scots Pine A/ Logistic:

(7)
$$
h_{ij} = 1.3 + \frac{(\alpha_0 + \alpha_1 \overline{d}_i + a_i)}{1 + (\beta_0 + \beta_1 \overline{d}_i + b_i) \exp[(\gamma_0 + \gamma_1 \overline{d}_i + c_i) d_{ij}]} + e_{ij}
$$

Loblolly pine/ Näslund:

(8)
$$
h_{ij} = 1.3 + \frac{d_{ij}^2}{\left[(\alpha_0 + \alpha_1 \ln \overline{d}_i + a_i) d_{ij} + \beta_0 + b_i + \beta_1 \ln \overline{d}_i \right]^2} + e_{ij}
$$

■ Teak / Curtis:

(9)
$$
h_{ij} = 1.3 + \frac{(\alpha_0 + \alpha_1 \overline{d}_i + a_j) d_{ij}}{(1 + d_{ij})^{\beta_0 + \beta_1 \overline{d}_i + b_i}} + e_{ij}
$$

- **Centrolobium / Schumacher:**
(10) $h_{ii} = 1.3 + (\alpha_0 + \alpha_1 \bar{d}_i + a_i) \exp[(\beta_0 + b_i) d_{ii}^{-1}] + e_{ii}$ (10)
- Some data sets had constant residual variance, others had increasing or decreasing as a function of [fitte](#page-22-0)[d](#page-24-0) [v](#page-22-0)[alu](#page-23-0)[e](#page-24-0)[.](#page-20-0)

つくい

- Differences between two and three-parameter models were slight in most cases. Two parameters was usually enough.
- Curtis' and Näslunds functions were most commonly the best functions for plot-specific H-D relationship
- The generalized models were very different in different datasets with respect to functional form, random effects and variance function.
- ■ Functions for height imputation are available in R-package

- Differences between two and three-parameter models were slight in most cases. Two parameters was usually enough.
- Curtis' and Näslunds functions were most commonly the best functions for plot-specific H-D relationship
- \blacksquare The generalized models were very different in different datasets with respect to functional form, random effects and variance function.
- \blacksquare Functions for height imputation are available in R-package

- Differences between two and three-parameter models were slight in most cases. Two parameters was usually enough.
- Curtis' and Näslunds functions were most commonly the best functions for plot-specific H-D relationship
- The generalized models were very different in different datasets with respect to functional form, random effects and variance function.

イロト (何) イヨト (ヨ)

 QQ

 \blacksquare Functions for height imputation are available in R-package

- Differences between two and three-parameter models were slight in most cases. Two parameters was usually enough.
- Curtis' and Näslunds functions were most commonly the best functions for plot-specific H-D relationship
- The generalized models were very different in different datasets with respect to functional form, random effects and variance function.
- \blacksquare Functions for height imputation are available in R-package lmfor.