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Airborne laser scanning of forests (ALS)

The principle

A laser scanner measures the distance
from an aircraft to forest canopy

Some pulses return from canopies,
others from forest floor

Produces point-wise measurements of
canopy height

Commonly used devices have

Scan angle 0-20 degrees.

Laser footprint diameter ≈0.5 meters

Pulse density ≈0.5-5 pulses per m2.
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Use of ALS in forest inventories

Forest inventories are used to assess the forest resources over the area of interest. The main
characteristics are the amount, size, and species of trees.
ALS can be used in inventories in two ways

Find individual tree canopies from a high-density
point cloud
→ Individual tree detection (ITD).
+ field data not needed
- extra trees and hidden trees,
- estimation of stem diameter and volume

Estimate relation of ALS data and field
measurements at locations of field sample plots
and generalize it to the unsampled locations
→ Area-Based Approach (ABA).
+ works with low point density,
+ relates ALS directly to variables of interest
- field data needed,
- tree species identification

ALS data over a forest area.
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Possible solutions based on stochastic geometry (ITD)

Simplify tree crowns to discs that are projected to the ground. 1

Assume that a tree is visible if the center is not within a larger tree. A tree is detected iff it
is visible.

The crown radius is distributed according to a parametric pdf/pmf with unknown
parameters.

Assume the Boolean model for crown discs. The proportion of canopy hits (cc) provides
a measurement of area fraction. Equating it to the area fraction of the Boolean model
p = 1−e−λE(Z) and solving for λ yields an area fraction -based estimator of intensity

λ̂AF =− ln(1− cc)
E(Z)

(1)

where E(Z) is the mean crown area over all trees.

The Horvitz-Thompson estimator is

λ̂HT =
n

∑
i=1

1
π(zi)

. (2)

Both estimators need a formula for detectability π(zi) (λ̂AF needs it for E(Z)).
1Mehtätalo 2006, Can J. For. Res.
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Detectability π(z) under the Boolean model

Consider trees with crown area above a fixed z. The trees with Z > z form also a
Boolean model, with area fraction

pZ>z = 1−e−λZ>z EZ>z(Z)

where the exponent is −λ
∫

∞

z tf (t)dt (or a corresponding sum if crown area Z is thought
as discrete.
The detectability is directly

π(z;λ ) = 1−pZ>z = e−λZ>z EZ>z(Z) .

Detectability in hypothetical stands with unimodal (blue) and
bimodal (red) size distribution of trees and two stand densities.
The values show the canopy closure.
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Empirical evaluation

40 square 400 m2 Pine-dominated sample plots in North Carelia, Finland.
The algorithm of Pitkänen (2004) 2 was used to detect tree crowns from ALS data.
Weibull distribution was used for crown radius. (λ̂HT was not implemented.) 3

Estimator RMSE bias
λ1 =

Ndetected
‖W‖ 629 -500

λAF =− ln(1−cc)
E(Z) 568 -31
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2Pitkänen, Maltamo, Hyyppä and Yu, 2004. Proceedings of ISPRS working group VIII/2
3Vauhkonen and Mehtätalo 2015, Can. J. For. Res.
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Adding empirical detectability and erosion

Mehtätalo 2006 and Vauhkonen and Mehtätalo 2015
unnecessarily assumed the Boolean model in estimation of
the detectability and λ . However, one can directly use the
observed union of crown discs with Z > z to compute the
empirical detectability a

πE (z) = 1− p̂Z>z

where p̂Z>z is the empirical area fraction for crowns larger
than z.

The detectability rule can further be relaxed: a target tree
with crown area z remains undetected if the center point lies
within an erosion set of the union of crown discs with Z > z.
The erosion buffer width is αr (here z = πr2), where α is a
erosion buffer size to be estimated.

aKansanen, Vauhkonen, Lähivaara and Mehtätalo, 2016, Can. J. For. Res.
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Results for estimation of λ
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Marginal distribution of canopy height in 3D- data

In the previous approach, we started from the projections of detected crowns (ITD)
In the ABA approach, one wants to estimate forest characteristics using the marginal
distribution of canopy heights over a sample plot.

Histogram of ALS heights
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Marginal distribution of canopy height in 3D- data, cont.

Consider a 2-dimensional germ-grain model of crown intersections at height y above the
ground. Let Y (u) be the height of forest canopy at fixed point u within the sample plot.
Now

F(y) = P(Y ≤ y) = 1−P

(
u ∈

∞⋃
i=1

Zi(y)

)
= 1−p(y) ,

where Zi(y) is th cross-section of tree crown i at height y above the ground and p(y) is
the area fraction of the crown intersections at height y .
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Illustration, Boolean model case

F(y) = P(Y ≤ y) = 1−P (u ∈
⋃

∞
i=1Zi(y)) = 1−p(y)
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The model formulation

1 We started by parameterizing F(y) using stand density λ , parameters of tree height
distribution (Weibull, two parameters) and two parameters for tree crown shape
(ellipsoidial shape, two parameters) under the Poisson process for tree locations y 4 and
square grid pattern of tree locations. 5

2 Estimation is based on Maximum Likelihood.
3 In practice, the model could be used as a two-step approach:6

1 Given the field-measured stand density and height distribution, estimate canopy shape
parameters for the sample plots and

2 Given the estimates from step 1, estimate the stand density and height distribution for
unsampled locations.

It is also possible to estimate all parameters in a single step. 7

4 The model is, however too simple for practical use. It seems we need to include
randomness in tree crown shape
penetration of laser pulses
a more general point pattern model

These extensions lead to computational challenges. 8

4Mehtätalo and Nyblom 2009, For. Sci
5Mehtätalo and Nyblom 2012, For. Sci.
6Mehtätalo, Virolainen, Tuomela, Nyblom, 2010. Proceedings of SilviLaser 2010
7Mehtätalo, Virolainen, Tuomela and Packalen 2015. IEEE JSTARS.
8Mehtätalo, Nyblom and Virolainen 2014. In: Springer, Managing Forest Ecosystems 27, pp 193-211.
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Conclusions

1 Forest canopy is a union of tree canopies, therefore aerial forest inventories are an
interesting application of stochastic geometry.

2 Individual tree detection combined with estimation of hidden trees using stochastic
geometry is potentially useful application. We are currently doing spatio-temporal
modelling of measured point patterns to include a model for interaction between trees.

3 Estimation of tree height distribution and stand density using marginal distribution of
canopy heights is another interesting application, but the current model was too simple
for practical use.

4 We have not yet been able to beat the empirical ABA methods in estimation using either
of the approaches (except for stand density)
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