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Introduction

Types of forest datasets

Forest datasets are usually grouped e.g.
needles within branches,
branches within trees,
trees within sample plots or aerial images,
sample plots within forest stands,
forest stand within regions
repeated observations of trees (e.g., in successive years or on different images)
...

A dataset may also have multiple nested or grouped levels
Repeated measurements of trees within sample plots (nested)
Tree increments for different calendar years (crossed)

These groups often constitute a sample from a population of groups, and are
therefore naturally modeled using mixed-effect models.
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Single-level LME with random constant

Model formulation

Linear mixed-effect model with random constant

yij = β′x ij + bi + εij ,

where

yij is the observed response for individual j in group i ,

x ij is a vector of fixed predictors,

β includes the fixed parameters,

bi are random group effects for groups i = 1, . . . ,M.

We assume bi ∼ N(0, σ2
b) (i.i.d); εij ∼ N(0, σ2) (i.i.d); bi are independent of εij .

Model parameters are β, σ2
b , and σ2. Also group effects bi can be predicted.

Can be seen as a marginal model yij = β′x ij + eij , where var(yij ) = σ2
b + σ2

and cov(yij , yij′) = σ2
b .
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Single-level LME with random constant

Parameter estimation

Parameter estimation

The (restricted) likelihood for the marginal model yij = β′x ij + eij is easy to write
to get (RE)ML estimates of parameters σ2

b and σ2, and GLS/REML/ML estimates
of β.

The random group effects can be predicted using Best Linear Unbiased
Predictor (BLUP)

b̃i =
σ2

b
1
ni
σ2 + σ2

b

(ȳi − ¯β′x ij )

where ȳi and ¯β′x ij are the means of the ni observed values and fixed-part
predictions for the group in question.

The prediction variance is

var

(
b̃i − bi

)
=

(
σ2

b
1
ni
σ2 + σ2

b

)
σ2

ni

In practice, we use Empirical BLUP where the unknown β, σ2
b and σ2 are

replaced by their numerical estimates.
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(ȳi − ¯β′x ij )
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Single-level LME with random constant

A fixed-effects model

A corresponding model with fixed group effects

Consider an otherwise similar model

yij = β′x ij + bi + εij ,

where

bi are fixed group effects for groups i = 1, . . . ,M.

Model parameters are β, σ2, and bi for i = 1, . . . ,M.

Identifiable only if β′x ij does not include a constant term.

The estimate of group effect is

b̂i = ȳi − ¯β′x ij

The variance is

var

(
b̂i − bi

)
=
σ2

ni
.
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Single-level LME with random constant

A fixed-effects model

Some notes on prediction

Mixed-effects allows group-level prediction where the predicted random effect is
used.

If no measurements of y are available from the group in question, the BLUP of
random effect is its expected value 0, the prediction for a typical group

Group-level predictions utilize the observed values of the response from the
group in question. For groups not present in the modeling data, the typical-group
prediction is the best one can get, unless local calibration data from the group in
question are available for prediction of the random effects.

With many forest models (H-D relationship, site index, volume, taper curves),
prediction of random-effect for an previously fitted model provides a highly useful
application, which has a Bayesian flavour. 1

The BLUP of random effects is only marginally unbiased but conditionally
biased. The fixed group effect is also conditionally unbiased.

For a well-formulated linear mixed-effects model, the fixed part has also the
interpretation as the marginal prediction over groups.

1Lappi 1986, 1991, 1997, Lappi and Bailey 1988
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Single-level LME with random constant

Example 1: Eucalyptus volume

Example 1: Volume of eucalyptus trees

Model
ln(vij ) = β0 + β1 ln(dbhij ) + β2 ln(hij ) + bi + εij

was fitted for the volume of Eucalyptus trees j on farms i , using a stem analysis data
of 1434 stems from 15 farms 2.
The parameter estimates for random part were σ̂2

b = 0.182 and σ̂2 = 0.622.
Therefore, some benefit may be obtained by prediction of random effects, as shown
below.

2de Souza Vismara et al. 2016
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Mode advanced mixed-effects models

Model formulation

More advanced mixed-effects models

One may have other random effects than just constant:

yij = β′x ij + b′i z ij + εij

where z ij includes x ij or part of it, and bi ∼ N(0,D) (i.i.d).

For two nested groups, we specify

yijk = β′x ijk + a′i z
(a)
ijk + c′ij z

(c)
ijk + εijk

where z(a)
ijk includes x ijk or part of it, and z(c)

ijk includes z(a)
ijk or part of it, and

ai ∼ N(0,Da) (i.i.d) and cij ∼ N(0,Dc) (i.i.d).
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Mode advanced mixed-effects models

Model formulation

More advanced mixed-effects models

For two crossed groups 3, we specify

yijk = β′x ijk + a′i z
(a)
ijk + c′j z

(c)
ijk + εijk

where z(a)
ijk and z(c)

ijk includes x ijk or part of it and ai ∼ N(0,Da) (i.i.d) and
cj ∼ N(0,Dc) (i.i.d).

A bivariate LMM (with single level of grouping) may be specified by 4

y1ij = β′x1ij + b1′i z1ij + ε1ij

y2ij = β′x2ij + b2′i z2ij + ε2ij

where (b1′k , b2′i )
′ ∼ N(0,D) (iid) and (ε1k , ε2k )′ ∼ N(0,R).

The assumption of constant error variance can also be relaxed using variance
functions/ correlation structures.

Parameter estimation can be based on (RE)ML/GLS.

Prediction of random effect is based on the general formulation of BLUP.

3e.g. Mehtätalo et al 2014, Korpela et al. 2014
4e.g. Lappi 1991, Mehtätalo 2005, Lappi et al. 2006, Maltamo et al 2012. Korpela et al 2014
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Mode advanced mixed-effects models

Prediction of random effects

BLUP - the general case

Consider random vector h which is partitioned as follows:

h =

(
h1

h2

)
and has the following mean and variance:(

h1

h2

)
∼
[(

µ1

µ2

)
,

(
V1 V12

V′12 V2

)]
Consider a situation where the value of h2 has been observed and one wants to
predict the value of unobserved vector h1.
The Best Linear Unbiased Predictor (BLUP) of h1 is

BLUP(h1) = h̃1 = µ1 + V12V−1
2 (h2 − µ2) (1)

The prediction variance is

var(h̃1 − h1) = V1 − V12V−1
2 V′12 (2)

If h has multivariate normal distribution, BLUP is BP.
If the mean and variances are estimates, the resulting estimator is called
Estimated or empirical BLUP (EBLUP).
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2 more examples

Example 2: a model for H-D relationship

Example 2: A longitudinal H-D model

H-D relationship varies much among
sample plots, but height
measurement is time-consuming.

In a forest inventory, diameter is
usually tallied for all trees of a sample
plot, whereas height is measured
only for 0 – 5 trees per plot.
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If a previously fitted H-D model is available, it can be localized, or calibrated, for the
new plot by predicting the random effects using the sampled tree heights.

Mehtätalo Mixed-effects models prediction



Mixed-effects models prediction

2 more examples

Example 2: a model for H-D relationship

Example 2: A longitudinal H-D model

H-D relationship varies much among
sample plots, but height
measurement is time-consuming.

In a forest inventory, diameter is
usually tallied for all trees of a sample
plot, whereas height is measured
only for 0 – 5 trees per plot.
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If a previously fitted H-D model is available, it can be localized, or calibrated, for the
new plot by predicting the random effects using the sampled tree heights.

Mehtätalo Mixed-effects models prediction



Mixed-effects models prediction

2 more examples

Example 2: a model for H-D relationship

Example 2: A longitudinal H-D model

H-D relationship varies much among
sample plots, but height
measurement is time-consuming.

In a forest inventory, diameter is
usually tallied for all trees of a sample
plot, whereas height is measured
only for 0 – 5 trees per plot.
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If a previously fitted H-D model is available, it can be localized, or calibrated, for the
new plot by predicting the random effects using the sampled tree heights.
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Mixed-effects models prediction

2 more examples

Example 2: a model for H-D relationship

The Height-Diameter model

The logarithmic heigth Hijk for tree k in stand i at time j with transformed diameter Dijk

at the breast height is expressed by 5

ln(Hijk ) = β0(DGMij ) + a(1)
i + c(1)

ij + (β1(DGMkt ) + a(2)
i + c(2)

ij )Dijk + εijk

= β0(DGMij ) + β1(DGMkt )Dijk + a(1)
i + a(2)

i Dijk + c(1)
ij + c(2)

ij Dijk + εijk ,

where

β0(DGMij ) and β1(DGMij ) are known fixed functions of plot-specific mean
diameter DGMij ,

a = (a(1)
i , a(2)

i )′ are plot-level random effects

c = (c(1)
ij , c

(2)
ij )′ are measurement occasion -level random effects

The variances (correlations) were estimated to be

var(ai ) =

[
0.1082 (0.269)
0.0028 0.09582

]
var(cij ) =

[
0.01682 (−0.681)
−0.0003 0.02232

]
εijk are independent normal residuals with
var(εijk ) = 0.4012

(
max(Dijk , 7.5)

)−1.068

5Mehtätalo 2004, 2005
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ij )′ are measurement occasion -level random effects

The variances (correlations) were estimated to be

var(ai ) =

[
0.1082 (0.269)
0.0028 0.09582

]
var(cij ) =

[
0.01682 (−0.681)
−0.0003 0.02232

]
εijk are independent normal residuals with
var(εijk ) = 0.4012

(
max(Dijk , 7.5)

)−1.068

5Mehtätalo 2004, 2005
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2 more examples

Example 2: a model for H-D relationship

The stand level mixed-effects model

The sample tree heights of a new stand i can be described by model

y i = X iβ + Z i bi + εi ,

where
y i includes the observed sample tree heights,
X iβ is the fixed part,
bi = ( a(1)

i a(2)
i c(1)

i1 c(2)
i1 c(1)

i2 c(2)
i2 . . .)

′
includes the random effects,

Z i is the random part design matrix of the group, and
εi includes the residuals.
We denote var(bi ) = D and var(εi ) = R i .
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2 more examples

Example 2: a model for H-D relationship

Prediction of random effects

The variances and covariances between random effects and observed heights can be
written as [

bi

y i

]
∼

([
0

X iβ

]
,

[
D DZ ′i

Z i D Z i DZ ′i + R i

])
The Empirical Best Linear Unbiased Predictor (EBLUP) of random effects is

b̃i = DZ ′i (Z i DZ ′i + R i )
−1(y i − X iβ) .

and the variance of prediction errors is

var(b̃i − bi ) = D − DZ ′i (Z i DZ ′i + R i )
−1Z i D
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2 more examples

Example 2: a model for H-D relationship

Example

Height of one tree was measured 5 years ago and 2 trees at the current year. The
matrices and vectors are

µ =

 2.59
2.11
2.99

 y =

 2.77
2.35
3.19



Z =

 1 −0.36 1 −0.36 0 0
1 −1.22 0 0 1 −1.22
1 0.058 0 0 1 0.058

 R =

 0.008 0 0
0 0.016 0
0 0 0.004



β =


αk

βk

αk1

βk1

αk2

βk2

 D =


0.0118 0.0028 0 0 0 0
0.0028 0.0092 0 0 0 0

0 0 0.0003 0.0004 0 0
0 0 0.0004 0.0005 0 0
0 0 0 0 0.0003 0.0004
0 0 0 0 0.0004 0.0005


Mehtätalo Mixed-effects models prediction



Mixed-effects models prediction

2 more examples

Example 2: a model for H-D relationship

Uncalibrated and calibrated predictions
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Dashed shows prediction based on fixed part. Three trees (large symbols) were used
to predict the random effects to get plot-level predictions (solid)
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2 more examples

Example 3: Eucalyptus volumes on two rotations

Example 3: Eucalyptus volumes on two rotations

A bivariate volume model

ln(v1ij ) = β′1x1ij + b(1)
i + ε1ij

ln(v2ij ) = β′2x2ij + b(2)
i + ε2ij

was used for rotations 1 and 2 of Eucalyptus plantations 6.
The parameter estimates for random part were

v̂ar

(
b(1)

i

b(2)
i

)
=

(
0.01922 0.0005170176

0.0005170176 0.02722

)
=
(

C H
)

and

v̂ar

(
ε1ij

ε2ij

)
=

(
0.0624 0

0 0.05962

)

The correlation between random effects is high (0.99), therefore both models could be
calibrated by using observations of first rotation only.
The error variance is high compared to that of random effects,→ calibration effects
will be only modest.

6de Souza Vismara, Mehtatalo and Batista 2016
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2 more examples

Example 3: Eucalyptus volumes on two rotations

BLUP in this case

We have now[
bi

ln v1i

]
∼

([
0

X 1iβ1

]
,

[
D CZ ′1i

Z 1i C′ Z 1ivar(b(1)
i )Z ′1i + R1i

])
Leading to EBLUP:

b̃i = CZ ′1i

(
Z 1ivar(b(1)

i )Z ′1i + R1i

)−1
(ln v1i − X 1iβ1) .

etc..

Figure : The RMSE and ME of second-rotation trees as a function of first-rotation sample trees.
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Discussion and conclusions

Discussion and conclusions

Random-effect prediction is a widely applicable tool for many different situations
beyond mixed-effect models and beyond the standard implementations in
statistical software. For example, linear regression and kriging are applications of
the general form BLUP.
Random effects may be justified for many different purposes, and modeling
procedures should be adopted for the purpose of modeling.

local predictions through random effects.
statistical inference in grouped datasets
variance partitioning

I do not see (m)any reasons to treat group effects as fixed if not all groups of the
population are not represented by the data.
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Discussion and conclusions
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Case 2: Extracting effects of silvicultural
thinnings

Utilizing a prediction from a linear mixed-effects
model with crossed tree and calendar year effects

Mehtätalo, L., Peltola, H., Kilpeläinen, A. and Ikonen, V.-P. 2013. The effect of thinning
on the basal area growth of Scots Pine: a longitudinal analysis using nonlinear
mixed-effects model. Submitted manuscript.
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Extracting thinning effects

Why thinning effects?

Forest managers use silvicultural thinnings to decrease the competition of
neighboring trees and, consequently, to increase the growth rate of the
remaining trees for faster production of sawtimber.

To understand the dynamics of thinning, one may wish to analyse the effect of
thinnings on tree growth.

However, the growth is affected also by other factors, especially by the site
productivity, tree age, and annual weather.

Mixed-effects models can be used to model out these nuisance effects.
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Extracting thinning effects

Study material

Thinning experiment sample plots were established in naturally generated Scots
pine stands at the age of ∼ 25 years in Mekrijärvi, Finland in 1986.

One of the four following thinning treatments were applied to each plot: No
thinning (I, Control), light (II), moderate (III), and heavy (IV) thinnings.

88 trees were felled in 2006, and the complete time series of diameter
increments between 1983 and 2006 was measured for each tree using an X-ray
densiometer.

The diameter growths were transformed to basal area growths, because
Volume ∼ Diameter 2Height)
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Extracting thinning effects

The raw data
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I (control) - black; II (light) - red
III (moderate) - green; IV (heavy) - blue

THICK: treatment-specific trends

THIN: 12 randomly selected trees

One can see

(Age trend)
climate-related year effects
tree effects
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Extracting thinning effects

Modeling the non-thinned response

A dataset without thinning treatments was produced by including from the
original data

The control treatment for whole follow-up period
The thinned treatments until the year of thinning (1986)

A linear mixed effect model with random year and tree effects was fitted to the
unthinned data

ykt = f (Tkt ; b) + αk + αt + εkt (3)

where ykt is the basal area growth of tree k at year t ,
f (Tkt ; b) is the age trend (modeled using a spline),
αk is a NID tree effect,
αt is a NID year effect and
εkt is a NID residual.
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Extracting thinning effects

Extracting the thinning effects

Using the estimated age trend and BLUP’s of year and tree effects, the growth
without thinning, ỹkt was predicted for treatments II -IV after the thinning year.

The pure thinning effects were estimated by subtracting the prediction from the
observed growth

dkt = ykt − ỹkt (4)
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Extracting thinning effects

The estimated thinning effects

Extracted thinning effects
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Line color specifies treatment (I:black, II: red, III: green IV: blue). Thick lines show the
treatment-specific mean trends; thin lines show 12 randomly selected trees.
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Modeling thinning effects using NLME’s

Case 3: Modelling thinning effects using
NLME’s

A nonlinear model to analyze the effect of thinning
intensity and tree size on the dynamics of tree-level

thinning effect.
Mehtätalo, L., Peltola, H., Kilpeläinen, A. and Ikonen, V.-P. 2013. The effect of thinning
on the basal area growth of Scots Pine: a longitudinal analysis using nonlinear
mixed-effects model. Submitted manuscript.
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Modeling thinning effects using NLME’s

Modeling the thinning effects

The thinning effects seem to switch on during a short time called Reaction time
and stabilize thereafter at a level of Maximum thinning effect.

To explore what predictors control these two parameters, the thinning effects of
the thinnend treatments 2-4 were modeled using a nonlinear mixed-effects
model.

The random effects were used to take into account the data hierarchy for more
reliable inference.
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Modeling thinning effects using NLME’s

Nonlinear mixed-effects model for thinning effect

The thinning effect of tree k at time t was modeled using a logistic curve

dkt = Mk

1+exp
(

4−8
xkt
Rk

) + ekt

dkt - thinning effect

xkt - time since thinning

Mk =
µ0 + µ1T2 + µ2T3 + µ4xkt + mk

- maximum thinning effect

T2, . . . , T3 - treatments

Rk = ρ0 + ρ1zk + rk - reaction
time

zk - standardized diameter[
mk

rk

]
∼ MVN(0,D2x2)

ekt - normal heteroscedastic
residual with AR(1) structure
within a tree.
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Modeling thinning effects using NLME’s

The fitted model

The reaction time was 6 years. It did not significantly vary among treatments but
was shorter for large trees.

The maximum thinning effect increased with thinning intensity, being 282 mm/yr
for treatment IV, which indicates a 87% increase in the basal area growth
compared to the control.

Fixed parameters Estimate s.e. p-value
µ0 112.8 23.29 0.0000
µ1 91.91 30.45 0.0026
µ2 169.2 32.14 0.0000
µ3 -3.214 1.006 0.0014
ρ0 5.749 0.4458 0.0000
ρ1 -1.461 0.4568 0.0014

Random parameters
var(rk ) 93.012

var(mk ) 2.0852
cor(rk ,mk ) 0.203
Residual

σ2 8.157*10-4
δ1 8.746*104
δ2 1.886
δ3 0.5888

Mehtätalo Mixed-effects models prediction



Mixed-effects models prediction

Modeling thinning effects using NLME’s

The fitted model

The reaction time was 6 years. It did not significantly vary among treatments but
was shorter for large trees.
The maximum thinning effect increased with thinning intensity, being 282 mm/yr
for treatment IV, which indicates a 87% increase in the basal area growth
compared to the control.

Fixed parameters Estimate s.e. p-value
µ0 112.8 23.29 0.0000
µ1 91.91 30.45 0.0026
µ2 169.2 32.14 0.0000
µ3 -3.214 1.006 0.0014
ρ0 5.749 0.4458 0.0000
ρ1 -1.461 0.4568 0.0014

Random parameters
var(rk ) 93.012

var(mk ) 2.0852
cor(rk ,mk ) 0.203
Residual

σ2 8.157*10-4
δ1 8.746*104
δ2 1.886
δ3 0.5888

Mehtätalo Mixed-effects models prediction



Mixed-effects models prediction

Modelling tree-level reflectance on aerial images

Case 4: Modelling tree-level reflectance on
aerial images

A multivariate linear mixed-effects model with crossed
grouping structure was used to analyze the

reflectance of forest trees on overlapping aerial
images.

Korpela Ilkka, Mehtätalo Lauri, Seppänen Anne, Markelin Lauri. Tree species
classification using directional reflectance anisotropy signatures in multiple aerial
images. Submitted.
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Modelling tree-level reflectance on aerial images

Motivation

The reflectance (color) of a tree on an image can be used to classify tree species

However, the viewing direction with respect to sunlight affects the spectral
characteristics of a tree.

This effect is species-specific

Therefore, observing a certain tree from multiple directions (=images) may
provide more accurate species classification than an observation on one aerial
image only.
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Modelling tree-level reflectance on aerial images

Study material

20 partially overlapping aerial images of a forest area were taken.

The raw data was postprocessed to provide (atmospherically corrected)
reflectance data on four channels: RED, GRN, BLU and NIR.

N = 15188 dominant trees discernible in 2-7 images formed the reference tree
data (5914 Scots pines, 7105 Norway spruces, 2169 Birches)

Individual trees on different images were using automatically matched.

The individual pixels within tree crowns were divided to sunlit and self-shaded
pixels. The mean reflectances in these parts were analyzed separately -> a
system of 8 models (4 channels, shaded and sunlit) for each of the three tree
species.
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Modelling tree-level reflectance on aerial images

Structure of aerial image data on a forest

Observations from a given image are similar due to e.g. the properties of the
atmosphere at the time of imaging and the atmospheric correction.

Repeated measurements of a certain tree are correlated due to tree-specific
properties.
The model for each response and tree species has the following structure

yit = f (x it |b) + αi + αt + εit ,

where i and t refer to image and tree effects, respectively. σ2
i and σ2

t are the
corresponding variances. The predictors are trigonometric transformations of the
horizontal and vertical viewing and Sun angles.
The random effects at different levels of grouping are independent, therefore

var(yit ) = σ2
i + σ2

t + σ2

cov(yit , yi′ t′) = 0

cov(yit , yit′) = σ2
i

cov(yit , yi′ t ) = σ2
t
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Modelling tree-level reflectance on aerial images

The multivariate model

The multivariate model for a tree species is

y1it = f1(x it |b1) + α1i + α1t + ε1it

y2it = f2(x it |b2) + α2i + α2t + ε2it

...

y8it = f8(x it |b8) + α8i + α8t + ε8it

or simply
y it = f (x it |b) + αi + αt + εit

where the responses 1-8 refer to the sunlit and self-shaded pixels of the four channels
and

(α1i , α2i , . . . , α8i )
′ = αi ∼ MVN(0,A8×8) include the random image-effects

(α1t , α2t , . . . , α8t )
′ = αt ∼ MVN(0,B8×8) include the random tree-effects

(ε1it , ε2it , . . . , ε8it )
′ = εit ∼ MVN(0,E8×8) include the random vector residuals

Now

var(y it ) = A + B + E

cov(y it , y i′ t′) = 0

cov(y it , y it′) = A

cov(y it , y i′ t ) = B

Model fitting (based on REML) yields b̂, Â, B̂ and Ê
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Modelling tree-level reflectance on aerial images

Estimated variance components (covariances not shown)

 sunlit  shade  sunlit  shade sunlit   shade  sunlit  shade 

Fixed (Xβ)-% 33 11 32 13 45 29 7 -0 

Tree-% 42 42 43 41 18 13 62 64 

Image-% 4 12 5 14 27 46 6 2 

Residual-% 21 35 20 32 10 13 25 34 

Total 100 100 100 100 100 100 100 100 

Variance components, real data, 200 000 observations (%) 

* Fixed  part: The anisotropy trends explained SL >> SS,  
            BLU > GRN > RED > NIR. In NIR, anisotropy is low.  
 
* Tree-effect: The correlations are strong, both for SL and SS. A bright tree is bright 
           across views and bands. In NIR > 60% of variance explained!! 
 
* Image-effect: Substantial in BLU, SS > SL.  Includes effects from solar  
         elevation changes (07-09 GMT), atmospheric correction errors.    

Ilkka Korpela, Oct 2012 
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Modelling tree-level reflectance on aerial images

The use in classification

Let y it be an observed vector (length=8) of the reflectances of one tree t on the 8
channels on one image i . The squared Mahalanobis distance between y it and
µit is

d2
it = (y it − µit )

′(A + B + E)−1(y it − µit )

This distance takes into account the correlation of reflectance among different
channels, and is (at least under multivariate normality of the reflectance data) in
a way optimal for single tree on single image.

For multiple images, the squared Mahalanobis distance between y ·t and µ·t is

d2
·t = (y ·t − µ·t )

′D−1
·t (y ·t − µ·t ) ,

where y ·t = (y ′1t , . . . , ymt ) is an observed vector (with length of 8m) of the
reflectances of tree t on the 8 channels of m images. The 8m × 8m
variance-covariance matrix is

D·t =


A + B + E B . . . B

B A + B + E B
...

. . .
...

B B . . . A + B + E


This distance takes into account the correlation arising from the common tree
effects
Extension to many trees and images would be possible as well.
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System of mixed-effects model for aerial forest inventory

Motivation

Airborne Laser Scanners (ALS) provide information on the 3D- structure of forest

Majority of large individual trees can be detected from an ALS point cloud

Point cloud characteristics can be assigned to field-measured tree
characteristics to estimate a system of predictive models for tree characteristics,
such as stem volume, height, diameter, crown base height, dead crown height.

These tree-specific characteristics are correlated within a forest stand

Also the stand effects are correlated across models

These correlations can be utilized to predict the random effects of a
mixed-effects model for a given stand for all 5 models using even one
observation of one characteristics only

Enables improved predictions of hard-to-measure characteristics by using
easy-to-measure characteristics
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System of mixed-effects model for aerial forest inventory

The model

The model includes a system of 5 mixed-effects models of form for tree i in stand k :

y1ki = a1 + b1x1ki + . . .+ α1k + β1k x1ki + ε1ki

y2ki = a2 + b1x2ki + . . .+ α2k + β2k x2ki + ε2ki

...

y5ki = a5 + b5x5ki + . . .+ α5k + β5k x5ki + ε5ki

where the fixed parts are as with the previous mixed-effects models and include the
ALS-based predictors.

The assumptions on the random effects and residuals are
(α1k , β1k , α2k , β2k , . . . , α5k , β5k )′ ∼ MVN(0,D10x10), and
(ε1k1, ε2ki , . . . , ε5ki ) ∼ MVN(0,R5x5)

The intended use of the model is prediction applying the random effects.

The previously presented principles were used to predict the random effects of
the model system by using 1-10 sample trees per stand and 3 different
measurement strategies
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System of mixed-effects model for aerial forest inventory

Results
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