H-D curves in NFI's

- Introduction

Mixed-effects models to generalize sample tree height information: Implications to National Forest Inventories

Lauri Mehtätalo, Timothy G. Gregoire and Sergio de-Miguel

School of Computing University of Eastern Finland

A century of national forest inventories informing past, present and future decisions 19–23.5.2017 Sundvolden hotel, Norway

<ロト < 同ト < 三ト < 三ト < 三ト < 回 < つ < ○</p>

- Introduction

= nac

Introduction¹

- All trees are not measured for height in forest inventories-> imputation.
 - nearest neighbour methods
 - fixed-effect regression models that predict height using diameter and plot-level characteristics
 - mixed-effect models, that can be calibrated using local measurements

The contents of this talk

- To discuss and illustrate
 - the plot-specific and marginal H-D relationship and
 - simple and generalized H-D models
 - random-effect calibration
- Explore the fit of 16 nonlinear functions for the H-D relationship in 28 different datasets of different tree species from different regions.
- Make suggestions for future NFI's

¹Mehtätalo L, de-Miguel S, and Gregoire, T.G. 2015. Modeling height-diameter curves for prediction. Canadian Journal of Forest Research, 45(7): 826-837, 10.1139/cjfr-2015-0054 → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → <

- Introduction

= nac

Introduction¹

- All trees are not measured for height in forest inventories-> imputation.
 - nearest neighbour methods
 - fixed-effect regression models that predict height using diameter and plot-level characteristics
 - mixed-effect models, that can be calibrated using local measurements

The contents of this talk

- 1 To discuss and illustrate
 - the plot-specific and marginal H-D relationship and
 - simple and generalized H-D models
 - random-effect calibration
- Explore the fit of 16 nonlinear functions for the H-D relationship in 28 different datasets of different tree species from different regions.
- 3 Make suggestions for future NFI's

¹Mehtätalo L, de-Miguel S, and Gregoire, T.G. 2015. Modeling height-diameter curves for prediction. Canadian Journal of Forest Research, 45(7): 826-837, 10.1139/cifr-2015-0054 → <</p>

A typical H-D dataset

56 plots, 30 trees per plot

500 - 一日

A typical H-D dataset

56 plots, 30 trees per plot

A typical H-D dataset

56 plots, 3 trees per plot

500 < A > < 3

A typical H-D dataset

56 plots, 1 tree per plot

500 1 E

A typical H-D dataset

56 plots, 1 tree per plot

A typical H-D dataset

56 plots, 1 tree per plot

・ロト・西ト・山田・山田・山下

A typical H-D dataset

56 plots, 30 trees per plot

Э

900

Marginal H-D relationship

Simple fixed-effects model

 $h_{ij} = f(d_{ij}; \phi) + e_{ij}$

■ An easy way to estimate the marginal relationship.

■ The model is improperly formulated: the model ignores the grouped structure

Plot-specific H-D relationship

Simple mixed-effects model, f+r

 $h_{ij} = f(d_{ij}; \phi_i) + e_{ij}$, where $\phi_i = \beta + b_i$ and $b_i \sim N(0, D)$

- An easy way to estimate the plot-specific relationship.
- Still improperly formulated model: the random effects are correlated with mean diameter of the plot.

Plot-specific H-D relationship

 $h_{ij} = f(d_{ij}; \phi_i) + e_{ij}$, where $\phi_i = \beta + b_i$ and $b_i \sim N(0, D)$

- An easy way to estimate the plot-specific relationship.
- Still improperly formulated model: the random effects are correlated with mean diameter of the plot.

Two fixed-effect predictions

Simple FE and RE model

 $\begin{aligned} h_{ij} &= f(d_{ij}; \boldsymbol{\beta}) + e_{ij} \\ h_{ij} &= f(d_{ij}; \phi_i) + e_{ij}, \text{ where } \phi_i = \boldsymbol{\beta} + \boldsymbol{b}_i \text{ and } \boldsymbol{b}_i \sim N(0, \boldsymbol{D}) \end{aligned}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Simple vs. generalized relationship

A generalized model: fixed part

Generalized RE model

 $h_{ij} = f(d_{ij}; \phi_i) + e_{ij}$, where $\phi_i = A_i \beta' + b_i$ and $b_i \sim N(0, D)$

- Model properly formulated
- A includes plot-specific predictors, most commonly the plot-specific mean diameter.

Simple vs. generalized relationship

A generalized model: fixed part

Generalized RE model

 $h_{ij} = f(d_{ij}; \phi_i) + e_{ij}$, where $\phi_i = A_i \beta' + b_i$ and $b_i \sim N(0, D)$

- Model properly formulated
- A includes plot-specific predictors, most commonly the plot-specific mean diameter.

-Random-effect calibration

Random-effect calibration ^{2 3 4}

²Mehtätalo, L. 2004. A longitudinal height-diameter model for Norway spruce in Finland. Canadian Journal of Forest Research 34(1): 131-140.

³Lappi, Juha 1986. Mixed linear models for analyzing and predicting stem form variation of Scots pine.

Which function to use?

The applied functions

Number	Function name	Equation	References
2-param	eter functions		
1	Näslund	$H(D) = BH + \frac{D^2}{\left(aD + b\right)^2}$	Näslund (1937), Peschel (1938)
2	Curtis	$H(D) = BH + \frac{aD}{(1+D)^b}$	Curtis (1967)
3	Schumacher	$H(D) = BH + a \exp(-bD^{-1})$	Schumacher (1939), Michailoff (1943), Curtis (1967
4	Meyer	$H(D) = BH + a(1 - \exp(-bD))$	Meyer (1940), Curtis (1967)
5	Power	$H(D) = BH + aD^b$	Stoffels and van Soest (1953)
6	Michaelis-Menten	H(D) = BH + aD/(b + D)	Menten and Michaelis (1913), Huang et al. (1992)
7	Wykoff	$H(D) = BH + \exp(a - b(D + 1)^{-1})$	Wykoff et al. (1982)
3-param	eter functions		
8	Prodan	$H(D) = BH + \frac{D^2}{aD^2 + bD + c}$	Strand (1959)
9	Logistic	$H(D) = BH + \frac{a}{1 + b \exp(-cD)}$	Pearl and Reed (1920), Huang et al. (1992)
10	Chapman-Richards	$H(D) = BH + a(1 - \exp(-bD))^{c}$	Richards (1959), Huang et al. (1992)
11	Weibull	$H(D) = BH + a(1 - \exp(-bD^{c}))$	Weibull (1951), Huang et al. (1992)
12	Gomperz	$H(D) = BH + a \exp(-b \exp(-cD))$	Gomperz (1825), Huang et al. (1992)
13	Sibbesen	$H(D) = BH + aD^{bD^{-c}}$	Sibbesen (1981), Huang et al. (1992)
14	Korf	$H(D) = BH + a \exp(-bD^{-c})$	Lundqvist (1957), Flewelling and de Jong (1994)
15	Ratkowsky	$H(D) = BH + a \exp\left(\frac{-b}{D+c}\right)$	Ratkowsky (1990), Huang et al. (1992)
16	Hossfeld IV	$H(D) = BH + \frac{a}{1 + \frac{1}{bD^c}}$	Peschel (1938)

Table 2. The applied H-D functions.

Note: The references give the original reference and the first use in H–D modeling. Naming follows Zeide (1993) when applicable. H = tree height, D = tree diameter at breast height, BH = breast height, a, b, c = parameters of the equation.

Material

Table 1. S	ummarv	of the	modeling	datasets.
------------	--------	--------	----------	-----------

Data set	Latin name	Country	N	K	$\overline{n_i}$	d_{min}	đ	d_{max}	h_{min}	ħ	h _{max}
Scots pine A	Pinus Sylvestris	Finland	4234	103	41	1.5	14.5	51.0	1.4	13.2	35.1
Norway spruce A	Picea abies	Finland	2513	51	49	2.9	17.2	57.0	2.1	13.7	29.8
Scots pine B	Pinus Sylvestris	Finland	1644	66	25	3.0	20.0	49.1	1.6	17.3	33.1
Norway spruce B	Picea abies	Finland	3020	66	46	0.9	11.5	52.3	1.4	9.9	33.2
Birch A	Betula pendula. B. pubescens	Finland	1673	72	23	1.6	8.7	48.8	1.8	10.0	29.8
Norway spruce C	Picea abies	Finland	1252	31	40	5.0	14.3	68.8	1.5	12.9	34.3
Turkish red pine	Pinus brutia	Syria. Lebanon	1283	114	11	5.0	27.3	96.9	3.5	13.7	35.1
Aleppo pine	Pinus halepensis	Spain	16378	1016	16	7.5	32.6	174.0	2.0	14.6	41.0
Canarian island pine	Pinus canariensis	Spain	7327	870	8	7.5	19.5	74.8	2.0	7.7	23.0
Loblolly pine 1	Pinus taeda	VA, USA	5634	99	57	1.3	13.9	34.3	1.5	10.9	23.8
Loblolly pine 2	Pinus taeda	VA, USA	4895	99	49	3.3	18.2	37.6	4.6	15.8	26.8
Loblolly pine 3	Pinus taeda	VA, USA	4171	99	42	5.1	20.8	42.9	4.9	18.8	31.4
Lodgepole pine 1	Pinus contorta	BC, Canada	10817	140	77	0.1	6.0	25.5	1.3	7.4	21.3
Lodgepole pine 2	Pinus contorta	BC, Canada	9336	141	66	0.3	8.9	31.0	1.3	8.7	22.8
Lodgepole pine 3	Pinus contorta	BC, Canada	5903	93	63	0.7	12.6	29.8	1.4	12.4	24.2
Eucalyptus clone	Eucalyptus urograndis	Brazil	1141	191	6	6.2	19.4	34.1	12.0	30.0	41.0
Blue gum A	Eucalyptus globulus	Bolivia	6554	50	131	0.1	3.8	18.2	1.4	6.0	19.1
Blue gum B1	Eucalyptus globulus	Bolivia	884	6	147	1.0	9.5	31.7	1.9	9.6	28.5
Blue gum B2	Eucalyptus globulus	Bolivia	1261	6	210	1.0	10.1	33.7	1.7	11.1	30.0
Centrolobium 1	Centrolobium tomentosum	Bolivia	2199	46	48	1.2	11.2	28.3	1.8	11.1	20.5
Centrolobium 2	Centrolobium tomentosum	Bolivia	2167	46	47	1.2	12.6	30.3	2.2	12.6	22.1
Centrolobium 3	Centrolobium tomentosum	Bolivia	2023	44	46	2.5	13.4	31.3	2.2	13.6	25.8
Brasilian firetree	Schizolobium parahyba	Bolivia	2631	46	57	0.8	8.8	33.2	1.4	8.7	27.0
Teak 1	Tectona grandis	Bolivia	4928	62	79	1.0	6.6	41.5	1.4	6.5	29.6
Teak 2	Tectona grandis	Bolivia	3444	43	80	1.0	8.1	44.3	1.4	7.9	29.5
Mixed tropical	Multi-species	Bolivia	15049	41	367	8.2	23.7	115.6	2.5	12.6	36.9
Balsa 1	Ochroma pyramidale	Bolivia	2943	53	56	0.8	8.7	19.8	1.5	8.6	21.7
Balsa 2	Ochroma pyramidale	Bolivia	715	23	31	1.5	9.9	22.7	1.4	9.8	17.5

Note: Whenever two datasets of same species have been used, a capital letter is used to denote different independent datasets and an Arabic number to denote different measurement occasions of the same dataset. \aleph : the number of trees; \aleph : the number of sample plots; π_i^n mean number of trees per plot; d_{max} : d_{max} : the minimum, mean and maximum height, m.

Which function to use?

Fixed-effects

Wykoff 1 16

3.6 (1.3) 0

4.1 (1.1)

0

8

3

3

10

16

2.5(1.5)

Ranking of the functions

1st ranks

Ranks 1-3

Mean rank (sd)

Conv. Prob's

	1	1					
	Criteria	Näslund	Curtis	Schumacher	Meyer	Power	MicMent.
Mixed-effects	1st ranks	12	7	8	0	1	0
	Ranks 1–3	15	26	20	5	2	3
	Mean rank (sd)	2.7 (1.5)	2.3 (1.2)	3.0 (1.9)	4.7 (1.4)	5.9 (1.5)	5.8 (1.4)
	Conv Prob's	0	0	0	0	0	1

5

19

3

2.8 (1.3)

5 Note: The criteria are: 1st ranks is the number of first ranks among the datasets; ranks 1-3 gives the number of rankings among three best models; mean rank gives the mean rank of the model (the number in parentheses is the standard deviation of the ranks; Conv. Prob's gives the number of unsuccessful fits. The three best models according to each criteria are highlighted.

0

8

4.2 (1.5)

6

12

12

2.5 (1.5)

2

6

11

4.3 (2.0)

Table 4. Evaluation of the simple three-parameter models according to the four criteria.

Table 3. Evaluation of the simple two-parameter models according to the four criteria.

13

23

4

1.9 (1.1)

	Criteria	Prodan	Logistic	Ch-Ri	Weibull	Gomperz	Sibbesen	Korf	Ratkowsky	Hossf. IV
Mixed-effects	1st ranks	11	6	1	0	4	0	0	6	0
	Ranks 1–3	18	12	10	8	18	0	2	14	2
	Mean rank (sd)	3.0 (2.3)	4.0 (2.2)	4.3 (1.8)	4.8 (1.7)	2.8 (1.4)	8.1 (1.3)	7.3 (1.7)	3.6 (2.0)	6.1 (1.3)
	Conv. Prob's	0	0	1	0	0	18	6	0	1
Fixed-effects	1st ranks	3	3	4	3	3	0	3	3	4
	Ranks 1–3	9	4	13	9	11	4	4	9	10
	Mean rank (sd)	3.3 (1.6)	5.3 (2.6)	2.7 (1.4)	3.3 (1.7)	3.9 (2.2)	3.5 (1.6)	4.1 (2.1)	2.8 (1.6)	2.7 (1.5)
	Conv. Prob's	9	10	10	13	6	22	15	16	13

Note: For notations, see Table 3.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The best functions for plot-specific relationship

Table 5. The best plot-specific fits of the 2- and 3- parameter models and the related RMSE in different datasets.

	Model name and RMSE (m)						
Dataset	2-parameter model	3-parameter model					
Scots pine A	Curtis	1.39	Logistic	1.37			
Norway spruce A	Näslund	1.62	Prodan	1.60			
Scots pine B	Näslund	1.64	Prodan	1.64			
Norway spruce B	Näslund	1.27	Prodan	1.21			
Birch	Näslund	1.97	Logistic	1.92			
Norway spruce C	Näslund	2.01	Gomperz	1.95			
Turkish red pine	Wykoff	1.95	Prodan	1.95			
Canarian island pine	Curtis	1.99	Logistic	1.94			
Aleppo pine	Näslund	0.97	Prodan	0.97			
Loblolly pine 1	Näslund	0.82	Gomperz	0.82			
Loblolly pine 2	Schumacher	0.97	Gomperz	0.97			
Loblolly pine 3	Schumacher	1.14	Prodan	1.13			
Lodgepole pine 1	Curtis	0.61	Ratkowsky	0.61			
Lodgepole pine 2	Curtis	0.68	Ratkowsky	0.68			
Lodgepole pine 3	Schumacher	0.85	Ratkowsky	0.85			
Eugalyptus clone	Schumacher	0.90	Prodan	0.83			
Blue gum A	Näslund	1.17	Prodan	1.16			
Blue gum B1	Näslund	2.27	Ratkowsky	2.26			
Blue gum B2	Näslund	2.29	Logistic	2.20			
Centrolobium 1	Curtis	1.26	Prodan	1.25			
Centrolobium 2	Schumacher	1.28	Ratkowsky	1.25			
Centrolobium 3	Schumacher	1.42	Ratkowsky	1.39			
Brasilian firetree	Curtis	1.54	Prodan	1.53			
Teak 1	Curtis	1.10	Logistic	1.08			
Teak 2	Näslund	1.10	Gomperz	1.08			
Mixed tropical	Näslund	2.81	Logistic	2.79			
Balsa 1	Schumacher	1.23	Ratkowsky	1.23			
Balsa 2	Schumacher	1.24	Prodan	1.24			

Note: The model with lower BIC value between the 2- and 3- parameter models is indicated by **boldface** and the model with lower AIC by *italics*. Näslund:
$$\begin{split} & \text{Näslund:} \\ & h_{ij} = BH + \frac{d_{ij}^{(1)} + \phi_i^{(2)} d_{ij}^2}{\phi_i^{(1)} + \phi_i^{(2)} d_{ij}^2} + \varepsilon_{ij} \\ & \text{Curtis:} \\ & h_{ij} = BH + \frac{\phi_i^{(1)} d_{ij}}{(1 + d_{ij})^{\phi_i^{(2)}}} + \varepsilon_{ij} \\ & \text{Schumacher:} \\ & h_{ij} = BH + \phi_i^{(1)} \exp\left(\frac{-\phi_i^{(2)}}{d_{ij}}\right) + \varepsilon_{ij} \\ & \text{where e.g.} \end{split}$$

$$\phi_i^{(1)} = \beta_1^{(1)} + \beta_2^{(1)} \bar{d}_i + b_i^{(1)}$$
$$\phi_i^{(2)} = \beta_1^{(2)} + \beta_2^{(2)} \bar{d}_i + b_i^{(2)}.$$

Often also

$$\operatorname{var}(\varepsilon_{ij}) = \sigma^2 \left(d_{ij} - \bar{d}_i \right)^{2\delta}$$

- Implications to NFI's

Implications to NFI's

- Plot-specific model should be used in imputation.
- Curtis' and Näslund's functions are good default functions.
- For estimation the shape of plot-specific H-D relationship, (at least some) NFI plots should include sufficiently many sample trees.
 - ..or random-effect calibration of an existing model should be used (Lappi and Bailey 1988, Lappi 1997).
 - Local sample trees quickly override the information of fixed plot-level predictors.
- The effect of height imputation errors on final results of NFI seems to be largely ignored.
- Functions for height imputation are available in R-package lmfor, also included in open Foris Calc (http://www.openforis.org/tools/calc.html)

```
> library(lmfor)
> data(spati)
> spati$h[1:10]
NA NA NA 17.4 19.3 19.7 NA 18.2 NA NA
> spati$h<-ImputeHeights(spati$d,spati$h,spati$plot)$h
> round(spati$h[1:10],1)
19.8 19.5 19.3 17.4 19.3 19.7 18.3 18.2 18.1 18.1
```

Implications to NFI's

SUMMER SCHOOL

★ Summer School > Courses Summer 2019 > Faculty of Science and Forestry > Nonlinear Mixed-effect Models

Welcome	>>	Nonline		
Courses Summer 2019	>>			
Philosophical Faculty		Time: 12-16 Au		
Faculty of Science and Fore	stry			
 Joensuu Summer School or Optics 2019: eXpeRience you reality 	r	Campus: Joens		
> Deep Reinforcement Learni Computer Games	Duration and cred			
> Machine Learning for Speed	h	Teaching languag		
> Nonlinear Mixed-effect Mod	forest and enviror			
> Effects of Climate Change o	n	Course coordinat		

ar Mixed-effect Models

gust 2019

uu

lits: one week, 2 ECTS (lectures) or 4 ECTS (lectures + returning the reports of the exercises) e: English ts who have sufficient prior knowledge. External students and researchers from various fields, including statistics, nmental sciences, pharmacy, mathematics and physics. or: Lauri Mehtätalo, lauri.mehtatalo@uef.fi

Lauri Mehtätalo University of Eastern Finland lauri.mehtatalo@uef.fi

UNIVERSITY OF EASTERN FINLAND