Recovering forest parameters from canopy height observations

Lauri Mehtätalo¹ and Jukka Nyblom²

¹ FFRI, Joensuu, Finland and Yale University ² University of Jyväskylä, Finland

October 31, 2006 10th Annual NEMO Meeting Grey Towers, Milford, PA

Outline of the presentation

Introduction

Forest inventory and laser scanning Our question

Model development

General model Applications for different forest types Estimation

Examples

Simulated stands Simulated measurements Fit results

Discussion

Introduction

Model development Examples Discussion Forest inventory and laser scanning Our question

Forest inventory using laser scanning

 In forest inventory, we are interested in the number, species and size of the trees. Introduction

Model development Examples Discussion Forest inventory and laser scanning Our question

Forest inventory using laser scanning

- In forest inventory, we are interested in the number, species and size of the trees.
- From above we can see only the surface of the forest stand.

Introduction

Model development Examples Discussion Forest inventory and laser scanning Our question

Forest inventory using laser scanning

- In forest inventory, we are interested in the number, species and size of the trees.
- From above we can see only the surface of the forest stand.
- In airborne laser scanning, we essentially measure height of this surface at given points, i.e. the distribution of canopy height.

Discussion

Forest inventory and laser scanning Our question

Canopy height (CH) vs tree height (TH)

Э

Discussion

Forest inventory and laser scanning Our question

Canopy height (CH) vs tree height (TH)

Our question:

What kind of stand most likely produced the distribution of canopy heights we observed?

Discussion

Forest inventory and laser scanning Our question

Canopy height (CH) vs tree height (TH)

Our question:

What kind of stand most likely produced the distribution of canopy heights we observed?

 Stand is characterized by distribution of tree heights, stand density and species composition.

Discussion

Forest inventory and laser scanning Our question

Canopy height (CH) vs tree height (TH)

Our question:

What kind of stand most likely produced the distribution of canopy heights we observed?

- Stand is characterized by distribution of tree heights, stand density and species composition.
- The essential task is to state the distribution of canopy heights in terms of the distribution of tree heights, stand density and species composition.

Introduction Model development

Examples

Discussion

Forest inventory and laser scanning Our question

Canopy height (CH) vs tree height (TH)

Our question:

What kind of stand most likely produced the distribution of canopy heights we observed?

- Stand is characterized by distribution of tree heights, stand density and species composition.
- The essential task is to state the distribution of canopy heights in terms of the distribution of tree heights, stand density and species composition.

Then our question can be answered by fitting the recovered distribution to the observed data using Maximum Likelihood.

General model Applications for different forest types Estimation

Distribution of canopy heights

Let Z be canopy height at a random point v, and z a fixed reference height.

The distribution of canopy heights is

 $F(\mathbf{z}) = P(\mathbf{Z} \leq \mathbf{z})$

General model Applications for different forest types Estimation

Distribution of canopy heights

Let Z be canopy height at a random point v, and z a fixed reference height.

The distribution of canopy heights is

$$F(z) = P(Z \le z)$$
$$= P(v \notin U)$$

General model Applications for different forest types Estimation

Distribution of canopy heights

Let Z be canopy height at a random point v, and z a fixed reference height.

The distribution of canopy heights is

$$F(z) = P(Z \le z)$$

= $P(v \notin U)$
= $\prod_{i=1}^{N} P(||v - u_i|| > Y_i(z))$

General model Applications for different forest types Estimation

The effect of crown shape

Crown shape links the cross-sectional crown area with tree height. Assume that tree heights H_i are i.i.d random variable with density, $f_H(h|\theta)$.

Denote tree locations by u_i , $i = 1, \ldots, N$.

For tree *i*, we define the crown radius at height z as $Y(z, H_i)$. This function is assumed to be known.

General model Applications for different forest types Estimation

The effect of crown shape

Crown shape links the cross-sectional crown area with tree height. Assume that tree heights H_i are i.i.d random variable with density, $f_H(h|\theta)$. Denote tree locations by u_{i_1} , i = 1, ..., N.

For tree *i*, we define the crown radius at height z as $Y(z, H_i)$. This function is assumed to be known.

Fixing the reference height z, $Y(z, H_i) = Y_z(H_i)$ gives the crown radius of tree i with height H_i .

Thus, $Y_z(H_i)$ is a random variable with distribution $F_H(Y_z^{-1}(y)|\theta)$.

General model Applications for different forest types Estimation

The effect of crown shape

Crown shape links the cross-sectional crown area with tree height. Assume that tree heights H_i are i.i.d random variable with density, $f_H(h|\theta)$. Denote tree locations by u_{i_1} , i = 1, ..., N.

For tree *i*, we define the crown radius at height z as $Y(z, H_i)$. This function is assumed to be known.

Fixing the reference height z, $Y(z, H_i) = Y_z(H_i)$ gives the crown radius of tree i with height H_i .

Thus, $Y_z(H_i)$ is a random variable with distribution $F_H(Y_z^{-1}(y)|\theta)$.

We get $F(z) = \prod_{i=1}^{N} P(\|v - u_i\| > Y_i(z)) = \prod_{i=1}^{N} F_H(Y_z^{-1}(\|v - u_i\|))$

General model Applications for different forest types Estimation

Single-species forest, regular tree locations

Assume that λ trees per m^2 are located at the nodes of a square grid.

General model Applications for different forest types Estimation

Single-species forest, regular tree locations

Assume that λ trees per m^2 are located at the nodes of a square grid.

The c.d.f and density of Z become

$$F_{Z}(z|\lambda,\theta) = \begin{cases} 4\lambda \int_{v \in S} \prod_{i=i}^{N} F_{H}[Y_{z}^{-1}(||u_{i} - v||)|\theta] dv & z \ge 0\\ 0 & z < 0 \end{cases},$$

$$f_{Z}(z|\lambda,\theta) = \begin{cases} 4\lambda \int_{v \in S} \sum_{i=1}^{N} \left[f_{H}[Y_{z}^{-1}(||u_{i} - v||)|\theta] \frac{d}{dz} Y_{z}^{-1}(||u_{i} - v||) \\ \prod_{j=1, j \ne i}^{N} F_{H}[Y_{z}^{-1}(||u_{j} - v||)|\theta] \right] dv & z > 0\\ F_{Z}(z|\lambda,\theta) & z = 0\\ 0 & z < 0 \end{cases}$$

General model Applications for different forest types Estimation

Single-species Poisson forest

Assume that we have λ trees per m^2 randomly located.

3.5 3

General model Applications for different forest types Estimation

Single-species Poisson forest

Assume that we have λ trees per m^2 randomly located.

The c.d.f and density of Z become

$$F_{Z}(z|\lambda,\theta) = \begin{cases} e^{-\lambda\pi E \left[Y(z,H_{i})^{2}\right]} & z \geq 0\\ 0 & z < 0 \end{cases}$$

$$f_Z(z|\lambda, heta) = \left\{ egin{array}{ll} -\lambda \pi F_Z(z|\lambda, heta) \int_z^{b^{-1}(z)} rac{\mathrm{d}}{\mathrm{d}z} [Y(z,h)^2] f_H(h) \mathrm{d}h & z > 0 \ F_Z(z|\lambda, heta) & z = 0 \ 0 & z < 0 \end{array}
ight.,$$

where b(h) gives the height of maximum crown radius as a function of tree height.

General model Applications for different forest types Estimation

Two-species Poisson forest

Assume a mixed stand with density λ and proportions ρ and $1 - \rho$ for species 1 and 2. The crown shape and distribution of tree height for species 1 are $Y_1(z, h)$ and $f_1(h|\theta_1)$ and correspondingly for species 2.

General model Applications for different forest types Estimation

Two-species Poisson forest

Assume a mixed stand with density λ and proportions ρ and $1 - \rho$ for species 1 and 2. The crown shape and distribution of tree height for species 1 are $Y_1(z, h)$ and $f_1(h|\theta_1)$ and correspondingly for species 2.

The c.d.f. and density of Z become

$$F_{Z}(z|\lambda,\rho,\theta) = \begin{cases} \exp\left[-\lambda\pi\left[\rho\int_{0}^{\infty}[Y_{1}(z,h)^{2}]f_{1}(h|\theta_{1})\mathrm{d}h\right. \\ \left. +(1-\rho)\int_{0}^{\infty}[Y_{2}(z,h)^{2}]f_{2}(h|\theta_{2})\mathrm{d}h\right]\right] & z \ge 0\\ F_{Z}(z|\lambda,\theta) = 0 & z < 0 \end{cases}$$

$$f_{Z}(z|\lambda,\rho,\theta) = \begin{cases} -\lambda \pi F_{Z}(z|\lambda,\rho,\theta) \big[\rho I_{1}(z|\theta_{1}) + (1-\rho)I_{1}(z|\theta_{2}) \big] & z > 0 \\ F_{Z}(z|\lambda,\rho,\theta) & z = 0 \\ 0 & z < 0 \end{cases},$$

where

$$I_j(z|\boldsymbol{\theta}_j) = \int_{z}^{b_j^{-1}(z)} \frac{\mathrm{d}}{\mathrm{d}z} [Y_j(z,h)^2] f_j(h|\boldsymbol{\theta}_j) \mathrm{d}h.$$

General model Applications for different forest types Estimation

Estimation

We first solve λ(canopy closure, θ, [ρ]) from

 $F_Z(0|\lambda, oldsymbol{ heta}, [
ho]) = 1 - {\it canopy\ closure}$

▲ ∃ →

- A - E - N

< 🗇 🕨

э

General model Applications for different forest types Estimation

Estimation

We first solve λ(canopy closure, θ, [ρ]) from

 $F_Z(0|\lambda, oldsymbol{ heta}, [
ho]) = 1 - {\it canopy\ closure}$

• The ML estimates of θ (and ρ) are found by minimizing

$$\ell \ell = \sum \ln f_Z(z|\lambda(cc,\theta), [\rho], \theta)$$

with respect to θ (and ρ).

3. 3

General model Applications for different forest types Estimation

Estimation

We first solve λ(canopy closure, θ, [ρ]) from

 $F_Z(0|\lambda, oldsymbol{ heta}, [
ho]) = 1 - {\it canopy\ closure}$

• The ML estimates of θ (and ρ) are found by minimizing

$$\ell \ell = \sum \ln f_Z(z|\lambda(cc,\theta), [\rho], \theta)$$

with respect to θ (and ρ).

 \blacktriangleright The value of λ is then solved from the above equation

Simulated stands Simulated measurements Fit results

Stand 1, 'plantation'

- Trees located in a square grid
- 700 trees per ha
- Height ~Weibull(10,20)
- Crowns are ellipsoids with half axes 0.4h and 0.1h

Lauri Mehtätalo¹ and Jukka Nyblom²

Recovering forest parameters from canopy height observations

Simulated stands Simulated measurements Fit results

Stand 2, 'natural'

- Trees located randomly
- 700 trees per ha
- Height ~Weibull(10,20)
- Crowns are ellipsoids with half axes 0.4h and 0.1h

Simulated stands Simulated measurements Fit results

Stand 3 'mixed'

- Trees located randomly
- 200 ellipsoid shaped and 500 conical shaped trees per ha
- Ellipsoid: Height~Weibull(9,20), Conical: Height~Weibull(7,19)
- Ellipsoid half axes 0.4h and 0.15h, cone height 0.6h and width 0.24h

Simulated stands Simulated measurements Fit results

Taking observations

- Five 100*20 m² sample plots from each stand
- Total of 384–394 canopy height observations per plot

3

Simulated stands Simulated measurements Fit results

Table: Estimation results of Stand 1. True values were $\alpha = 10$, $\beta = 20$, $10000\lambda = 700$ trees per ha, $\overline{H} = 19.03$ m.

			Esti	mates	Sample values		
Plot	ĉc	$\widehat{\alpha}$	\widehat{eta}	$10000 \widehat{\lambda}$	$\widehat{\overline{H}}$	10000λ	\overline{H}
1	0.824	10.76	20.19	730	19.27	705	19.30
2	0.803	9.91	19.83	735	18.86	700	18.93
3	0.775	10.00	20.13	679	19.16	705	18.97
4	0.797	9.00	19.60	752	18.56	710	18.88
5	0.795	9.98	19.95	715	18.98	690	18.97

• Point estimates accurate, λ and mean H follow sample values

Simulated stands Simulated measurements Fit results

Table: Estimation results of Stand 2. True values were $\alpha = 10$, $\beta = 20$, $10000\lambda = 700$ trees per ha, $\overline{H} = 19.03$ m.

			Esti	mates	Sample values		
Plot	ĉc	$\widehat{\alpha}$	\widehat{eta}	$10000 \widehat{\lambda}$	$\widehat{\overline{H}}$	10000λ	\overline{H}
1	0.522	9.69	19.99	641	19.00	625	18.93
2	0.574	10.07	20.11	731	19.13	775	18.90
3	0.550	9.36	19.76	711	18.75	730	18.98
4	0.567	9.40	19.80	744	18.78	780	18.66
5	0.536	9.86	20.00	667	19.01	645	19.14

Point estimates less accurate than in stand 1 but good

Simulated stands Simulated measurements Fit results

Stand 3, 'mixed'

Table: Estimation results of the mixed stand. True values were $\alpha_1 = 9$, $\beta_1 = 20$, $\alpha_2 = 7$, $\beta_2 = 19$, $\rho = 0.286$, $10000\lambda_1 = 200$ trees per ha, $10000\lambda_2 = 500$ trees per ha, $H_1 = 18.94$ m, $H_2 = 17.77$ m

		Estimates								
	Plot	сс	$\widehat{lpha_1}$	$\widehat{\beta_1}$	$\widehat{\alpha_2}$	$\widehat{\beta}_2$	$\widehat{ ho}$			
	1	0.681	9.25	20.00	12.85	17.5	3 0.303	-		
	2	0.723	12.70	21.07	6.22	19.4	2 0.210			
	3	0.712	9.11	19.80	9.46	20.2	0 0.291			
	4	0.661	11.48	20.23	7.36	21.0	4 0.268			
	5	0.733	8.47	19.84	7.88	17.4	4 0.273			
	Estimates				Sample values					
Plot	$10000\widehat{\lambda_1}$	$10000\widehat{\lambda_2}$	$\widehat{\overline{H_1}}$	$\widehat{\overline{H_2}}$	10000	λ_1	$10000\lambda_2$	$\overline{H_1}$	$\overline{H_2}$	
1	206	472	18.96	16.84	175	5	445	19.41	17.92	
2	148	558	20.23	18.05	185	5	570	19.03	17.77	
3	188	457	18.76	19.17	180)	495	19.18	18.06	
4	142	389	19.35	19.73	220)	445	18.68	17.84	
5	226	602	18.73	16.41	195	5	590	18.65	17.38	

• Estimates good, α_2 the least accurate

Good news

Good news

A new approach to forest attribute retrieval from laser data!

No need for dense data, actually works better with less dense data

Good news

- No need for dense data, actually works better with less dense data
- No need for ground-measured plots

Good news

- No need for dense data, actually works better with less dense data
- No need for ground-measured plots
- Capability to "species recognition" according to crown shape

Good news

- No need for dense data, actually works better with less dense data
- No need for ground-measured plots
- Capability to "species recognition" according to crown shape
- Estimated stand structure is obtained

Good news

- No need for dense data, actually works better with less dense data
- No need for ground-measured plots
- Capability to "species recognition" according to crown shape
- Estimated stand structure is obtained
- Codominant or undergrowth trees should not be a problem

Questions

Discrete return or full-waveform data?

э

Questions

- Discrete return or full-waveform data?
 - Discrete return observes usually minima or maxima of a footprint

Э

-

- Discrete return or full-waveform data?
 - Discrete return observes usually minima or maxima of a footprint
 - Using full-waveform would require additional model for penetration

- Discrete return or full-waveform data?
 - Discrete return observes usually minima or maxima of a footprint
 - Using full-waveform would require additional model for penetration
- What to assume about spatial pattern?

- Discrete return or full-waveform data?
 - Discrete return observes usually minima or maxima of a footprint
 - Using full-waveform would require additional model for penetration
- What to assume about spatial pattern?
- What to assume about crown shape?

- Discrete return or full-waveform data?
 - Discrete return observes usually minima or maxima of a footprint
 - Using full-waveform would require additional model for penetration
- What to assume about spatial pattern?
- What to assume about crown shape?
- How to speed up computation?

- Discrete return or full-waveform data?
 - Discrete return observes usually minima or maxima of a footprint
 - Using full-waveform would require additional model for penetration
- What to assume about spatial pattern?
- What to assume about crown shape?
- How to speed up computation?
- How to find initial guesses of estimates?

Publications

Mehtätalo, L. and Nyblom, J. Retrieving forest parameters from observations of canopy height. Manuscript.

Mehtätalo, L. 2006. Eliminating the effect of overlapping crowns from aerial inventory estimates. Canadian Journal of Forest Research 36(7): 1649-1660. (Reprints available upon request)