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Background
The contents of this presentation

Types of forest datasets

Forest datasets are usually hierarchical e.g.
needles within branches
branches within trees
trees within sample plots
sample plots within forest stands
forest stand within regions
repeated measurements of trees, branches etc.
...

Also crossed grouping structures are common
Tree increments for different calendar years
Trees or forest stands on aerial images

These datasets are naturally modeled using random effect models.
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Background
The contents of this presentation

Why random effects?

Using mixed-effects models with hierarchical datasets result in
1 More reliable inference on the model parameters, because

estimation method takes into account the correlation resulting
from the grouping.

2 Possibilitý to compute the predictions at different levels of the
dataset. In many forest applications, this means plot and
population level predictions (i.e. predictions for an average plot).

If the main interest is the inference (e.g. the effects of certain
medical treatments on individuals) the first property is more
important.

If the main interest is prediction, then greatest benefit may
arises from the possibility to make predictions at different
levels of hierarchy.
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Background
The contents of this presentation

Topic of this presentation

I will demonstrate and discuss the use of mixed-effects model
predictions in two forestry situations

In localizing a previously fitted mixed effects model for a new
stand from outside the modeling data but from the same
population of stands using measured response of one or more
individuals of the new group.

In prediction of a treatment-free response in a dataset of crossed
crouping structure to extract a pure treatment effect.
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Motivation
The model
Localizing the model
Example

Why an H-D model?

H-D relationship varies much
among sample plots, but
height measurement is
time-consuming.

In a forest inventory, diameter
is usully tallied for all trees of
a sample plot, whereas height
is measured only for 0 – 5
trees per plot.
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If a previously fitted H-D model is available, it can be localized, or
calibrated, for the new plot by predicting the random effects using the
sampled tree heights.
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If a previously fitted H-D model is available, it can be localized, or
calibrated, for the new plot by predicting the random effects using the
sampled tree heights.

Mehtätalo Mixed-effects models in forestry



Introduction
Localizing a H-D model

Extracting effects of silvicultural thinnings
Discussion and conclusions

Motivation
The model
Localizing the model
Example

Why an H-D model?

H-D relationship varies much
among sample plots, but
height measurement is
time-consuming.

In a forest inventory, diameter
is usully tallied for all trees of
a sample plot, whereas height
is measured only for 0 – 5
trees per plot.

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●
●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●
●
●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●
● ●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

0 10 20 30 40 50
0

5
10

15
20

25
30

Tree height vs Tree diameter

d, cm

h,
 m

If a previously fitted H-D model is available, it can be localized, or
calibrated, for the new plot by predicting the random effects using the
sampled tree heights.

Mehtätalo Mixed-effects models in forestry



Introduction
Localizing a H-D model

Extracting effects of silvicultural thinnings
Discussion and conclusions

Motivation
The model
Localizing the model
Example

The Height-Diameter model

The logarithmic heigth Hkti for tree i in stand k at time t with diameter Dkti at the breast
height is expressed by

ln(Hkti) = a(DGMkt) + αk + αkt + (b(DGMkt) + βk + βkt)Dkti + εkti ,

where a(DGMkt) and b(DGMkt) are known fixed functions of plot-specific mean
diameter DGMkt ,
(αk , βk)

′ and (αkt , βkt)
′ are the plot and measurement occasion -level random effects

with varainces (correlations)

var

[
αk

βk

]
=

[
0.1082 (0.269)
0.0028 0.09582

]
var

[
αkt

βkt

]
=

[
0.01682 (−0.681)
−0.0003 0.02232

]
and εkti are independent normal residuals with

var(εkti) = 0.4012
(

max(Dkti , 7.5)
)−1.068
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The stand level mixed-effects model

The sample tree heights of a new stand can be described by

y = µ+ Zb + ε ,

where
y includes the observed sample tree heights,
µ is the fixed part,
b = ( αk βk αk1 βk1 αk2 βk2 . . .)

′
includes the random

effects,
Z is the corresponding design matrix, and
ε includes the residuals.
We denote var(b) = D and var(ε) = R.
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Prediction of random effects

The variances and covariances between random effects and observed
heights can be written as[

b
y

]
∼

([
0
µ

]
,

[
D DZ ′

ZD ZDZ ′ + R

])

The Empirical Best Linear Unbiased Predictor (EBLUP) of random
effects is

b̂ = DZ ′(ZDZ ′ + R)−1(y − µ) .

and the variance of prediction errors is

var(b̂ − b) = D − DZ ′(ZDZ ′ + R)−1ZD
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Example

Height of one tree was measured 5 years ago and 2 trees at the
current year. The matrices and vectors are

µ =

 2.59
2.11
2.99

 y =

 2.77
2.35
3.19



Z =

 1 −0.36 1 −0.36 0 0
1 −1.22 0 0 1 −1.22
1 0.058 0 0 1 0.058

 R =

 0.008 0 0
0 0.016 0
0 0 0.004



b =



αk

βk

αk1

βk1

αk2

βk2

 D =



0.0118 0.0028 0 0 0 0
0.0028 0.0092 0 0 0 0

0 0 0.0003 0.0004 0 0
0 0 0.0004 0.0005 0 0
0 0 0 0 0.0003 0.0004
0 0 0 0 0.0004 0.0005


Mehtätalo Mixed-effects models in forestry



Introduction
Localizing a H-D model

Extracting effects of silvicultural thinnings
Discussion and conclusions

Motivation
The model
Localizing the model
Example

Uncalibrated and calibrated predictions
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Why thinning effects?

Forest managers use silvicultural thinnings to decrease the
competition of neighboring trees and, consequently, to increase
the growth rate of the remaining trees for faster production of
sawtimber.

To understand the dynamics of thinning, one may wish to analyse
the effect of thinnings on tree growth.

However, the growth is affected also by other factors, especially
by the site productivity, tree age, and annual weather.

Mixed-effects models can be used to model out these nuisance
effects.
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Study material

Thinning experiment sample plots were established in naturally
generated Scots pine stands at the age of ∼ 25 years in
Mekrijärvi, Finland in 1986.

One of the four following thinning treatments were applied to each
plot: No thinning (I, Control), light (II), moderate (III), and heavy
(IV) thinnings.

88 trees were felled in 2006, and the complete time series of
diameter increments between 1983 and 2006 was measured for
each tree using an X-ray densiometer.

The diameter growths were transformed to basal area growths,
because Volume ∼ Diameter2Height)
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The raw data
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I (control) - black; II (light) - red
III (moderate) - green; IV (heavy) - blue

THICK: treatment-specific
trends

THIN: 12 randomly selected
trees
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(Age trend)
climate-related year
effects
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Modeling the non-thinned response

A dataset without thinning treatments was produced by including
from the original data

The control treatment for whole follow-up period
The thinned treatments until the year of thinning (1986)

A linear mixed effect model with random year and tree effects
was fitted to the unthinned data

ykt = f (Tkt) + uk + vt + ekt (1)

where yckt is the basal area growth of tree k at year t ,
f (Tckt) is the age trend (modeled using restricted cubic spline
with 3 knots),
uk is a NID tree effect,
vt is a NID year effect and
ekt is a NID residual.
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Extracting the thinning effects

Using the estimated age trend and predicted year and tree
effects, the growth without thinning, ỹkt was predicted for
treatments II -IV after the thinning year.
The pure thinning effects were estimated by subtracting the
prediction from the observed growth

dkt = ykt − ỹkt (2)
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treatments II -IV after the thinning year.
The pure thinning effects were estimated by subtracting the
prediction from the observed growth

dkt = ykt − ỹkt (2)
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The estimated thinning effects
Extracted thinning effects
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Discussion and conclusions

The prediction of random effects for a new group is a powerful
tool to localize models afterwards using very limited datasets.
Since the proposal of this approach for taper curves (Lappi 1986),
numerous forstry applications have been published, including

Site index curves (starting from Lappi and Bailey 1988)
Height-Diameter curves (Lappi 1997, Mehtätalo 2004, 2005a)
Diameter distributions (Mehtätalo 2005b, Mehtätalo et al. 2011)
Cross-calibration of seemingly unrealted mixed-effects models
(Lappi 1991, Lappi et al 2006)

I am wondering if other fields than forestry have or could have
similar applications.
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Discussion and conclusions

In the other study, mixed-effects models provided an useful tool to
extract the thinning effects by removing the nuisance effects
caused by age trend, and random age and year effects.
A somewhat similar analysis has previously been used for
extracting year effects and exploring their correlation with climatic
records (Gort et al 2011, Zubizarreta et al 2012).
The extracted thinning effects can be further modeled using
nonlinear mixed-effects models (Mehtätalo et al 2013).
Forestry datasets are often hierarchical, and analyses of such
datasets can significantly benefit from the use of mixed-model
predictions. As an example, this presetation showed two
examples, but the applicationa are not restricted to these.
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