Predicting stand structure using limited measurements

Lauri Mehtätalo lauri.mehtatalo@yale.edu

June 12, 2006, University of Minnesota Department of Forest Resources

 \leftarrow

 $2Q$

э

Outline of the presentation

[Introduction](#page-2-0)

[Methods](#page-10-0)

[Linear Prediction](#page-10-0) [Examples of BLP](#page-15-0)

[Predicting the distribution of diameters](#page-24-0)

[Percentile-based diameter distribution](#page-24-0) [Distributions of order statistics](#page-26-0) [BLP in this case](#page-33-0) [The effect of order statistics on prediction accuracy](#page-42-0)

[Discussion](#page-45-0)

∍

э

The inventory of a single stand

4日下 \overline{A}

B ∍ \mathbf{p} \mathcal{A}^{\pm} 重

 \Rightarrow

 299

The inventory of a single stand

 \blacktriangleright For forestry decision making, the most important information from a stand is the amount and structure of the growing stock

 \leftarrow \Box

G

Þ

The inventory of a single stand

- \triangleright For forestry decision making, the most important information from a stand is the amount and structure of the growing stock
- In this study, these are described by the total basal area, diameter distribution and height-diameter curve, each of which is expressed by tree species.

э

The inventory of a single stand

- \triangleright For forestry decision making, the most important information from a stand is the amount and structure of the growing stock
- In this study, these are described by the total basal area, diameter distribution and height-diameter curve, each of which is expressed by tree species.
- \triangleright The main aim of this study was to develop tools for producing a stand description from ground-measured data

The inventory of a single stand

- \triangleright For forestry decision making, the most important information from a stand is the amount and structure of the growing stock
- In this study, these are described by the total basal area, diameter distribution and height-diameter curve, each of which is expressed by tree species.
- \triangleright The main aim of this study was to develop tools for producing a stand description from ground-measured data
- \triangleright Because of limited measurement resources for a single stand, the available information is very limited and the use of measurement information should be as effective as possible.

We have two kinds of measurements from a stand

Lauri Mehtätalo [Predicting stand structure using limited measurements](#page-0-0)

 \leftarrow \Box \rightarrow

4 间 **B** ÷. \mathbf{p} ■

 299

 $\leftarrow \equiv +$

We have two kinds of measurements from a stand

Group 1: Stand variables

- \triangleright Some basic information (stand age, site fertility class ...)
- \triangleright Basal area and basal area weighted median diameter (DGM) from angle count plot(s)

Can be used as predictors in the regression models of stand structure.

 $2Q$

э

We have two kinds of measurements from a stand

Group 1: Stand variables

- \triangleright Some basic information (stand age, site fertility class ...)
- \triangleright Basal area and basal area weighted median diameter (DGM) from angle count plot(s)

Can be used as predictors in the regression models of stand structure.

Group2: Sample measurements (of response)

- \blacktriangleright Sample tree height(s)
- \triangleright Sample order statistic(s) of the angle count sample plot(s), called quantile trees.

The use is based on linear prediction.

つへへ

[Linear Prediction](#page-14-0) [Examples of BLP](#page-15-0)

Linear prediction of random variables

Suppose that a random vector x is partitioned into unobserved and observed parts, x_1 and x_2 .

 $4.17 +$

 \Rightarrow ÷.

∍ ×

[Linear Prediction](#page-14-0) [Examples of BLP](#page-15-0)

Linear prediction of random variables

Suppose that a random vector x is partitioned into unobserved and observed parts, x_1 and x_2 .

Suppose that that the first and second order properties of x are

$$
\left[\begin{array}{c} \textbf{x}_1 \\ \textbf{x}_2 \end{array}\right] \sim \left(\left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right],\left[\begin{array}{cc} \textbf{V}_1 & \textbf{V}_{12} \\ \textbf{V}'_{12} & \textbf{V}_2 \end{array}\right]\right)\,,
$$

where everything except for x_1 are known.

 \leftarrow

 $2Q$

э

Þ

[Linear Prediction](#page-14-0) [Examples of BLP](#page-15-0)

Linear prediction of random variables

Suppose that a random vector x is partitioned into unobserved and observed parts, x_1 and x_2 .

Suppose that that the first and second order properties of x are

$$
\left[\begin{array}{c} \textbf{x}_1 \\ \textbf{x}_2 \end{array}\right] \sim \left(\left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right],\left[\begin{array}{cc} \textbf{V}_1 & \textbf{V}_{12} \\ \textbf{V}'_{12} & \textbf{V}_2 \end{array}\right]\right)\,,
$$

where everything except for x_1 are known. The Best Linear Predictor (BLP) of x_1 is

$$
\widehat{\mathbf{x}}_1 = \mu_1 + \mathbf{V}_{12}\mathbf{V}_2^{-1}(\mathbf{x}_2 - \mu_2)
$$

and the variance of prediction errors is

$$
\text{var}(\hat{\mathbf{x}_1} - \mathbf{x}_1) = \mathbf{V}_1 - \mathbf{V}_{12}\mathbf{V}_2^{-1}\mathbf{V}_{12}'.
$$

[Linear Prediction](#page-14-0) [Examples of BLP](#page-15-0)

Linear prediction of random variables

Suppose that a random vector x is partitioned into unobserved and observed parts, x_1 and x_2 .

Suppose that that the first and second order properties of x are

$$
\left[\begin{array}{c} \textbf{x}_1 \\ \textbf{x}_2 \end{array}\right] \sim \left(\left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right],\left[\begin{array}{cc} \textbf{V}_1 & \textbf{V}_{12} \\ \textbf{V}'_{12} & \textbf{V}_2 \end{array}\right]\right)\,,
$$

where everything except for x_1 are known. The Best Linear Predictor (BLP) of x_1 is

$$
\widehat{\mathbf{x}}_1 = \mu_1 + \mathbf{V}_{12}\mathbf{V}_2^{-1}(\mathbf{x}_2 - \mu_2)
$$

and the variance of prediction errors is

$$
\text{var}(\hat{\mathbf{x}_1} - \mathbf{x}_1) = \mathbf{V}_1 - \mathbf{V}_{12}\mathbf{V}_2^{-1}\mathbf{V}_{12}'.
$$

Under normality, BLP is the Best Predictor (BP)

[Linear Prediction](#page-10-0) [Examples of BLP](#page-15-0)

Linear prediction of random variables

Suppose that a random vector x is partitioned into unobserved and observed parts, x_1 and x_2 .

Suppose that that the first and second order properties of x are

$$
\left[\begin{array}{c} \textbf{x}_1 \\ \textbf{x}_2 \end{array}\right] \sim \left(\left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right],\left[\begin{array}{cc} \textbf{V}_1 & \textbf{V}_{12} \\ \textbf{V}'_{12} & \textbf{V}_2 \end{array}\right]\right)\,,
$$

where everything except for x_1 are known. The Best Linear Predictor (BLP) of x_1 is

$$
\widehat{\mathbf{x}}_1 = \mu_1 + \mathbf{V}_{12}\mathbf{V}_2^{-1}(\mathbf{x}_2 - \mu_2)
$$

and the variance of prediction errors is

$$
\text{var}(\hat{\mathbf{x}_1} - \mathbf{x}_1) = \mathbf{V}_1 - \mathbf{V}_{12}\mathbf{V}_2^{-1}\mathbf{V}_{12}'.
$$

Under normality, BLP is the Best Predictor (BP) In applications, we usually use estimated μ 's and V's to obtain an Estimated BLP (EBLP).

つへへ

[Linear Prediction](#page-10-0) [Examples of BLP](#page-18-0)

Examples of BLP

Lauri Mehtätalo [Predicting stand structure using limited measurements](#page-0-0)

K ロ ▶ K 伊 ▶

 $\mathbb{B} \rightarrow \mathbb{R} \oplus \mathbb{B} \rightarrow$

 \sim

■

 299

[Linear Prediction](#page-10-0) [Examples of BLP](#page-18-0)

Examples of BLP

In a mixed model, we predict a vector of random effects, x_1 , using a vector of observed responses, x_2 .

 \leftarrow \Box \rightarrow

k. 市 \Rightarrow 目

∍ × 299

[Linear Prediction](#page-10-0) [Examples of BLP](#page-18-0)

Examples of BLP

- In a mixed model, we predict a vector of random effects, x_1 , using a vector of observed responses, x_2 .
- \blacktriangleright If we have two models with correlated residuals, and the response for the first model is measured (x_2) , the response of the other model can be predicted as x_1 . For example, we can predict volumes of sample trees with known heights.

 \leftarrow \Box

 $2Q$

э

[Linear Prediction](#page-10-0) [Examples of BLP](#page-15-0)

Examples of BLP

- In a mixed model, we predict a vector of random effects, x_1 , using a vector of observed responses, x_2 .
- \blacktriangleright If we have two models with correlated residuals, and the response for the first model is measured (x_2) , the response of the other model can be predicted as x_1 . For example, we can predict volumes of sample trees with known heights.
- In spatial statistics, kriging is a method where unobserved responses, x_1 at spatial locatiobns are predicted using observed responses, x_2 at spatial locations. Matrices V are obtained from an estimated variogram.

[Linear Prediction](#page-10-0) [Examples of BLP](#page-15-0)

Predicting Height-Diameter curve

The fixed part of a mixed model gives the expected height for a tree with a given diameter. If we have sample tree heights measured, we can predict the random effects of the model (x_1) using sample tree heights (x_2)

 \Box

 $2Q$

∍

[Linear Prediction](#page-10-0) [Examples of BLP](#page-15-0)

Predicting Height-Diameter curve

The fixed part of a mixed model gives the expected height for a tree with a given diameter. If we have sample tree heights measured, we can predict the random effects of the model (x_1) using sample tree heights (x_2)

 \Box

 $2Q$

∍

[Linear Prediction](#page-10-0) [Examples of BLP](#page-15-0)

Predicting the diameter distribution

 \blacktriangleright I predict diameter percentiles using models that are estimated from some data a priori.

[Linear Prediction](#page-10-0) [Examples of BLP](#page-15-0)

Predicting the diameter distribution

- \blacktriangleright I predict diameter percentiles using models that are estimated from some data a priori.
- \triangleright The quantile tree is interpreted as a measured percentile,

[Linear Prediction](#page-10-0) [Examples of BLP](#page-15-0)

Predicting the diameter distribution

- \blacktriangleright I predict diameter percentiles using models that are estimated from some data a priori.
- \triangleright The quantile tree is interpreted as a measured percentile,
- ightharpoonup is so we can use it (x_2) to predict the residuals of our percentile models (x_1) .

[Percentile-based diameter distribution](#page-25-0) [Distributions of order statistics](#page-26-0) [BLP in this case](#page-33-0) [The effect of order statistics on prediction accuracy](#page-42-0)

Percentile-based diameter distribution

Certain percentiles in stand k are modeled using Group 1 variables

$$
d_{0\%,k} = E(d0\%)DGM_k, G_k, T_k,...) + e_{0\%,k}
$$

\n
$$
d_{10\%,k} = E(d10\%)DGM_k, G_k, T_k,...) + e_{10\%,k}
$$

\n:
\n:
\n:
\n
$$
d_{90\%,k} = E(d90\%)DGM_k, G_k, T_k,...) + e_{90\%,k}
$$

\n
$$
d_{100\%,k} = E(d100\%)DGM_k, G_k, T_k,...) + e_{100\%,k}
$$

The continuous distribution function is obtained by linear interpolation.

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \Box \rightarrow

(重) $2Q$

- 4 重 8 - 4 重 8

[Percentile-based diameter distribution](#page-24-0) [Distributions of order statistics](#page-26-0) [BLP in this case](#page-33-0) [The effect of order statistics on prediction accuracy](#page-42-0)

Percentile-based diameter distribution

Certain percentiles in stand k are modeled using Group 1 variables

$$
d_{0\%,k} = E(d0\%)DGM_k, G_k, T_k,...) + e_{0\%,k}
$$

\n
$$
d_{10\%,k} = E(d10\%)DGM_k, G_k, T_k,...) + e_{10\%,k}
$$

\n:
\n:
\n:
\n
$$
d_{90\%,k} = E(d90\%)DGM_k, G_k, T_k,...) + e_{90\%,k}
$$

\n
$$
d_{100\%,k} = E(d100\%)DGM_k, G_k, T_k,...) + e_{100\%,k}
$$

The continuous distribution function is obtained by linear interpolation.

The same in matrix form:

$$
\mathbf{d}_k = E(\mathbf{d}|DGM_k, G_k, T_k,...) + \mathbf{e}_k,
$$

where residuals e_k are actually stand effects with nondiagonal $var(e_k) = D$. We will drop index k hereafter.

イロト イ押ト イヨト イヨト

重

[Percentile-based diameter distribution](#page-24-0) [Distributions of order statistics](#page-28-0) [BLP in this case](#page-33-0) [The effect of order statistics on prediction accuracy](#page-42-0)

Sample order statistics

Let $Y_{r:n}$ be r^{th} smallest observation in a sample of size n from population with distribution $F_Y(y)$ and density $f_Y(y)$.

 $4.17 +$

÷.

Э×

[Percentile-based diameter distribution](#page-24-0) [Distributions of order statistics](#page-28-0) [BLP in this case](#page-33-0) [The effect of order statistics on prediction accuracy](#page-42-0)

Sample order statistics

Let $Y_{r:n}$ be r^{th} smallest observation in a sample of size n from population with distribution $F_Y(y)$ and density $f_Y(y)$. $Y_{r:n}$ is a random variable, which has density

$$
f_{r:n}(y) = \frac{n!}{(r-1)!(n-r)!} f_Y(y) [F_Y(y)]^{r-1} [1 - F_Y(y)]^{n-r}
$$

 $4.17 +$

G

Þ

[Percentile-based diameter distribution](#page-24-0) [Distributions of order statistics](#page-26-0) [BLP in this case](#page-33-0) [The effect of order statistics on prediction accuracy](#page-42-0)

Sample order statistics

Let $Y_{r:n}$ be r^{th} smallest observation in a sample of size n from population with distribution $F_Y(y)$ and density $f_Y(y)$. $Y_{r:n}$ is a random variable, which has density

$$
f_{r:n}(y) = \frac{n!}{(r-1)!(n-r)!} f_Y(y) [F_Y(y)]^{r-1} [1 - F_Y(y)]^{n-r}
$$

Examples of distributions, black line is the underlyin[g p](#page-27-0)[op](#page-29-0)[ul](#page-25-0)[a](#page-26-0)[ti](#page-28-0)[o](#page-29-0)[n](#page-25-0) [d](#page-26-0)[is](#page-32-0)[tr](#page-33-0)[i](#page-23-0)[bu](#page-24-0)[t](#page-44-0)[io](#page-45-0)[n](#page-0-0)

[Percentile-based diameter distribution](#page-24-0) [Distributions of order statistics](#page-26-0) [BLP in this case](#page-33-0) [The effect of order statistics on prediction accuracy](#page-42-0)

Expectation and variance of $Y_{r:n}$

Recall the example, where $Y_{1:12}$ was observed

Assuming that the predicted $f_Y(y)$ is the diameter distribution, we know the distribution of $Y_{1:12}$.

 $2Q$

э

 $4.17 +$

[Percentile-based diameter distribution](#page-24-0) [Distributions of order statistics](#page-26-0) [BLP in this case](#page-33-0) [The effect of order statistics on prediction accuracy](#page-42-0)

Expectation and variance of $Y_{r,n}$

Recall the example, where $Y_{1:12}$ was observed

Assuming that the predicted $f_Y(y)$ is the diameter distribution, we know the distribution of $Y_{1:12}$. Further we calculate $E(Y_{1:12}) = 8.73$ cm and $var(Y_{1:12}) = 8.09$

 $2Q$

∍

 $4.17 +$

[Percentile-based diameter distribution](#page-24-0) [Distributions of order statistics](#page-26-0) [BLP in this case](#page-33-0) [The effect of order statistics on prediction accuracy](#page-42-0)

Expectation and variance of $Y_{r:n}$

Recall the example, where $Y_{1:12}$ was observed

Assuming that the predicted $f_Y(y)$ is the diameter distribution, we know the distribution of $Y_{1:12}$. Further we calculate $E(Y_{1:12}) = 8.73$ cm and $var(Y_{1:12}) = 8.09$

Based on $p = F_Y(E(Y_{1:12})) = 0.070$, $Y_{1:12}$ is interpreted as a measurement of 7th percentile of distribution $F_Y(y)$

 $2Q$

∍

 \leftarrow

[Percentile-based diameter distribution](#page-24-0) [Distributions of order statistics](#page-26-0) [BLP in this case](#page-33-0) [The effect of order statistics on prediction accuracy](#page-42-0)

Expectation and variance of $Y_{r:n}$

Recall the example, where $Y_{1:12}$ was observed

Assuming that the predicted $f_Y(y)$ is the diameter distribution, we know the distribution of $Y_{1:12}$. Further we calculate $E(Y_{1:12}) = 8.73$ cm and $var(Y_{1:12}) = 8.09$

Based on $p = F_Y(E(Y_{1:12})) = 0.070$, $Y_{1:12}$ is interpreted as a measurement of 7th percentile of distribution $F_Y(y)$

 $2Q$

∍

 \leftarrow

[Percentile-based diameter distribution](#page-24-0) [Distributions of order statistics](#page-26-0) [BLP in this case](#page-34-0) [The effect of order statistics on prediction accuracy](#page-42-0)

The model for the measured percentile

Recall the model for the predefined percentiles

$$
\mathbf{d}_k = E(\mathbf{d}|DGM, G, T, \ldots) + \mathbf{e}_k,
$$

where $var(\mathbf{e}_k) = \mathbf{D}$. The model for this observation is

$$
d_{7\%}+\epsilon=E(d_{7\%}|DGM,G,T,\ldots)+e_{7\%}+\epsilon\,,
$$

where ϵ is the measurement error of of the percentile, with $var(\epsilon) = var(Y_{1:12}) = 8.09.$ We approximate $E(d_{7\%}|DGM, G, T, \ldots)$, $var(e_{7\%})$ and $cov((e), e_{7\%})$ by interpolating linearly $E(d|DGM, G, T, \ldots)$ and **D** for the 7th percentile.

 \blacksquare

[Percentile-based diameter distribution](#page-24-0) [Distributions of order statistics](#page-26-0) [BLP in this case](#page-33-0) [The effect of order statistics on prediction accuracy](#page-42-0)

The model for the measured percentile

Recall the model for the predefined percentiles

$$
\mathbf{d}_k = E(\mathbf{d}|DGM, G, T, \ldots) + \mathbf{e}_k,
$$

where $var(\mathbf{e}_k) = \mathbf{D}$. The model for this observation is

$$
d_{7\%}+\epsilon=E(d_{7\%}|DGM,G,T,\ldots)+e_{7\%}+\epsilon\,,
$$

where ϵ is the measurement error of of the percentile, with $var(\epsilon) = var(Y_{1:12}) = 8.09.$ We approximate $E(d_{7\%}|DGM, G, T, \ldots)$, $var(e_{7\%})$ and $cov((e), e_{7\%})$ by interpolating linearly $E(d|DGM, G, T, ...)$ and **D** for the 7th percentile. We can now write

$$
\left[\begin{array}{c} \mathbf{d} \\ d_{7\%}+\epsilon \end{array}\right] \sim \left(\left[\begin{array}{c} E(\mathbf{d}|DGM, G, T, \ldots) \\ E(d_{7\%}|DGM, G, T, \ldots) \end{array}\right], \left[\begin{array}{cc} \mathbf{D} & \mathrm{cov}(\mathbf{e}, \mathbf{e}_{7\%}) \\ \mathrm{cov}(\mathbf{e}_{7\%}, \mathbf{e}) & \mathrm{var}(\mathbf{e}_{7\%}) + \mathrm{var}(\epsilon) \end{array}\right] \right)\,,
$$

where all except for **d** is known.

 \blacksquare

[Percentile-based diameter distribution](#page-24-0) [Distributions of order statistics](#page-26-0) [BLP in this case](#page-33-0) [The effect of order statistics on prediction accuracy](#page-42-0)

BLP of stand effects

$$
\left[\begin{array}{c} \mathbf{d} \\ d_{7\%} + \epsilon \end{array}\right] \sim \left(\left[\begin{array}{c} E(\mathbf{d}|DGM, G, T, \ldots) \\ E(d_{7\%}|DGM, G, T, \ldots) \end{array}\right], \left[\begin{array}{cc} \mathbf{D} & \mathrm{cov}(\mathbf{e}, e_{7\%}) \\ \mathrm{cov}(e_{7\%}, \mathbf{e}) & \mathrm{var}(e_{7\%}) + \mathrm{var}(\epsilon) \end{array}\right] \right),
$$

The BLP is calculated as

$$
\begin{array}{lll}\n\hat{\mathbf{d}} & = & E(\mathbf{d}|DGM, G, T, \ldots) + \\
& \mathrm{cov}(\mathbf{e}, \mathbf{e}_{7\%}) (\mathrm{var}(\mathbf{e}_{7\%}) + \mathrm{var}(\epsilon))^{-1} (d_{7\%} - E(d_{7\%}|DGM, G, T, \ldots))\n\end{array}
$$

K ロ ▶ K 伊 ▶

 \mathcal{A} Э× 重

 299

 \rightarrow \Rightarrow

[Percentile-based diameter distribution](#page-24-0) [Distributions of order statistics](#page-26-0) [BLP in this case](#page-33-0) [The effect of order statistics on prediction accuracy](#page-42-0)

BLP of stand effects

$$
\left[\begin{array}{c} \mathbf{d} \\ d_{7\%} + \epsilon \end{array}\right] \sim \left(\left[\begin{array}{c} E(\mathbf{d}|DGM, G, T, \ldots) \\ E(d_{7\%}|DGM, G, T, \ldots) \end{array}\right], \left[\begin{array}{cc} \mathbf{D} & \mathrm{cov}(\mathbf{e}, e_{7\%}) \\ \mathrm{cov}(e_{7\%}, \mathbf{e}) & \mathrm{var}(e_{7\%}) + \mathrm{var}(\epsilon) \end{array}\right] \right),
$$

The BLP is calculated as

 $\hat{\mathbf{d}}$ = $E(\mathbf{d}|DGM, G, T, \ldots) +$ $\text{cov}(\mathbf{e},\pmb{e}_{7\%})(\text{var}(\pmb{e}_{7\%})+\text{var}(\epsilon))^{-1}(d_{7\%}-E(d_{7\%}|{\color{black}DGM},G,T,\ldots))$

Lauri Mehtätalo **[Predicting stand structure using limited measurements](#page-0-0)**

[Percentile-based diameter distribution](#page-24-0) [Distributions of order statistics](#page-26-0) [BLP in this case](#page-33-0) [The effect of order statistics on prediction accuracy](#page-42-0)

Oops

- \triangleright Our $f_{r:n}(y)$ was based on assumption that $E(d|DGM, G, T, ...)$ gives the true distribution of the stand.
- \triangleright Now we have a better estimate for the true distribution, namely \overrightarrow{d} .
- In That is why we use $\hat{\mathbf{d}}$ to calculate p and $var(Y_{r:n})$ again, and predict new $\hat{\mathbf{d}}$.

 $4.17 +$

 $2Q$

э

重

[Percentile-based diameter distribution](#page-24-0) [Distributions of order statistics](#page-26-0) [BLP in this case](#page-33-0) [The effect of order statistics on prediction accuracy](#page-42-0)

Oops

- \triangleright Our $f_{r:n}(y)$ was based on assumption that $E(d|DGM, G, T, ...)$ gives the true distribution of the stand.
- \triangleright Now we have a better estimate for the true distribution, namely **d**.
- In That is why we use $\hat{\mathbf{d}}$ to calculate p and $\text{var}(Y_{r:n})$ again, and predict new $\widehat{\mathbf{d}}$.

After 7 iterations the final values were $p = 0.064$, $E(Y_{1:12}) = 10.82 \text{cm}$ and $var(Y_{rr}) = 8.28$.

 \leftarrow

[Percentile-based diameter distribution](#page-24-0) [Distributions of order statistics](#page-26-0) [BLP in this case](#page-33-0) [The effect of order statistics on prediction accuracy](#page-42-0)

Several observations per stand

 \blacktriangleright If all measurements are from different plots, their "measurement errors" $(\epsilon's)$ are uncorrelated.

 \leftarrow \Box

G

∍ × Э×

[Percentile-based diameter distribution](#page-24-0) [Distributions of order statistics](#page-26-0) [BLP in this case](#page-33-0) [The effect of order statistics on prediction accuracy](#page-42-0)

Several observations per stand

- \blacktriangleright If all measurements are from different plots, their "measurement errors" $(\epsilon's)$ are uncorrelated.
- In the case of several observation per plot, ϵ 's are correlated. Joint distribution of two order statistics is needed to calculate the correlation:

 $4.17 +$

重

э

[Percentile-based diameter distribution](#page-24-0) [Distributions of order statistics](#page-26-0) [BLP in this case](#page-33-0) [The effect of order statistics on prediction accuracy](#page-42-0)

Examples of predictions (True trees from true plots)

True distribution, prediction based on DGM, G, T, soil and the prediction based on DGM , G , T , soil and sample order statistics (the marks). Same mark is used for measurements from same plot.

[Percentile-based diameter distribution](#page-24-0) [Distributions of order statistics](#page-26-0) [BLP in this case](#page-33-0) [The effect of order statistics on prediction accuracy](#page-42-0)

True trees from simulated plots

- \triangleright Order statistics are taken from random samples of Norway spruce stands.
- \blacktriangleright Triangles show the prediction after first step, the circle after converged iteration.

Þ

 $2Q$

 \leftarrow

[Percentile-based diameter distribution](#page-24-0) [Distributions of order statistics](#page-26-0) [BLP in this case](#page-33-0) [The effect of order statistics on prediction accuracy](#page-42-0)

True trees from true plots

- \triangleright Trees were randomly selected from 3 angle count sample plots
- \triangleright Stand variables (DGM, G, N) included measurement errors
- \triangleright Observations in a sample seem not to be independent observations from the population

 \Box

 $2Q$

∍

[Percentile-based diameter distribution](#page-24-0) [Distributions of order statistics](#page-26-0) [BLP in this case](#page-33-0) [The effect of order statistics on prediction accuracy](#page-42-0)

Which quantile to measure?

bias of stem number, 1/ha

Quantile trees were selected according to different strategies from 1-3 angle count plots

- \triangleright 1S, 2S, 3S: 1st, 2nd and 3rd smallest tree of each plot
- \blacktriangleright 12S, 13S, 23S: 1st and 2nd, 1st and 3rd, and 2nd and 3rd smallest trees of each plot
- \blacktriangleright 1C, 2C, 3C: 1st, 2nd and 3rd closest tree of each plot
- \blacktriangleright 12C, 13C, 23C: 1st and 2nd, 1st and 3rd, and 2nd and 3rd closest trees of each plot
- \triangleright Sa: Tree closest to sawtimber limit (17 cm in diameter)

- La: Largest tree of each plots
- \blacktriangleright \blacktriangleright \blacktriangleright Ra: Rando[mly](#page-43-0) [sel](#page-45-0)e[cte](#page-44-0)[d](#page-45-0) [t](#page-41-0)[re](#page-42-0)e[s](#page-45-0)

Discussion

Lauri Mehtätalo [Predicting stand structure using limited measurements](#page-0-0)

Kロト K伊 K

医多重的 医重的

■

 299

Discussion

 \triangleright Using sample information combined with models provides possibilities to control the accuracy of a forest inventory according to the information needs

 $4.17 +$

÷.

重 **II**

Discussion

- \triangleright Using sample information combined with models provides possibilities to control the accuracy of a forest inventory according to the information needs
- \triangleright Which quantiles are the easiest to measure?

 \leftarrow

G

重 **B**

Discussion

- \triangleright Using sample information combined with models provides possibilities to control the accuracy of a forest inventory according to the information needs
- \triangleright Which quantiles are the easiest to measure?
- \triangleright Using extremes seems to cause a bias problem

 \leftarrow

G

重

Discussion

- \triangleright Using sample information combined with models provides possibilities to control the accuracy of a forest inventory according to the information needs
- \triangleright Which quantiles are the easiest to measure?
- \triangleright Using extremes seems to cause a bias problem
- \triangleright We used BA diameter distribution and angle count samples. With unweighted distributions we would need to use fixed area samples.

э

Discussion

- \triangleright Using sample information combined with models provides possibilities to control the accuracy of a forest inventory according to the information needs
- \triangleright Which quantiles are the easiest to measure?
- \triangleright Using extremes seems to cause a bias problem
- \triangleright We used BA diameter distribution and angle count samples. With unweighted distributions we would need to use fixed area samples.
- \blacktriangleright Here we worked with percentile-based distribution. What about other families, such as Weibull

∍

Discussion

- \triangleright Using sample information combined with models provides possibilities to control the accuracy of a forest inventory according to the information needs
- \triangleright Which quantiles are the easiest to measure?
- \triangleright Using extremes seems to cause a bias problem
- \triangleright We used BA diameter distribution and angle count samples. With unweighted distributions we would need to use fixed area samples.
- \blacktriangleright Here we worked with percentile-based distribution. What about other families, such as Weibull
	- \triangleright Modeling simultaneously Weibull-parameters and percentiles

Discussion

- \triangleright Using sample information combined with models provides possibilities to control the accuracy of a forest inventory according to the information needs
- \triangleright Which quantiles are the easiest to measure?
- \triangleright Using extremes seems to cause a bias problem
- \triangleright We used BA diameter distribution and angle count samples. With unweighted distributions we would need to use fixed area samples.
- \blacktriangleright Here we worked with percentile-based distribution. What about other families, such as Weibull
	- \triangleright Modeling simultaneously Weibull-parameters and percentiles
	- ▶ Combining PPM-weibull and a Weibull fitted to a small sample by ML

Publications

Mehtätalo, L. 2005. Localizing a predicted diameter distribution using sample information. Forest Science 51(4): 292-302.

Mehtätalo, L. and Kangas, A. 2005. An approach to optimizing data collection in an inventory by compartments. Canadian Journal of Forest Research 35(1): 100-112.

Mehtätalo, L., Maltamo, M., and Kangas, A. The use of quantile trees in predicting the diameter distribution of a stand. To appear in Silva Fennica

э