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Abstract—Tensors are multi-way generalizations of matrices,
and similarly to matrices, they can also be factorized, that
is, represented (approximately) as a product of factors. These
factors are typicaly either all matrices or a mixture of matrices
and tensors. With the widespread adoption of matrix factoriza-
tion techniques in data mining, also tensor factroziations have
started to gain attention.

In this paper we study the Boolean tensor factorizations. We
assume that the data is binary multi-way data, and we want to
factorize it to binary factors using Boolean arithmetic (i.e. defin-
ing that 1+1 = 1). Boolean tensor factorizations are, therefore,
natural generalization of the Boolean matrix factorizations. We
will study the theory of Boolean tensor factorizations and show
that at least some of the benefits Boolean matrix factorizations
have over normal matrix factorizations carry over to the tensor
data. We will also present algorithms for Boolean variations of
CP and Tucker decompositions, the two most-common types of
tensor factorizations. With experimentation done with synthetic
and real-world data, we show that Boolean tensor factorizations
are a viable alternative when the data is naturally binary.

Keywords-Tensor factorization; CP factorization; Tucker
factorization; Boolean tensor factorization; Boolean matrix
factorization

I. INTRODUCTION

With the matrix factorizations (or decompositions, the two
terms are used interchangeably here) becoming widespread
techniques in data mining, many researchers have started
to focus on their multi-way generalizations – tensor factor-
izations. Tensor factorizations have proven to be powerful.
Yet, they are also much more complex, both from the
computational complexity’s and interpretability’s point of
view. Independently, the Boolean matrix factorizations have
attained growing research interest in data mining. They are
shown to have such desirable properties as interpretability [1]
and sparsity [2], although with cost of increased computa-
tional complexity. It is therefore natural to ask could Boolean
tensor factorization, the generalization of Boolean matrix
factorization in multi-way data, sustain the interpretability
and sparsity of Boolean matrix factorizations and still be
practical to compute. This papers aims to provide answers
to that question.

When the data is binary, multiway data, Boolean tensor
decompositions are intuitively appealing approach. An ex-
ample of such data are subject–relation–object tuples, such
as (‘BarackObama’ ‘isA’ ‘PresidentOfTheUSA’). Expressing
this data as a matrix would lose some level of dependencies:

either that subject–object pairs can hold for different relations,
that subject–relation pair can hold for different subjects,
or that relation–object pair can hold for different subjects.
Only three-way tensor can capture all these dependencies
simultaneously. Using the Boolean decompositions, on the
other hand, should help on interpreting the results (as they
can be considered as sets of subjects, objects, and relations,
instead of arbitrary vectors) and provide sparser results,
among other things.

This paper will start by giving the definitions of Boolean
tensor rank and CP and Tucker decomposition, after which we
will we provide theoretical study of some aspects of Boolean
tensor rank and CP decompositions. These results provide
insights on the similarities and dissimilarities between, on
one hand, Boolean and normal tensor factorizations, and
on the other hand, Boolean tensor and Boolean matrix
factorizations. For example, we generalize the sparsity
result of Boolean matrix factorizations to Boolean tensor
factorizations, showing that sparse binary tensors always
have sparse Boolean factorizations.

We also propose two algorithms, one for Boolean CP de-
composition and one for Boolean Tucker decomposition. We
evaluate these algorithms with synthetic and real-world data,
comparing them to state-of-the-art real-valued decomposition
algorithms.

For the sake of clarity, most of this paper concentrates on
3-way tensors. The results are, however, straightforward to
generalize to N -way tensors.

II. BACKGROUND AND BASIC DEFINITIONS

We start by giving the basic notation used with tensors.
With that notation we can define the normal tensor rank
and normal CP and Tucker decompositions and summarize
some of the important properties of them. We then define
the Boolean tensor rank and CP and Tucker decomposition.
Proving any properties of them is postponed to the next
section. The section ends with a short review on how Boolean
tensor factorizations relate to other data mining techniques.

A. Notation

Throughout this paper vectors are indicated as bold-face
lower-case letters (v), matices as bold-face upper-case letters
(M ), and tensors as bold-face upper-case calligraphic letters
(T ). We present the notation for 3-way tensors, but it can



be extended to N -way tensors in a straight forward way.
Element (i, j, k) of a 3-way tensor X is denoted either as
xijk or as (X )ijk. A colon in a subscript denotes taking that
mode entirely; for example, if X is a matrix, xi: denotes
the ith row of X (for a shorthand, we use xj to denote the
jth column of X). For a 3-way tensor X , x:jk is the (j, k)
mode-1 (column) fiber, xi:k the (i, k) mode-2 (row) fiber,
and xij: the (i, j) mode-3 (tube) fiber. Furthermore, X ::k is
the kth frontal slice of X . We use Xk as a shorthand for
the kth frontal slice.

A tensor can be unfold into a matrix by arranging its fibers
as columns of a matrix. If mode-n fibers are used as the
columns, the process is called mode-n matricization. The
mode-n matricization of a tensor X is denoted as X(n).

For a tensor X , the number of non-zero elements in it
is denoted by |X |. This and other tensor notation presented
below is extended to matrices and vectors in a natural way.
The Frobenius norm of a 3-way tensor X , ‖X‖, is defined
as
√∑

i,j,k x
2
ijk. If X is binary, i.e. takes values only from

{0, 1}, |X | = ‖X‖2.
We use � to denote vector outer product in N modes.

That is, if a, b, and c are vectors of length n, m, and l,
respectively, X = a � b � c is a n-by-m-by-l tensor with
xijk = aibjck.

The tensor sum of two n-by-m-by-l tensors X and Y is
just the element-wise sum, (X +Y)ijk = xijk + yijk. The
Boolean tensor sum of binary tensors X and Y is defined
as (X ∨Y)ijk = xijk ∨ yijk.

If matrices X and Y are binary and X has r columns
and Y has r rows (i.e. r is their inner dimension), their
Boolean matrix product, X ◦ Y , is defined as (X ◦ Y )ij =∨r
k=1 xikykj . The Boolean matrix rank of a binary matrix A

is the least r such that there exists a pair of binary matrices
(X,Y ) of inner dimension r with A = X ◦ Y .

Let X be n1-by-m1 and Y be n2-by-m2 matrix (binary
or otherwise). Their Kronecker (matrix) product, X ⊗ Y , is
the n1n2-by-m1m2 matrix defined by

X ⊗ Y =


x11Y x12Y · · · x1m1Y
x21Y x22Y · · · x2m1Y

...
...

. . .
...

xn11Y xn12Y · · · xn1m1
Y

 .
The Khatri–Rao (matrix) product of X and Y is defined as
‘column-wise Kronecker’. That is, X and Y must have same
number of columns (m1 = m2 = m), and their Khatri–Rao
product X � Y is the n1n2-by-m matrix defined as

X � Y =


x11y1 · · · x1mym
x21y1 · · · x2mym

...
. . .

...
xn11y1 · · · xn1mym

 =


Y δ1(X)
Y δ2(X)

...
Y δn1

(X)

 ,
where δi(X) is a diagonal matrix with the ith row of X

in its diagonal. Notice that if X and Y are binary, so are
X ⊗ Y and X � Y .

B. Ranks and Factorizations
Tensor Rank and CP Decomposition: Just as we can

define the matrix rank as the least number of rank-1 matrices
needed to be summed together to obtain the original matrix,
we can define the tensor rank as the least number of rank-1
tensors whose sum equals the original tensor. A rank-1 tensor
is, still analogously to the matrix case, a tensor that is an
outer product of vectors (N -way tensor requires N vectors).
Thus we have

Definition 1 (Tensor rank). The rank of a 3-way tensor X ,
rank(X ), is the least integer r such that there exist r rank-1
tensors whose sum is X , i.e.

X =

r∑
i=1

ai � bi � ci . (1)

The definition of tensor rank gives rise to the first tensor
factorization, the CP factorization1 for rank-r approximation:

Definition 2 (The CP tensor decomposition). Given an
n-by-m-by-l tensor X and an integer r, find matrices
A (n-by-r), B (m-by-r), and C (l-by-r) such that they
minimize ∥∥∥∥∥X −

r∑
i=1

ai � bi � ci

∥∥∥∥∥ . (2)

Importantly, we can write the CP decomposition in the
terms of matrices using unfolding (see e.g. [5]):

X(1) = A(C �B)T

X(2) = B(C �A)T

X(3) = C(B �A)T .

(3)

Tensor rank has some properties that differ from the matrix
rank (for more detailed discussion, see e.g. [5]). For example,
a real-valued tensor can have different rank over the real
numbers and over the complex numbers – this can never
happen with matrices. More importantly to the data mining
applications, the maximum tensor rank of n-by-m-by-l tensor
X can be much more than min{n,m, l}, which would be
analogous to the matrix case, and there exists tensors with
rank greater than max{n,m, l} (see [5]). Indeed, the best
known upper bound is [5]

rank(X ) ≤ min{nm, nl,ml}. (4)

Tensors can also be degenerate meaning that they can
be approximated arbitrarily well by tensors of lower rank.
Consequently, the factors of the best rank-(k − 1) approx-
imation are not necessarily the factors of the best rank-k
approximation. This is again in contrast with matrices, where
the Eckart–Young theorem shows both cases impossible.

Finally, computing the tensor rank is NP-hard [6].
1The name is short for two names given to the same decomposition:

CANDECOMP [3] and PARAFAC [4].



The Tucker Decomposition: The CP decomposition is a
natural generalization of the matrix decompositions, but by no
means the only one. Another common tensor decomposition
is the Tucker decomposition [7] that generalizes the CP
decomposition by allowing each mode have a different rank
and using a core tensor to combine the factor matrices into
one tensor. The Tucker decomposition is defined as follows.

Definition 3 (The Tucker tensor decomposition). Given an
n-by-m-by-l tensor X and three integers r1, r2, and r3,
find r1-by-r2-by-r3 core tensor G and factor matrices A
(n-by-r1), B (m-by-r2), and C (l-by-r3) such that they
minimize∥∥∥∥∥∥X −

r1∑
α=1

r2∑
β=1

r3∑
γ=1

gαβγ aα � bβ � cγ

∥∥∥∥∥∥ . (5)

Notice that we obtain the CP decomposition by requiring
that r1 = r2 = r3 = r and that G has 1s at its hyper-diagonal
and 0s elsewhere. As with the CP decomposition, we can
express Tucker decomposition with matrices using mode-n
matricization [5]:

X(1) = AG(1)(C ⊗B)T

X(2) = BG(2)(C ⊗A)T

X(3) = CG(3)(B ⊗A)T .

(6)

The Boolean Tensor Rank and Decompositions: We can
now turn to the actual topic of this paper: the Boolean tensor
decompositions. The Boolean versions of tensor rank and
CP and Tucker decompositions are rather straight forward
to define given their normal counterparts. One only needs to
change the summation to 1 + 1 = 1. Notice that this does
not change the definition of a rank-1 tensor (or vector outer
product). Thence, 3-way Boolean rank-1 tensor is a tensor
that is an outer product of three binary vectors.

Definition 4 (Boolean tensor rank). The Boolean rank of
a 3-way binary tensor X , rankB(X ), is the least integer r
such that there exist r rank-1 binary tensors with

X =

r∨
i=1

ai � bi � ci . (7)

The Boolean CP decomposition follows analogously, but
notice the change of error measure from the Frobenius to
the sum of differences.

Definition 5 (The Boolean CP tensor decomposition). Given
an n-by-m-by-l binary tensor X and an integer r, find binary
matrices A (n-by-r), B (m-by-r), and C (l-by-r) such that
they minimize ∣∣∣∣∣X −

r∨
i=1

ai � bi � ci

∣∣∣∣∣ . (8)

The unfolded versions also look similar to (3), though the
matrix product have to be changed to the Boolean matrix

product (recall that the Khatri–Rao product is closed under
the Boolean algebra and thus does not need to be changed):

X(1) = A ◦ (C �B)T

X(2) = B ◦ (C �A)T

X(3) = C ◦ (B �A)T .

(9)

And finally, the Boolean Tucker decomposition is defined
as follows.

Definition 6 (The Boolean Tucker tensor decomposition).
Given an n-by-m-by-l binary tensor X and three integers
r1, r2, and r3, find binary r1-by-r2-by-r3 core tensor G and
binary factor matrices A (n-by-r1), B (m-by-r2), and C
(l-by-r3) such that they minimize∣∣∣∣∣∣X −

r1∨
α=1

r2∨
β=1

r3∨
γ=1

gαβγ aα � bβ � cγ

∣∣∣∣∣∣ . (10)

The unfolded versions are:

X(1) = A ◦G(1) ◦ (C ⊗B)T

X(2) = B ◦G(2) ◦ (C ⊗A)T

X(3) = C ◦G(3) ◦ (B ⊗A)T .

(11)

C. Relations to Other Data Mining Methods

The approach taken is this paper is to consider the
Boolean tensor factorizations as a variation of normal tensor
factorizations. While this approach has its obvious benefits,
it should be noted that it is by no means the only possible
approach. Tiling a database [8] refers to the task of covering
all 1s of a binary matrix using few2 frequent itemsets. The
Boolean matrix factorization can be seen as a generalization
of this task, each rank-1 binary matrix defining a ‘tile’. The
difference is that tiling does not allow any 0s to be presented
as 1s, whereas the Boolean matrix factorization allows this
type of errors.

Analogously, we can consider Boolean CP tensor decom-
position as an N -way lossy tiling, generalizing the N -way
tiling [9]. Again, finding the least number of tiles needed
to express the data set exactly is equivalent to finding
the Boolean tensor rank, and minimizing the number of
uncovered 1s in N -way tiling is related to minimizing the
error in Boolean CP tensor decomposition (with the latter
allowing the covering of 0s with 1s).

III. THEORY

The definitions of Boolean tensor decompositions and rank
are akin to their normal counterparts. But do they behave
similarly? Or do they behave similarly to their Boolean matrix
counterparts? In this section we will study some of the more
important properties of Boolean tensor rank and CP and

2When the goal is to cover all 1s and minimize the number of tiles, it is
equivalent to computing the Boolean rank [2]; when the number of tiles is
given and the goal is to minimize the number of uncovered 1s, the problem
is more akin to standard Boolean matrix factorization.



Tucker decompositions and try to answer those questions
from the theory’s point of view.

A. Boolean Tensor Rank

Recall from the previous section that the (normal) tensor
rank behaved very differently to the matrix rank. One major
difference is that the rank can be much bigger than the
dimensions of the tensor. Here, the Boolean tensor rank
behaves analogously. In fact, we can prove bounds to the
Boolean tensor rank analogous to those known for the normal
tensor rank. First is the lower-bound for maximum rank.

Proposition 1. There exists binary n-by-m-by-l tensors that
have Boolean rank higher than max{n,m, l}.

Proof: Let n = m = l. There are 2n
3

different binary
n-by-n-by-n tensors, but only 23n

2

triples of binary n-by-n
factor matrices. Therefore, there has to be a tensor that does
not have a rank-n factorization.

Proving the upper bound, however, is much more complex.
It will follow the proof of the similar claim for real-valued
tensors, and therefore we present only a sketch of it.

Theorem 2. For any n-by-m-by-l binary tensor X we have

rankB(X ) ≤ min{nm, nl,ml} . (12)

Proof sketch: Let ml = min{nm, nl,ml} (other
cases are analogous). We show how to make a rank-ml
exact Boolean CP factorization of X thereby proving the
claim. Specifically, we construct n-by-ml binary matrix A,
m-by-ml binary matrix B, and l-by-ml binary matrix C
such that the three unfolded equations of (9) hold.

The factor matrices are

A = X(1)

B = [Im Im · · · Im]︸ ︷︷ ︸
l times

C =


J1×m 0 · · · 0

0 J1×m · · · 0
...

...
. . .

...
0 0 · · · J1×m

 l rows,

where Im is the m-by-m identity matrix and J1×m is m-
dimensional row vector full of 1s. To show that the first
equation of (9) holds, we need to show that C �B = Iml.
This is easy to see by remembering that

C �B =


Bδ1(C)
Bδ2(C)

...
Bδl(C)

 .
That the other two equations of (9) also hold can be

checked similarly. While the proofs are conceptually rather
straight forward, they require very clumsy notation, and are
therefore omitted.

The real-valued tensor can be degenerate, but this is
not an issue with Boolean tensor rank: arbitrarily close
approximation is impossible with discrete errors. On the
other hand, similarly to normal CP decomposition, there is
no (known) reason why the factors of the least-error Boolean
rank-(r − 1) decomposition should be the factors of the
least-error rank-r decomposition.

One of the highlight features of Boolean matrix rank is that
it can be considerably smaller than the normal matrix rank
(in fact, a logarithm of the normal rank [10]). Establishing
such results (or proving that they do not hold) with the tensor
ranks is an important topic for future research.

B. Sparsity of Decompositions

In many applications of matrix decompositions, sparsity of
the factor matrices is of importance. Recently, Miettinen [2]
proved that Boolean matrix factorizations behave very well
in this respect: any Boolean rank-k binary matrix has rank-k
decomposition where the factor matrices have at most twice
the number of 1s compared to the 1s in the original matrix.
No such result is known for non-Boolean matrix or tensor
factorizations, but for Boolean CP decomposition we can
prove a generalized version of the result in [2].

Theorem 3. Every N -way binary tensor X with
rankB(X ) = r has a rank-r Boolean CP decomposition
with factor matrices A(1), A(2), . . . ,A(N) such that

N∑
i=1

∣∣∣A(i)
∣∣∣ ≤ N |X | . (13)

Proof: The proof, which follows that of [2], is by
induction on the tensor rank of X . In the base case,
rankB(X ) = 1. In this case X = a(1) � a(2) � · · ·� a(N),
and hence |X | =

∏N
i=1

∣∣a(i)
∣∣ ≥ N−1

∑N
i=1

∣∣a(i)
∣∣ (no∣∣a(i)

∣∣ = 0 or else X is empty).
Assume then that the claim holds for tensors of rank r− 1

and let rankB(X ) = r. Let

Y(j) = a
(1)
j � a

(2)
j � · · ·� a

(N)
j

for all j = 1, . . . , r and let Y(\r) =
∨r−1
j=1 Y

(j) such that
X = Y(\r)∨Y(r). As Y(\r) is of rank-(r−1), by induction
assumption we have that

N
∣∣∣Y(\r)

∣∣∣ ≥ N∑
i=1

r−1∑
j=1

∣∣∣a(i)
j

∣∣∣ . (14)

Now, consider a vector a(1)
r . Let k be such that a(1)kr = 1.

If for every i2, i3, . . . , iN such that y(r)ki1i2i3...iN = 1 it also
holds that y(\r)ki1i2i3...iN

= 1, we can set a(1)kr (and consequently
y
(r)
ki1i2i3...iN

) to 0 without changing Y(\r) ∨Y(r). The same
holds for a

(2)
r , . . . ,a

(N)
r . It follows that each 1 in any of

a
(i)
r must contribute at least one new 1 to X compared to



Y(\r) (though different vectors a
(i)
r can contribute to the

same 1). Therefore we have∣∣∣Y(\r)
∣∣∣+ max

i=1,...,N

{∣∣∣a(i)
r

∣∣∣} ≤ |X | . (15)

Combining the results above, we get

N∑
i=1

∣∣∣A(i)
∣∣∣ = N∑

i=1

r∑
j=1

∣∣∣a(i)
j

∣∣∣
≤ N

∣∣∣Y(\r)
∣∣∣+ ∣∣∣Y(r)

∣∣∣
= N

∣∣∣Y(\r)
∣∣∣+ N∏

i=1

∣∣∣a(i)
r

∣∣∣
≤ N

(∣∣∣Y(\r)
∣∣∣+ max

i=1,...,N

{∣∣∣a(i)
r

∣∣∣})
≤ N |X | ,

(16)

where the first inequality follows from (14) and the last
from (15).

This result is tight: consider an N -way tensor X with
|X | = 1. None of the factor matrices A(i) can be empty,
or else their outer product is empty. Therefore any exact
factorization of X requires at least N 1s in the factor matrices.
The result is stated for exact decompositions, but there is an
easy corollary to bound the density of the factor matrices in
terms of the original matrix and the induced error.

Corollary 4. Let X be a binary N -way tensor with
rankB(X ) = r and let (A(1),A(2), . . . ,A(N)) be a
rank-p approximate CP decomposition of X . Let ⊕
be the element-wise exclusive or and E = X ⊕(∨p

i=1 a
(1)
i � a

(2)
i � · · ·� a

(N)
i

)
the error tensor. Then

N∑
i=1

∣∣∣A(i)
∣∣∣ ≤ N(|X |+ |E|) . (17)

Proof: By definition
∨p
i=1 a

(1)
i � a

(2)
i � · · ·� a

(N)
i =

X ⊕ E , which then must be rank-p tensor, and therefore∑N
i=1

∣∣∣A(i)
∣∣∣ ≤ N |X ⊕ E| ≤ N(|X |+ |E|).

Notice that these are strictly existential results: they do
not tell us how to find such sparse decompositions, just that
they exist.

C. Computational Complexity

As mentioned in Section II-B, finding the tensor rank is
NP-hard. Similar results hold for Boolean tensor rank, as well
as computing the optimal Boolean CP and Tucker decompo-
sitions for given ranks. Unlike with normal decompositions,
however, here the results follow trivially from the fact that
the corresponding matrix decompositions are NP-hard.

Proposition 5. Given a binary tensor X , (1) finding the
least-error Boolean CP decomposition of the given rank r
is NP-hard, (2) deciding the rankB(X ) is NP-hard, and

(3) finding the least-error Boolean Tucker decomposition for
given parameters (r1, r2, . . . , rN ) is NP-hard.

Proof: For (1) and (2), we notice that finding the least-
error Boolean matrix factorization and deciding the Boolean
rank of a binary matrices are specializations of their tensor
counterparts. As these matrix problems are already NP-
hard, their tensor generalizations are too. For the Tucker
decomposition, we have the following result. Let X be 2-
way, i.e. matrix X , and let r1 = r2 = r. Now the Tucker
decomposition returns three binary matrices, G, A, and B.
If this is the least-error Boolean Tucker decomposition of
X , then (A ◦G,B) is the least-error rank-r Boolean matrix
factorization of X .

These reductions also show that the inapproximability
results for Boolean matrix decompositions [1] carry over to
the tensor cases at least to some extent.

IV. ALGORITHMS

The definitions of Boolean tensor decompositions are
of little use in data mining unless we have algorithms
for finding those decompositions. The results from the
previous section show that we cannot hope to find polynomial-
time optimal algorithms, and even algorithms with provable
approximation guarantees are unlikely. We therefore utilize
heuristic methods.

A. The BCP_ALS Algorithm

The alternating least-squares projection heuristic is the
workhorse of algorithms for normal CP decomposition [5].
We utilize similar technique with the Boolean CP decompo-
sition, although with few changes.

Our first ‘workhorse’ is the Asso algorithm for Boolean
matrix decompositions by Miettinen et al. [11] (notice,
though, that the Asso algorithm is not required by the
algorithm – any other method for solving the Boolean
matrix decomposition would do). It is used to initialize
the three factor matrices A, B, and C (again, we give
the algorithms for 3-way tensors, but they can be easily
generalized to N -way tensors). This is done instead of the
more common random initialization as the Boolean iterative
update (described below) typically converges very quickly
to local optimum, and is thus unable to escape bad initial
solutions. Naturally, as this initialization is deterministic, if it
yields bad initial solution that the iterative update is unable
to escape, the algorithm will return bad solution and cannot
use randomness to avoid it.

To use the Asso algorithm, we give the mode-n matriciza-
tions of X as an input to it. The three left-hand-side factor
matrices (from the three different matricizations) constitute
the initial solution. We then move to the iterative update
phase. For this we use the unfolded format (9), fixing two
factor matrices while updating the third. There is a problem,
however: given binary matrices X(1) and Y = (C �B)T ,
finding the binary matrix A such that

∣∣X(1) −A ◦ Y
∣∣ is



Algorithm 1 An algorithm for the Boolean CP decomposition
Input: A 3-way binary tensor X , rank r.
Output: Binary factor matrices A, B, and C.

1: function BCP_ALS(X , r)
2: A← Asso(X(1), r)
3: B ← Asso(X(2), r)
4: C ← Asso(X(3), r)
5: repeat
6: A← UpdateFactor(X(1),A, (C �B)T )
7: B ← UpdateFactor(X(2),B, (C �A)T )
8: C ← UpdateFactor(X(3),C, (B �A)T )
9: until converged

10: return A, B, and C
11: end function

minimized is known as the Basis Usage problem, and is
NP-hard to even approximate well [1]. We therefore have
to update the factors using a greedy heuristic. We apply the
following technique from [11]: consider each row of X(1)

separately, and let c be a function such that c(i) = 0 if
(a◦Y )i = 1, where a is the corresponding row of A before
updates. Now define function cover as

cover(x, z, c) =
∑
i

(
c(i)[xi = 1]− c(i)[xi = 0]

)
[zi = 1] .

(18)
We can now update the values of a such that cover(x,a ◦
Y , c) is maximized in polynomial time. Doing this for every
row of A we obtain the updated factor matrix (with B
and C fixed, we can update each row of A independently).
This procedure is called UpdateFactor. The complete
algorithm, called BCP_ALS, is presented as Algorithm 1.

With n-by-m-by-l input tensor, the BCP_ALS algorithm
converges to local optimum in at most nml steps, as each
step is guaranteed to reduce error by at least 1.

B. The BTucker_ALS Algorithm

Solving the Boolean Tucker decomposition is more in-
volved because of the core tensor G. Every element of
G can potentially effect every element of the approximate
representation, as the (i, j, k) element of the representation
is

r1∨
α=1

r2∨
β=1

r3∨
γ=1

gαβγaiαbjβckγ .

Therefore, a change in a single element of G can change
the product completely. This, however, is a very hypothetical
situation. First, if aiαbjβckγ = 0, the value of gαβγ is
irrelevant – the product will be zero in any case. Second, if
there is (α, β, γ) for which gαβγaiαbjβckγ = 1, the other
values of G do not have any effect – the element (i, j, k) will
be 1. These two observations help us to compute the gain we
can obtain by flipping an element of G. The whole procedure
is given in Algorithm 2, where [x] = {1, 2, . . . , x}.

The UpdateG algorithm is used to initialize G (after
factor matrices are initialized, and setting initial G to all-

Algorithm 2 An algorithm for updating the core tensor
Input: A 3-way n-by-m-by-l binary tensor X , (r1, r2, r3)

Boolean Tucker decomposition (G,A,B,C) of X .
Output: Updated binary core tensor G

1: function UpdateG(X ,G,A,B,C))
2: X̃ ←

∨r1
α=1

∨r2
β=1

∨r3
γ=1 gαβγ aα � bβ � cγ

3: for (α, β, γ) ∈ [r1]× [r2]× [r3] do
4: gain← 0
5: for all (i, j, k) such that aiαbjβckγ = 1 do
6: if gαβγ = 0 and x̃ijk = 0 then
7: gain← gain+ xijk
8: else if gαβγ = 1 and x̃ijk = 1 then
9: if not exists (α′, β′, γ′) such that
gα′β′γ′aiα′bjβ′ckγ′ = 1 then

10: gain← gain+ (1− xijk)
11: end if
12: end if
13: end for
14: if gain > 0 then
15: gαβγ ← 1− gαβγ
16: end if
17: end for
18: return G
19: end function

Algorithm 3 An algorithm for the Boolean Tucker decom-
position
Input: A 3-way binary tensor X , ranks (r1, r2, r3).
Output: Boolean Tucker decomposition (G,A,B,C)

1: function BTucker_ALS(X , r1, r2, r3)
2: A← Asso(X(1), r)
3: B ← Asso(X(2), r)
4: C ← Asso(X(3), r)
5: G ← UpdateG(X ,0,A,B,C)
6: repeat
7: A← UpdateFactor(X(1),A,G(1) ◦ (C ⊗B)T )
8: B ← UpdateFactor(X(2),B,G(1) ◦ (C ⊗A)T )
9: C ← UpdateFactor(X(3),C,G(1) ◦ (B ⊗A)T )

10: G ← UpdateG(X ,G,A,B,C)
11: until converged
12: return A, B, and C
13: end function

zero) and later to update it in the iterative update process. The
full BTucker_ALS algorithm is presented in Algorithm 3.

Also BTucker_ALS is guaranteed to converge in nml
steps for n-by-ml input tensor as each step will reduce the
error at least by 1.

V. EXPERIMENTAL EVALUATION

As the algorithms presented in the previous section
are based on heuristics, it is important to study their
behaviour with extensive experimentation. For this, we
use both synthetic and real-world data focus being in the
former, as synthetic data offers better control over the data
characteristics and thus allows more systematic study of the
algorithms’ properties.

We compare the proposed algorithms to three algorithms



for normal CP and Tucker decompositions. Two of them,
the CP_ALS and Tucker_ALS algorithms are standard
alternating least-squares-based algorithms (see [5]), while the
third, CP_OPT by Acar et al. [12], is based on optimization
approach.

Comparing real-valued and Boolean methods is not straight
forward. Finding the optimum Boolean CP decomposition
is not the same thing as finding the optimum normal CP
decomposition. Care must be taken to not make too far-
reaching assumptions from these results, as there are two
types of results: the results the algorithms report, and the
optimum results for the algorithms’ tasks. The former we
know, the latter we do not. Therefore, if one algorithm
performs badly compared to others with particular data, it
might not necessarily mean that the algorithm itself has
problems – it may well be that the algorithm returned the
optimum for the task it tried to optimize.

Nevertheless, comparing real-valued and Boolean algo-
rithms can provide some insights to the algorithms’ behaviour.
When synthetic data is made so that it is decomposable via
Boolean methods, we should assume the Boolean methods
to be comparable (or even better, as the case might be)
to the real-valued ones. To facilitate the comparisons, we
report two kinds of errors from the real-valued methods.
First is the squared Frobenius. This is the error measure the
algorithms aim to minimize, but it is somewhat unfair to the
Boolean methods as squaring the element-wise error shrinks
the cost of small errors, typically yielding dense real-valued
decompositions that make little error in each element. The
other error we report is the sum of absolute differences (or
L1 error). This error penalizes more equally for all kinds of
errors, but as the real-valued methods do not try to optimize
it, it is unfair to them. The subscripted F in algorithm’s name
denotes squared Frobenius while subscripted B denotes L1

error.
The algorithms were implemented in Matlab and C using

Matlab Tensor Toolbox [13]. The three algorithms for the
normal CP and Tucker decompositions were from the Tensor
Toolbox.

A. Synthetic Data

The purpose of the synthetic data experiments was to study
algorithms’ properties when used with data that has different
characteristics. The three data characteristics studied were
(1) the rank of the tensor (in case of Tucker, the size of
the core tensor); (2) the density of the factor matrices (and
core tensor); and (3) the noise level. For all experiments, we
created 10 random data sets with identical properties and
the reported results are averages over those data sets. In all
figures, the width of the error bars is twice the standard
deviation.

1) CP Decomposition: The synthetic CP data was made
by first making random binary factor matrices of predefined
density and size. These factor matrices were multiplied

together to obtain binary tensors, after which noise was
applied. All resulting tensors were of size 50-by-70-by-100.
The results for the CP decomposition experiments are in
Figure 1.

Tensor Rank: The rank of the tensor varied between 4
and 64 with factor matrix density being 0.5 and noise level
being 0.1 (of 1s in the data). The results are seen in Figure 1.
The first noticeable result is that with smaller values of r,
BCP_ALS is the best of all methods, being better than even
the real-valued methods with squared Frobenius error. With
r = 32, 64, the real-valued methods become slightly better.
The error of BCP_ALS mostly increases with the rank. This
is probably due to the increased complexity of the data,
making it harder for the iterative updates to find the optimal
results.

Factor Matrix Density: The factor matrix density varied
between 0.3 and 0.7 with rank being 16 and noise level 0.1.
Results are in Figure 1(b). Here, CP_ALSF seems to be the
best method, though with density 0.5 BCP_ALS is the best
(corresponding to Figure 1(a)). Why real-valued methods
peak at density 0.5 is unclear (recall that this is not the
density of the resulting data, but the factor matrix density).
BCP_ALS, however, seems to behave as expected: denser
data again has more complexity, making it harder for the
algorithm.

Noise Level: The noise level varied between 0.05 and
0.4 (meaning that between 0.05 |X | and 0.4 |X | of elements
of X were flipped). Rank was 16 and density 0.5. The results
are in Figure 1(c). With smaller values of noise BCP_ALS
is again the best method, but as the noise level increased, its
error increased faster than that of CP_ALSF or CP_OPTF .
Here the ability of making many small errors seems to benefit
the latter two algorithms.

2) Tucker Decomposition: The synthetic Tucker data was
made similarly to the synthetic CP data. The size of the
resulting tensors were again 50-by-70-by-100, and unless
otherwise mentioned, the core tensor was of size 8-by-8-by-8,
density was 0.2, and noise level was 0.1. The results are in
Figure 2.

In all experiments, BTucker_ALS is worse than
Tucker_ALSF , and often also worse than Tucker_ALSB .
This seems to suggest that either the created data has
lower-error real-valued Tucker decomposition or that the
complexity and the ‘everything affects everything’ nature of
the Tucker decomposition makes it very hard for the iterative
algorithm to find good solutions. Either way, notice that the
BTucker_ALS algorithm has a peak at the error exactly at
the default core tensor size (8-by-8-by-8) and default density
(0.2). It is possible that different default values had yield
better results for BTucker_ALS.

B. Real-World Data

For the real-world data we used entity–relation–entity
tuples from the TextRunner open information extrac-
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Figure 1. Results for synthetic CP decomposition data of different parameters: (a) Tensor rank. (b) Factor matrix density. (c) Noise level.
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Figure 2. Results for synthetic Tucker decomposition data of different parameters: (a) Core tensor size. (b) Factor matrix density. (c) Noise level.

tion algorithm3 [14]. The data itself is huge, so we
made three subsets of it, called ResolverS, ResolverM,
and ResolverL. ResolverS is 132-by-107-by-20 (enti-
ty-by-entity-by-relation), ResolverM is 151-by-191-by-70,
and ResolverL is 343-by-360-by-200. All three data sets are
extremely sparse.

1) The CP Decomposition: The reconstruction errors for
the CP decomposition with different ranks are in Figure 3.
For some reason, with ResolverS, BCP_ALS is unable to
find good decomposition. We assume that this is due to the
fact that the fibers of ResolverS are very sparse, typically
having just one or two 1s. This means that there is almost
no (Boolean) structure which BCP_ALS could find.

With the two larger data sets, however, the BCP_ALS
algorithm performs relatively well, being constantly better
than CP_ALSB and CP_OPTB , and in case of ResolverL,
better than CP_OPTF . While the real-valued methods re-
turned dense factor matrices (as was expected), BCP_ALS
returned very sparse ones (results omitted).

2) The Tucker Decomposition: The reconstruction errors
for the Tucker decomposition with different core tensor sizes

3http://www.cis.temple.edu/∼yates/papers/jair-resolver.html

are in Figure 4. These results somewhat mirror those with
CP decompositions: with ResolverS, BTucker_ALS is the
worst, but with the two other data sets, BTucker_ALS
resides between F and B variation of Tucker_ALS. Notice,
though, that BTucker_ALS is almost constantly very close
to Tucker_ALSF , the only exception being the bump in
Figure 4(b).

C. Discussion

The experiments, both with synthetic and real-world data,
show that the BCP_ALS algorithm performs very well, being
comparable to (or better than) real-valued methods with
squared Frobenius error. It achieves this while delivering
much sparser factors. The results were also interpretable in
the sense that the factor matrices defined sets of entities and
relations that naturally belong together, such as geographic
locations ({‘Germany’, ‘India’, ‘Paris’, ‘Soviet Union’} was
an example of one factor with ResolverL). The nature of
the data, being very noisy and only a random subset of the
full data made further analysis on the interpretability of the
result hard.

The BTucker_ALS algorithm’s performance was more
mixed. With synthetic data it did not perform as well as
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Figure 3. Results for CP decompositions at real-world data: (a) ResolverS. (b) ResolverM. (c) ResolverL.
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Figure 4. Results for Tucker decompositions at real-world data: (a) ResolverS. (b) ResolverM. (c) ResolverL.

expected, but with real-world data its performance was good.
Which one of these reflects the typical scenario is an open
question.

VI. RELATED WORK

Boolean matrix factorizations have gained interest in data
mining community during the past few years. The use of
Boolean matrix factorizations in data mining was proposed
in [11], although related concepts, such as tiles and formal
concepts, were studied much earlier. Before that, Boolean
tensor factorizations were mostly studied by combinatorics;
see [10] and references therein. For some applications and
variations of Boolean matrix factorizations, see [1].

Tensor factorizations are also well-studied, dating back
to late Twenties. The two popular decomposition methods,
Tucker and CP, were proposed in Sixties [7] and Seventies [3],
[4], respectively. The topic has nevertheless attained growing
interest in recent years, both in numerical linear algebra and
computer science communities. For a comprehensive study
of recent work, see [5].

One field of computer science that has adopted tensor
decompositions is computer vision and machine learning.
The interest to non-negative tensor factorizations stems from
these fields [15], [16].

Many algorithms have been proposed to finding closed
itemsets in N -way data [9], [17]–[22]. The output of these
algorithms can then be used to find an N -way tiling of
the binary tensor [9]. The concept of 3-way itemsets was
generalized into dense triclusters that, unlike itemsets, can
have 1s where the original data has 0s, by Ignatov et al. [23].
The use of triclusters in lossy 3-way tiling has not been
studied, however.

VII. CONCLUSIONS

We have presented the Boolean CP and Tucker tensor
decompositions. The theoretical analysis of these topics
shows that Boolean tensor decompositions have some useful
features (such as the sparsity), and that moving from matrices
to tensors have ‘leveled the playing field’ with real-valued
decompositions: problems that were hard with Boolean
matrices but easy with real-valued matrices (such as the
matrix rank) are now hard with both and the idiosyncrasies
tensors bring to the Boolean case (such as high maximum
rank) are also found in real-valued case. If fact, some of the
problems with the real-valued tensor rank (such as degenerate
tensors) do not manifest themselves with Boolean tensor
rank. Nevertheless, there are still many open problems in the
relation between Boolean and real tensor rank, most notably,
what are the extremal differences between these two ranks



on a binary tensor (i.e. what is the lower bound of Boolean
rank in terms of real rank and vice versa).

The algorithms we proposed were based on rather straight
forward alternating optimization heuristics. Despite (or
because of) this, they worked generally very well, being
often almost as good, or even better, as real-valued ones.
This happens very rarely with matrices: usually, SVD is the
best, even if Boolean methods would have the theoretical
possibilities to be better. Nevertheless, finding better algo-
rithms, both in terms of accuracy and in terms of memory
and time efficiency, is important. Of particular interest are
algorithms that can handle large but extremely sparse tensors,
perhaps in distributed manner for better scalability.

We have shown that Boolean tensor factorizations are
viable data mining method, and expect them provide many
interesting research questions in the upcoming years.
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