
From Black and White to Full Colour: Extending Redescription

Mining Outside the Boolean World

Esther Galbrun∗ Pauli Miettinen†

Abstract
Redescription mining is a powerful data analysis tool that
is used to find multiple descriptions of the same entities.
Consider geographical regions as an example. They can be
characterized by the fauna that inhabits them on one hand
and by their meteorological conditions on the other hand.
Finding such redescriptors, a task known as niche-finding, is
of much importance in biology.

But current redescription mining methods cannot han-
dle other than Boolean data. This restricts the range of
possible applications or makes discretization a prerequisite,
entailing a possibly harmful loss of information. In niche-
finding, while the fauna can be naturally represented using
a Boolean presence/absence data, the weather cannot.

In this paper, we extend redescription mining to real-
valued data using a surprisingly simple and efficient ap-
proach. We provide extensive experimental evaluation to
study the behaviour of the proposed algorithm. Further-
more, we show the statistical significance of our results using
recent innovations on randomization methods.

1 Introduction

Finding multiple ways to characterize the same entities
is a problem that appears in many areas of science. In
medical sciences, for example, one typically wants to
find a subset of patients sharing similar symptoms and
similar genes. In biology, the bioclimatic constraints
that must be met for a certain species to survive
constitute that species’ bioclimatic envelope (or niche1),
and finding such envelopes can help, e.g. to predict the
results of global warming [15].

But this process is only semi-automatic. For in-
stance, to find the bioclimatic envelopes, an expert first
selects a species and then uses some method to find the
envelope for this particular species. More complex com-
binations of species, or even any combinations at all, are
rarely studied, as manually iterating over all possible
combinations would be far too laborious.

It is here where redescription mining comes to help.

∗Helsinki Institute for Information Technology (HIIT), De-
partment of Computer Science, University of Helsinki, Finland
esther.galbrun@cs.helsinki.fi.
†Max-Planck Institute for Informatics, Saarbrücken, Germany

pmiettin@mpi-inf.mpg.de. Part of this work was done when the
author was with HIIT.

1The term niche is in this paper used in Grinnellian sense
[6], considering only environmental variables, not inter-species

competition or such.

In redescription mining the input contains entities with
two sets of characterizing variables. The task is to find
a pair of queries, one query for both sets of variables,
such that both queries describe (almost) the same set of
entities. In niche-finding, the entities would be spatial
locations, one set of variables would be the fauna and
the other set would contain the bioclimatic variables. A
very simple example of a redescription in this setting
could say that the area where polar bears live is the
area where May’s mean temperature is between −3 and
−7 degrees Celsius (indeed, this is one of the results our
algorithm produces, see Section 5).

Until now, the redescription mining algorithms
(see [4, 14, 16, 24]) have not been able to handle other
than Boolean data. Hence they have not been able to
help in the aforementioned cases, not at least without
some pre-processing.

The rest of this paper is organized as follows. The
next two sections, 2 and 3, present notation and defi-
nitions, and related work, respectively. We explain our
algorithm in Section 4 and report about experimental
evaluation in Section 5. Section 6 concludes the paper.

Contributions. In this paper we extend redescription
mining to real-valued data with an algorithm that
efficiently computes the optimal discretization on-the-
fly. We present experimental studies with synthetic and
real-world data to verify that our algorithm scales and
returns good results. We also assess the significance of
our results by testing them against different null models.
Our primary application for real-valued redescription
mining is niche-finding, to which we present interesting
and intuitive results. The proposed method is also
applicable to other domains, like medicine.

2 Notation and Definitions

This paper considers redescriptors over two sets of
variables, VL and VR. The set of entities is denoted
by E. We will represent the data using two matrices,
DL and DR. Both matrices have |E| rows and Di

has |Vi| columns. The value of DL(i, j) is the value
of vj ∈ VL for ei ∈ E. If I is a set of row indices (or a
characterizing vector thereof), D(I, j) is the column j

of D restricted to the rows in I. The data is a 5-tuple
D = (VL, VR, E,DL, DR). We identify variables in VL
and VR with the corresponding columns in DL and DR

when there is no risk of ambiguity.
We consider two types of variables: Boolean and

real-valued. (We omit categorical data for the sake of
clarity and brevity, but handling it is straight forward
using the approach presented here.) If v ∈ V is Boolean,
we interpret the column corresponding to it as a truth
value assignment for e ∈ E in a natural way. If v ∈ V is
real-valued, we consider an interval [a, b], and the truth
value assignment induced by the relation v ∈ [a, b]. We
will denote this truth value assignment using Iverson
notation: [a ≤ v ≤ b] is the Boolean (column) vector
that has 1 in the rows where v ∈ [a, b], and 0 elsewhere.

These truth assignments and their negations con-
stitute the set of literals for variables in V . Notice
that there are infinitely many intervals yielding the same
truth value assignment for some v ∈ V . To avoid am-
biguity, we consider only the shortest interval yielding
some truth value assignment. An exception to this is
the special case where the interval contains the lowest
or highest value in the data set for the given variable.
We then consider half-lines (−∞, b] and [a,+∞), respec-
tively, but for the sake of brevity they are also called
intervals. Notice that we can always reconstruct the
interval given the data and the truth value assignment
corresponding to the interval.

Literals can be combined with Boolean operators
∧ (and) and ∨ (or). A Boolean formula is made by
combining literals with Boolean operators. A query
over V is a Boolean formula with literals of V . A
redescription R of D = (VL, VR, E,DL, DR) is a pair
of queries (qL, qR) over VL and VR, respectively. For a
redescription R = (qL, qR), we use VL(R) to denote the
variables of qL; VR(R) is defined analogously.

The support of a query q on D, suppD(q), is a set
{e ∈ E : q is true for e}. The support of a redescription
R = (qL, qR), suppD(qL, qR), is the intersection of
supports of qL and qR, supp(qL, qR) = supp(qL) ∩
supp(qR). We will omit the subscripts when they are
clear from the context.

A redescription R = (qL, qR) is exact if supp(qL) =
supp(qR). If a redescription is not exact, it is approxi-
mate. The accuracy of a redescription R = (qL, qR) is
measured using the Jaccard coefficient

J(R) = J(qL, qR) =
|supp(qL, qR)|

|supp(qL) ∪ supp(qR)|
.

Formally, redescription mining is defined as follows:

Problem 1. (Redescription Mining) Given data
D = (VL, VR, E,DL, DR) and a set of constraints C,

find all redescriptions R1, R2, . . . of D that satisfy
constraints in C.

We leave open the exact constraints in C for a while
and will turn back to it in Subsection 4.7.

3 Related Work

3.1 Rule discovery. Given a set of observations and
a subset thereof, many methods try to find discrim-
inative patterns for the given subset. Depending on
the nature of the pattern and the type of variables ob-
served, these techniques are called Logical Analysis of
Data (LAD) [2], Emerging Pattern Mining (EPM), Con-
trast Set Mining (CSM) or Subgroup Discovery (SD),
to name a few (see [12] for a unifying survey of the last
three).

Attempts have been made to extend Subgroup Dis-
covery from single binary class label to multiple out-
put variables. In [21], this is done by first applying
k-medoids clustering to input and output variables sep-
arately and then finding relationships between the clus-
ters using χ2 test of independence. In the Exceptional
Model Mining framework [10, 22], the aim is more gen-
erally to identify a subset of the entities defined by a
single binary feature or a pattern over several features
such that a model fitted to that subset significantly dif-
fers from the same model fitted to the rest of the entities.

The approach presented in [5] somewhat similarly
uses frequent itemsets on the binary attributes to define
subsets of the entities and then tries to form a partition
of the original data with the subsets that can be best
modeled using the numerical attributes.

In Multi-label Classification [20] the goal is to learn
classifiers for conjunctions of labels. It shares some
similarties with redescription mining, but it can only
handle conjunctions and it is a predictive approach
while ours is a descriptive one.

Redescription mining differs from these techniques
in that it aims at simultaneously finding multiple de-
scriptions of a subset of entities which is not previously
specified, selecting the few relevant among a potentially
large set of variables. This problem was introduced
in [16], and has since attained continuous research in-
terest (e.g. [14, 24, 4, 9]). The algorithms proposed
have been based on various ideas, including decision
trees [16], co-clusters [14], and frequent itemsets [4].

3.2 Data discretization. Generalizing algorithms
based on Boolean attributes to real-valued data has
been a recurrent problem in data mining. Most solu-
tions are based on some sort of pre-processing: typi-
cally categorical data is represented using one variable
per category, and quantative data is turned into cate-

gorical data using some type of bucketing.
When labels are available on the original data, as

it is the case for Subgroup Discovery with a single
output feature, a supervised discretisation method can
be devised for the problem at hand. In [7], the
discretization happens within the algorithm and relies
on a property of the function measuring subgroup
quality to merge basic intervals in a bottom-up fashion.
Yet, the cut points for the basic intervals are determined
as a pre-processing step in a way that is not necessarily
optimal with respect to their later use.

In most settings, though, no labelling of the data
is available and one has to resort to unsupervised dis-
cretization. This approach raises several questions, from
the choice of the number of buckets to the size of the re-
sulting data. A more elegant approach was provided by
Srikant and Agrawal [19], who presented a machinery
that solves most of the problems automatically. Their
method is still based on a priori bucketing. Moreover,
it is very specific to association rule mining making it
hard (or impossible) to apply to redescription mining.

Using redescription mining algorithms with non-
Boolean data is not a new idea. Already in [16], the
CARTwheels algorithm was used to mine bioinfor-
matics data that was non-Boolean. As the algorithm
requires Boolean input, the data had to be bucketed
as a pre-processing step. But pre-processing typically
requires considerable domain knowledge and might still
be impossible or yield exponential growth in the number
of variables. This is in contrast to our algorithm, where
the optimal discretization is determined at each itera-
tion within the algorithm, requiring no pre-processing.
Nothing, of course, prevents users to pre-process their
data, should that be needed.

3.3 Niche finding. The problem of finding species’
bioclimatic envelope is a rather new one (see e.g. [17]
and references therein), but the idea of ecological niches
dates back to the early 20th century [6]. There is also
some level of ambiguity in what exactly is meant by the
term niche [17]. In this paper we consider a bioclimatic
envelope of a (group of) species to be a set of limits in
climate variables (such as monthly mean temperature)
that defines the region occupied by the species2.

Despite the vague definition, the past ten years have
seen a number of methods to model the bioclimatic
envelopes. The methods are based, for example, on
regression, neural networks, and genetic algorithms
(see [18]). But to the best of the authors’ knowledge,
none of these methods allows automatically finding both

2i.e. we consider realized niches using correlative methods
(see [15]).

the set of species and their envelope.

4 The Algorithm

In this section, we present our algorithm. We start with
some motivation of and ideas behind our design choices.
Then, we give a general outline of our algorithm,
before moving to some of its building blocks. First we
explain how to compute the accuracy of an extended
Boolean query efficiently. While important in itself,
this technique also forms the basis for bucketing non-
Boolean variables on the fly. Next, we give a more
detailed explanation of the algorithm, and end this
section by discussing the constraints that can be applied
in order to retain the most interesting redescriptions.

4.1 Motivation and background. The redescrip-
tion mining problem is defined for general Boolean
queries, yet none of the proposed algorithms explores
the full search space (e.g. [16] uses decision trees of
fixed depth, [14] considers monotone CNF and DNF for-
mulae, and [24] only (possibly negated) conjunctions).
Such restrictions are easy to understand, given the huge
search space formed by all Boolean formulae (22

n

dis-
tinct formulae can be defined over n variables). With
non-Boolean data the search space is even more over-
whelming. It is therefore evident that when devising an
algorithm usable with real-world data, the space of all
Boolean functions cannot be considered in its entireness.

Type of Boolean queries mined. How to re-
strict the search space? This question can be considered
at least from three different perspectives: the expres-
sive power of the resulting queries, the ease of finding
them, and their interpretability. For example, mono-
tone conjunctive queries (i.e. frequent item sets) are easy
to interpret and relatively easy to find, given the mono-
tonicity of the search space, but they lack expressive
power. On the other hand, general Boolean queries have
a high expressivity, but are hard to find. Furthermore,
deeply nested structures and variables appearing multi-
ple times can lead to difficulties in interpreting them.

Our aim is to restrict the search to queries that pro-
vide a good compromise between the three aforemen-
tioned properties. For this purpose, we follow the ap-
proach taken in [4]. First, we evaluate the queries from
left to right irrelevant of the operator precedence. In
other words, we only consider queries that can be parsed
in linear order, without trees. For example, (a∨ b)∧¬c
is such a query, but (a ∧ b) ∨ (c ∧ d) is not. Second,
we allow every variable to appear only once. Queries of
this type are strict generalizations of purely conjunctive
or disjunctive queries, save the tautological cases a∧¬a
and a ∨ ¬a. We consider such queries to be relatively
easy to interpret while still having a satisfying expres-

sive power. While becoming smaller, the search space
still remains exponential. Therefore, we also employ a
heuristic pruning, as will be explained later.

On-the-fly bucketing versus pre-processing.
Binning the variables into buckets is a standard pre-
processing technique to make non-Boolean data Boolean
(see Section 3.2). But it has its drawbacks. For
example, the resulting data has a special structure, with
all variables corresponding to different buckets of a given
non-Boolean variable being mutually disjoint. The
algorithms are typically not adjusted to this property.

Moreover, the bucketing must be made in a pre-
processing step, and cannot be modified by the algo-
rithm later on. If the quality of the bucketing was poor,
so will be the results. But the user typically does not
know whether a certain bucketing yields good results
before running the algorithm, so repeated trials and er-
rors are needed to achieve satisfactory results.

Our approach of doing the bucketing on-the-fly
avoids these problems. The algorithm will select the
optimal bucket for each case when necessary. This
removes the need of pre-processing and repeated trials.
Furthermore, our algorithm can use different buckets
for the same variable in different redescriptions, should
that yield better results.

4.2 Outline of the algorithm. We use a strategy
similar to beam-search to explore the solution space.
The basic idea is to construct queries bottom-up, start-
ing from singleton redescriptions (i.e. both queries con-
tain only one literal) and progressively extending them
by appending operators and literals. For example, we
could start with a pair (a,¬b), and try to extend it to
(a∧ c,¬b), (a∨ c,¬b), (a∧¬c,¬b), etc. After evaluating
all possible one-step extensions, we select the best can-
didates and extend them in turn. This process requires
a book-keeping procedure to avoid repeatedly generat-
ing the same queries, as we will explain below. When
no new redescription can be generated, we move to the
next initial pair. The outline of the algorithm, called
ReReMi, is given in Figure 1.

Our algorithm shares similaries with the Greedy
algorithm presented by Gallo et al. [4]. But unlike Gallo
et al., and following the idea of beam-search, we allow
several extensions to be generated from a given rede-
scription in each step. In this way we can explore the
search space more extensively. Notice also our algo-
rithm’s resemblance to bottom-up frequent itemset min-
ing algorithms. Indeed, finding redescriptions can be
seen as a generalization of association rule mining [24],
although without the monotonicity property.

Input: Data D = (VL, VR, E,DL, DR), nonnegative
integers kp and ki, constraints C.
Output: A set of redescriptions, R.

1: R← ∅
2: I ← {kp best initial singleton redescriptions }
3: for S ∈ I do
4: C ← {S}
5: if FL(S) 6= ∅ or FR(S) 6= ∅ then
6: E ← {S}
7: while E 6= ∅ do
8: for each R ∈ E do
9: for side s ∈ {L,R} and operator ◦ ∈ {∨,∧}

do
10: if R can be extended on side s with

operator ◦ and literal l ∈ Fs(R) then
11: C ← C ∪ {best such extension of R

admitting constraints C}
12: C ← {ki best redescriptions from C}
13: E ← {R ∈ C : FL(R) 6= ∅ or FR(R) 6= ∅}
14: R← R∪ C
15: Filter R with constraints C
16: return R

Figure 1: ReReMi: Mine data sets for redescriptions

4.3 Efficient computation of the accuracy for
Boolean variables. Given two queries, qA and qB , to
decide which of the possible extensions of qA yields the
best redescription, we need to compute the accuracy
for four different types of extensions for each Boolean
variable v: J(qA ∧ v, qB), J(qA ∧ ¬v, qB), J(qA ∨ v, qB)
and J(qA ∨ ¬v, qB). Should we do this in a straight
forward way, we would have to compute three supports
over the data for each accuracy. But this is not
necessary: To compute J(qA ∧ v, qB), we need consider
only the rows in supp(qA) – others will never be in
supp(qA ∧ v). On the other hand, rows in supp(qA) will
be in supp(qA∨v) in any case and can be omitted when
computing J(qA∨v, qB). Let us formalize this intuition.

Let E1,0 be the set of entities for which only the
first query holds (i.e. E1,0 = supp(qA) − supp(qB)),
E0,1 those for which only the second query holds, E1,1

those for which both queries hold, and E0,0 those
for which neither of the queries hold. Finally, these
sets restricted to supp(v) are denoted as Ex,y(v) (e.g.
E1,0(v) = E1,0 ∩ supp(v)). The same notation is also
used with real-valued variables and Iverson notation, as
in E1,0([λ ≤ v ≤ ρ]).

It is well known that the Jaccard coeffi-
cient J(qA, qB) can be expressed as J(qA, qB) =
|E1,1| /(|E1,0|+ |E0,1|+ |E1,1|). Similarly, we can write
J(qA ∧ v, qB) = |E1,1(v)| /(|E1,0(v)| + |E0,1| + |E1,1|).
Analogous formulae can be derived for all different ex-
tensions (see Figure 2).

J(qA ∧ v, qB) =
|E1,1(v)|

|E1,0(v)|+ |E0,1|+ |E1,1|

J(qA ∧ ¬v, qB) =
|E1,1| − |E1,1(v)|

|E1,0| − |E1,0(v)|+ |E0,1|+ |E1,1|

J(qA ∨ v, qB) =
|E1,1|+ |E0,1(v)|

|E1,0|+ |E0,1|+ |E1,1|+ |E0,0(v)|

J(qA ∨ ¬v, qB) =
|E1,1|+ |E0,1| − |E0,1(v)|

|E1,0|+ |E0,1|+ |E1,1|+ |E0,0| − |E0,0(v)|

Figure 2: Formulae for computing the Jaccard coeffi-
cient for different extensions.

Notice that E1,0, E0,1, and E1,1 can be computed
once for a given redescription. Then, for each candidate
variable, it is enough to perform three intersection
operations to obtain E1,0(v), E0,1(v), and E1,1(v).
Furthermore, E0,0 and E0,0(v) can be deduced from
supp(v) and E, and we do not have to consider the
rows in which neither qA nor qB hold. This observation
can significantly speed up the algorithm.

4.4 Extension to real-valued variables. With the
real-valued data, our approach is to do bucketing on-
the-fly, finding the optimal bucket to add in every step.
Assume that our algorithm tries to extend, say, query
qL of redescription (qL, qR) with a real-valued variable
v. The algorithm considers the extended query qL∧[λ ≤
v ≤ ρ] for different thresholds λ and ρ and selects those
that maximize the accuracy of the extension. Naturally,
the optimal λ and ρ are different for different extensions.
The two thresholds are set simultaneously since setting
one bound first and possibly the other later would
prevent the greedy search from finding some of the most
specific intervals.

The question is: how can we find λ and ρ efficiently?
We can try all possibilities, but if the data contains
n entities, this can require n2 time, quickly becoming
infeasible since we have to compute the accuracies for
each candidate extension. To tackle this question, we
adapt our approach from the previous section, using a
result similar to that of Fayyad and Irani [3].

Detailed explanation is provided only for non-
negated conjunctions; the other cases are analogous.
Given a redescription (qA, qB) and a variable v, our aim
is to find bounds λ and ρ that maximize

(4.1) j(λ, ρ) =
|E1,1([λ ≤ v ≤ ρ])|

|E1,0([λ ≤ v ≤ ρ])|+ |E0,1|+ |E1,1|
.

In order to do this efficiently, we will classify the val-
ues of λ and ρ that can maximize j(λ, ρ). Clearly, only
the values of v occuring in entities that belong either
to E1,0 or to E1,1 need to be considered. Furthermore,
acceptable bounds for the interval are values that sepa-

•
•
••

◦
◦
◦

• ◦ •
•
•

• •• ◦◦ • ◦ ◦ •
•
•

◦◦ •

v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 1
0

v 1
1

Figure 3: Example of repartition of the entities for one
variable. Each bin represents a value taken by the
variable. Black circles stand for entities belonging to
E1,1, white circles for entities from E1,0.

rate entities in E1,0 from entities in E1,1. Let (v1, v2 . . .)
be all the values that appear in E1,0 or in E1,1, some of
them appearing in both, sorted in increasing order (see
Figure 3 for an example). A lower cut point is a value
vi such that vi ∈ D(E1,1, v) and vi−1 ∈ D(E1,0, v). An
upper cut point is a value vj such that vj ∈ D(E1,1, v)
and vj+1 ∈ D(E1,0, v). In the example, v2, v3, v7, v10
and v11 are lower cut points while v1, v2, v5 and v7 are
upper cut points. We now have

Proposition 4.1. The optimal value for λ is one of
the lower cut points or −∞; the optimal value for ρ is
one of the upper cut points or +∞.

Proof. The proof will be for the lower bound λ.
The other part is analogous. First, suppose vi 6∈
D(E1,1, v). Then vi must occur in E1,0 and we
have |E1,0([vi ≤ v ≤ ρ])| > |E1,0([vi+1 ≤ v ≤ ρ])| while
|E1,1([vi ≤ v ≤ ρ])| = |E1,1([vi+1 ≤ v ≤ ρ])|. Hence,
j(vi, ρ) < j(vi+1, ρ). So vi is not an optimal value for
λ. Second, if vi−1 6∈ D(E1,0, v), following a similar rea-
soning, we notice that j(vi−1, ρ) > j(vi, ρ) and vi is not
an optimal value for λ. Finally, in case v1 ∈ D(E1,1, v),
setting λ = −∞ can be optimal.

Consider the example in Figure 3. There is one
entity in E1,1 with value v4, but none in E1,0 with value
v3. Therefore v4 cannot be an optimal choice for λ since
choosing v3 instead would always increase the accuracy.

To search for an optimal bucket for variable v, we
only need to consider the points defined in Proposi-
tion 4.1. Denoting by nλ the number of lower cut points
and by nρ the number of upper cut points, the size of
the search space is (nλ+ 1)(nρ+ 1). In many cases, this
is considerably smaller than the näıve n2.

4.5 Interval approximation. In cases where the
search space of possible intervals is still too large, we
use a faster search to find an interval whose accurracy
is a good lower bound to the optimal one.

Let (t0, t1, . . . , tnλ+nρ+1) be the ordered list of pos-
sible optimal values for λ and for ρ (as per Propo-
sition 4.1), with the special cases t0 = −∞ and
tnλ+nρ+1 = +∞. Let l, i, and u be any indices such

that S1 = [tl, ti], S2 = [ti, ti+1], and S3 = [ti+1, tu] are
valid intervals. Note that we can have ti = ti+1 = w,
when the value w is both a lower and an upper cut point.

On one hand, if the accuracy obtained by merging
intervals S1 and S2 is lower than that of S2 alone, then
merging S1, S2, and S3 yields lower accuracy than S2

alone or merging S2 and S3, for any interval S3. That
is, if j(tl, ti+1) < j(ti, ti+1), then

j(tl, tu) < max(j(ti, ti+1), j(ti, tu)).

We use this property to find the best interval by
upward aggregation. Starting with the first interval,
we construct at each iteration an interval of the form
Ii = [λi, ti]. We go through the possible optimal
values in ascending order, while keeping track of the
best accuracy encountered: λi+1 = ti if j(λi, ti+1) <
j(ti, ti+1), and λi+1 = λi otherwise

On the other hand, if the accuracy obtained by
merging intervals S1 and S2 is greater than that of S2

alone, there might still be an interval S3 such that merg-
ing S2 and S3 yields a higher accuracy than S1, S2 and
S3 together. That is, even if j(ti, ti+1) < j(tl, ti+1),
it does not necessarily follow that j(ti, tu) < j(tl, tu).
Therefore, we also compute the best interval using
downward aggregation, starting with the last interval
and iterating over the possible optimal values in reverse
order. Then we combine the two best intervals to elim-
inate possible undesirable values on either ends. Let
Iu and Id denote the best intervals found using upward
and downward aggregations, respectively. The final in-
terval returned is either Iu, Id, or Iu ∩ Id, depending
on which maximizes j(). Using this method, we can
compute an interval that approximates the optimal ac-
curacy in O(nλ + nρ). This is especially useful in cases
where the rows in E1,0 and E1,1 are not clearly sep-
arated, saving heavy computations when encountering
variables that are intuitively poor extensions.

4.6 Putting it all together: The ReReMi al-
gorithm. As we mentioned previously, the algorithm
starts by evaluating all possible pairs of singleton rede-
scriptions (i.e. literals) and keeps only the kp best pairs
(line 2). Alternatively, it is possible to extend all pairs
with accuracy higher than some threshold or exhaust
all the pairs in order to discover redescriptions with low
first level accuracy. But after some number of initial
pairs, a drop in the accuracy of the generated redescrip-
tions can typically be observed. Limiting kp is therefore
reasonable.

Generating the initial pairs from real-valued data
requires some extra work. There are two options.
First, if one of the matrices (say DL) is Boolean while
the other is real-valued, we create the initial pairs by

considering redescriptions R = (vL, ∅) for each vL ∈ VL,
and extending their right-hand side using the standard
on-the-fly bucketing approach. Second, if both sides are
real-valued, an exhaustive search of all possible intervals
needs to be performed. This might be computationally
very expensive. Still, for sparse data or data with
only a limited number of possible values, using the
approximate search when necessary, this can be done
in reasonable time (cf. Subsection 5.6).

Each of the initial pairs is extended in turn (lines 3–
14), selecting at each step the ki most promising candi-
dates (line 12). A value of 4 for ki, for example, enables
to keep the first step candidates for both operators and
both sides. Two sets of variables, FL(R) ⊂ VL and
FR(R) ⊂ VR, are associated to each redescription R.
They contain the variables that can be used to expand
that redescription, which we call the free variables of
R. The free variables are determined so as to avoid
generating several times the same redescription.

For this purpose, the algorithm maintains a list
of the redescriptions generated so far. The variables
leading from R to some already generated one-step
extension are not free for R; this includes the variables
that appear in R. In addition, when the query on either
side of the redescription has reached the maximum
number of variables, all remaining free variables for that
side are removed. Among the selected candidates, those
that have some free variables are put into the set E of
redescriptions to be extended during the next iteration
(lines 13). The loop ends when E is empty, that is, when
there is no extendible redescription left.

4.7 Constraints on the redescriptions. In this
section, we discuss the different constraints one can ap-
ply to redescriptions. The accuracy is a simple con-
straint: leave out all redescriptions with accuracy lower
than some threshold. But in addition to being accurate,
we would like the redescriptions to be statistically sig-
nificant. That is, the support of a redescription (qL, qR)
should carry some new information, given the support of
the queries. To measure this, we test against the null-
model representing the case in which the two queries
would be independent. We compute a p-value that rep-
resents the probability that two random queries with
marginal probabilities (i.e. the fraction of entities sup-
porting them) equal to those of qL and qR have an in-
tersection equal to or larger than |supp(qL, qR)|. This
probability uses the binomial distribution and is equal
to

pvalM(qL, qR) =

|E|∑
s=|supp(qL,qR)|

(
|E|
s

)
(pR)s(1−pR)|E|−s,

where pR = |supp(qL)| |supp(qR)| / |E|2 . The higher the
p-value, the more likely it is to observe such a support
for independent queries, the less significant the query.

Similarly, when appending a literal l to a redescrip-
tion, we would like it to be as informative as possible.
On one hand, if qA and l have very similar supports,
qA ∨ l will not carry much more information than the
original qA, so we want qA and l to be as uncorrelated as
possible and intersect less than would occur randomly.
On the other hand, when extending qA to qA ∧ l we ex-
pect qA and l to be correlated and intersect more than
would occur randomly. Hence we define pvalE(qs,∧l) =
pvalM(qs, l) and pvalE(qs,∨l) = 1− pvalM(qs, l).

Also important are the size of the support of the
redescription and the number of entities by which
each variable contributes to it, since redescriptions
characterizing too few entities or almost all of them are
of no interest.

These constraints on p-value and support can be
applied more or less strictly during the beam search,
using thresholds to penalize or simply disqualify can-
didates redescriptions that do not comply with them.
The redescription p-value and support size can also be
used to filter out uninteresting results a posteriori. Of
course, the stricter the constraints applied within the
candidate selection, the faster the search, but the more
likely it becomes to miss candidates that would expand
to acceptable redescriptions.

The type of query can also be selected, for example
to disallow negations or use only disjunctions. Most of
the constraints need not be tuned for good results, but
they can be used to incorporate domain knowledge or to
guide the algorithm to search for special redescriptors.

5 Experimental Evaluation

We now turn to the experimental evaluation of our al-
gorithm. We will start by explaining a method for as-
sessing the significance of the results based on random-
izations. Then we will report the actual experiments.
The first two sets of experiments (one with synthetic
and one with real-world data) are designed to evaluate
the capabilities of our algorithm in covering the search
space and returning the best possible redescriptions.

Next, we will compare our algorithm against the
Greedy algorithm by Gallo et al. [4], to study the
effects of our more exhaustive coverage of the search
space on the results. Most of these experiments are con-
ducted with fully Boolean data, as performing well with
Boolean data is a requisite for performing well with non-
Boolean data. We then compare our algorithm against
CARTwheels, beginning with a small comparison on
fully Boolean data, after which we will compare the
bucketing done as pre-processing to our method.

We will conclude the experiments with some real-
world examples of niche finding results. The algorithm
and the synthetic data generator are available online3.

5.1 Assessing the significance with randomiza-
tion methods. When mining the redescriptions, we
compute various p-values in order to prune uninterest-
ing rules. But these p-values are based on assumptions
about the distribution of 0s and 1s in the (bucketed)
data. Given the generality of our algorithm, we cannot
assume the distributions to model exactly the underly-
ing distribution of values. Hence, we use also property-
preserving randomization methods. Such methods sam-
ple random matrices that share some property with the
original matrix. The algorithm is then re-run using a
random matrix as an input, and this process is repeated
multiple times. If the results with random matrices con-
tain multiple redescriptions that have same or higher ac-
curacy than some redescription found from the original
data, that redescription is deemed insignificant; other-
wise it is significant (w.r.t. the property preserved by
the randomization method).

For these experiments, we used two randomization
methods. The first method is to permute the matrix –
this preserves the values of the matrix. In addition,
we used a variation to preserve symmetric matrices:
only the upper-right triangle was permuted, and the
lower-left triangle was copied from there. The property
of a matrix having the same values is not a very
strong one. Hence, we also used a method to preserve
the distribution of values in columns and rows of the
matrix [13]. This method is called swap-randomization.
While swap-randomization is in many ways stronger
than permutation, the latter is used for two reasons.
First, its use is suggested in [13]. Second, unlike swap-
randomization, it can preserve symmetrical matrices.

5.2 Finding planted redescriptions. To study the
behaviour of our algorithm we first apply it to synthetic
data. The idea is to generate data with planted
redescriptions and check whether our algorithm is able
to recover the redescriptions. Generating matrices such
that, for example, no subset of the query forms an exact
redescription is not trivial.

To generate a pair of synthetic Boolean 500×10 ma-
trices, we plant on both matrices one Boolean formula,
either conjunction or disjunction over 3 variables with
50 supporting rows, such that the resulting redescription
is exact. Then we add random noise of density between
0.01 and 0.1. The noise can either be conservative or
destructive, leaving the redescription exact or not. A

3http://www.cs.helsinki.fi/u/galbrun/redescriptors/

synthetic real-valued data matrix is then obtained re-
placing ones and zeros by values uniformly sampled from
the intervals [0.75, 1] and [0, 0.25], respectively.

Applied to some two hundred synthetic Boolean
matrix pairs with conservative noise the algorithm man-
aged to find all planted queries. In the case of destruc-
tive noise and fully Boolean data, the algorithm man-
aged to find the planted queries in only about 40% of the
data sets, but always found queries with higher accuracy
than that of the planted redescription. The algorithm
cannot be considered faulty is these cases. It behaved
as assumed, finding the redescriptions with the highest
accuracy.

Applied to synthetic data sets where one matrix is
Boolean and the other real-valued, both with conserva-
tive noise, the algorithm managed to find the planted
redescriptions or equivalent in 76 cases out of 80. The
planted redescriptions that were not found had contri-
butions below the acceptance threshold. Thus, the al-
gorithm again worked as was assumed.

5.3 Comparison to association rule mining. The
first experiment with real-world data mirrors the experi-
ments with synthetic data: the task is to study how well
our algorithm finds the redescriptions from the data.
But as we cannot know all redescriptions present in the
real-world data, we narrow our scope to monotone con-
junctive redescriptions from Boolean data. These re-
descriptions are simply bi-directional association rules,
and hence can be found by mining all frequent itemsets
from both data matrices and using the itemset pairs as
redescriptions. This gives us the ground truth, against
which we can compare our algorithm.

The data used for this experiment is called DBLPB.
Obtained from the DBLP data base4, its entities are au-
thors, with one matrix defining the conferences in which
each of them has published, and the other defining other
authors with whom each of them has published. This
version contains 19 hand-picked conferences, 2345 au-
thors, and is Boolean, i.e. it does not contain informa-
tion on the number of times an author has published
in some conference or with some co-author. The same
data was used by Gallo et al. [4], where more details are
provided about how it was generated.

We used the Eclat frequent itemset miner [23].
The redescriptions were generated as follows: first, all
closed frequent itemsets with support greater than 5
were mined for both data sets. The itemsets were
then combined into redescriptions. Only those with
accuracy greater than 0.1, support above 10 but below
100 (inclusive), and p-value higher than 0.01 were

4http://www.informatik.uni-trier.de/˜ley/db

retained. The same parameters were set to ReReMi,
and it was only allowed to find monotone conjunctive
redescriptions.

The best four redescriptions found using Eclat had
a Jaccard similarity between 0.366 and 0.333. ReReMi
found exactly the same redescriptions. After these
four redescriptions, the Eclat approach found several
redundant redescriptions: they were minor variations of
the first four redescriptions. ReReMi did not report
these redundant redescriptions, which we consider a
positive feature – the user should not be overwhelmed
by the quantity of results.

The next non-redundant redescription found by
Eclat approach was also found by ReReMi. The
same trend continued throughout the results: Eclat
approach found several thousands of redescriptions, but
most of them were redundant.

Applying Eclat on swapped and permuted ran-
domized copies of the original data (500 pairs of matri-
ces for each method) following the same approach did
not return any redescription. Therefore all original re-
descriptions are considered significant w.r.t. these null
hypotheses.

While these experiments cannot guarantee that
ReReMi will always find the best redescriptions, they
suggest that it is able to find most of the important
ones.

5.4 Comparison to the work of Gallo et al. As
the same data set, DBLPB, is used also by Gallo et al. [4],
we compared the results obtained with ReReMi to
theirs. As Gallo et al. did not allow negation, neither
did we. Some results are presented in Table 1. In all
tables, J stands for the Jaccard, supp is the support
of the redescription, and the p-value is computed as
in Section 4.7. The results obtained by ReReMi had
higher Jaccard similarity than those obtained by Gallo
et al.: the highest similarity they report is 0.35, while
ReReMi returns a redescription with similarity 0.5, and
9 redescriptions have similarity above 0.35.

Otherwise the results are similar; both algorithms
identify sets of conferences from different fields of com-
puter science together with well-known authors from
those fields. Both algorithms are also able to identify
interdisciplinary researchers, say, theoretical machine
learners who publish in both machine learning and the-
oretical conferences (row 1 of Table 1).

We also tried another version of the DBLP data set,
which we denote DBLPN. This is otherwise like DBLPB,
but contains the information about the actual number
of publications an author has had in a conference and
with a co-author. Hence, instead of being Boolean, the
matrices contain non-negative integers.

Table 1: Example results of ReReMi with DBLPB.

qL qR J supp p-value

(1) STOC ∧ COLT ∧ ICML Y. Freund ∨ N. Littlestone ∨ P.M. Long ∨ S. Kwek 0.500 21 0.000
(2) VLDB ∧ ICDM ∧ SDM ∧ SIGMOD (J. Han ∧ P.S. Yu)∨ C.-R. Lin ∨ S. Lonardi 0.444 16 0.000

(3) ICDM ∧ SDM ∧ KDD J. Lin ∨ I.S. Dhillon ∨ P.S. Yu ∨ V. Kumar 0.338 44 0.000
(4) FOCS ∧ SODA ∧ STOC B. Awerbuch ∨ S. Khanna ∨ R.E. Tarjan ∨ N. Alon 0.324 158 0.000

Table 2: Example results of ReReMi with DBLPN.

qL qR J supp p-value

(1) [1.0 ≤ STOC ≤ 6.0] ∧ [8.0 ≤ COLT] [1.0 ≤ D.P. Helmbold] ∨ [1.0 ≤ M. Frazier]
∨ [2.0 ≤ N. Cesa-Bianchi ≤ 2.0]

0.625 15 0.000

(2) [1.0 ≤ VLDB ≤ 18.0] ∧ [2.0 ≤ ICDM]
∧ [1.0 ≤ SDM ≤ 5.0] ∧ [3.0 ≤ ICDE]

(
([5.0 ≤ W. Wang] ∨ [1.0 ≤ J. Pei])
∧ [2.0 ≤ P.S. Yu]

)
∨ [6.0 ≤ G. Das ≤ 6.0]

0.600 12 0.000

(3) [5.0 ≤ COLT] [2.0 ≤ P.L. Bartlett] ∨ [1.0 ≤ M.K. Warmuth]

∨ [1.0 ≤ E.B. Kinber] ∨ [1.0 ≤ S.A. Goldman]

0.472 42 0.000

Table 3: Example results of CARTwheels with DBLPB.

qL qR J supp p-value

(1) (STOC ∧ ¬FOCS) ∨ ¬STOC B. Dageville ∨ (¬B. Dageville ∧ ¬A. Wigderson) 0.736 1673 0.011
(2) (STOC ∧ ¬FOCS) ∨ ¬STOC T. Grust ∨ (¬T. Grust ∧ ¬A. Wigderson) 0.736 1673 0.011

(3) EDBT ∨ (¬EDBT ∧ ¬STOC) (P. Datta∧P. Langley) ∨ (¬P. Datta∧¬A. Wigderson) 0.693 1577 0.021

(4) ICDM ∨ (¬ ICDM ∧ ¬STOC) (C. Olston ∧ ¬C. Chekuri) ∨ (¬C. Olston
∧ ¬A. Wigderson)

0.691 1570 0.017

(5) PKDD ∨ (¬PKDD ∧ ¬STOC) T. Grust ∨ (¬T. Grust ∧ ¬A. Wigderson) 0.689 1567 0.019

As can be seen from Table 2, this version of the
data contains more information, allowing ReReMi to
find more accurate redescriptions (the best Jaccard is
0.625). But the rules are also more specific, with small
support and often requiring multiple publications in the
same conference, making them possibly harder to inter-
pret than those of Table 1. The algorithm works as
assumed: it performs better when given more informa-
tion; rather, the results follow from the data. The (se-
nior) researchers who have published many times in the
same conferences are simply the easiest to distinguish.
Furthermore, the supports of the redescriptions in Ta-
ble 1 are mostly small groups of well-known computer
scientists. Hence, while the redescriptions are complex,
they describe easily understandable groups.

While allowing for a better exploration of the search
space, our algorithm required only a third of Greedy’s
running time (3 min) with the same data. On the
real-valued data ReReMi’s running time was naturally
longer but remained very acceptable (less than 8 min).

5.5 Comparison to CARTwheels and pre-buck-
eting numerical data. We now turn to another al-
gorithm for mining redescriptions, CARTwheels [16].
We used the implementation of CARTwheels pro-
vided by the authors. Because of this, we do not have
any control over the results reported by CARTwheels
(e.g. minimum support, type of queries, p-values).

Boolean data. First, we tried CARTwheels
with DBLPB. The algorithm returned in total 35 rede-
scriptions before running out of the available 32 GB of
memory. Of these, only 5 were retained after remov-
ing rules with p-value higher than 0.05. All of the re-
maining redescriptions had p-values between 0.0111 and
0.02, making them insignificant on the highest signifi-
cance level (99%). The rules also covered almost the
whole data, having at least 1567 (of 2345) rows in the
support. This high support is a consequence of using
mostly negated variables. Results are reported in Ta-
ble 3.

As can be seen from Table 3, the results have
high similarity, which is not surprising, given their high
support. Results also have many negations, making
them less interesting. We let ReReMi find results
with negations, too, and while we were not able to find
results with as high similarity (results omitted), they
all had p-values essentially 0. We conclude that while
CARTwheels finds more accurate redescriptions, they
are somewhat insignificant, and less interesting than the
ones found by ReReMi.

Pre-bucketing numerical data. In this sec-
tion, we compare our on-the-fly bucketing approach to
CARTwheels with bucketing as a pre-processing step.

To bucket the data, one has to select the bucketing
method. For a fair comparison, we used three different
methods with a number of buckets per variable vary-

ing between 10 and 150, ran CARTwheels for all of
these configurations, and selected the best results. The
three methods were (1) buckets of equal width, where
the range of the values in a column was divided into
equally long buckets; (2) buckets of equal height, where
each bucket contained approximately equally many en-
tities; and (3) segmentation, where the entities were
separated into segments (i.e. buckets) minimizing the
sum-of-square distances to the segment’s mean (the seg-
mentation was obtained using Bellman’s algorithm [1]).

We used a different data set for these experiments,
called Bio. In this data, the entities are spatial ar-
eas, that is, approximately 50 km squares over Eu-
rope5. The data itself is composed from two publicly
available data sets: European mammal atlas [11] and
Worldclim climate data [8]. The mammals data con-
tains presence/absence information of mammal species
in Europe, and the climate data contains minimum, av-
erage, and maximum monthly temperatures as well as
average monthly precipitation. This data has 2575 rows
(atlas squares), 194 mammals, and 48 climate variables.
Notice that the mammals data is Boolean while the cli-
mate data is continuous.

Unfortunately, CARTwheels was unable to han-
dle this big data set. To make comparison possible, we
concentrated only on Northern Europe (specifically, ar-
eas between 50 and 71 degrees North). Also, we removed
monthly maximum and minimum temperatures, leaving
only monthly average temperature and average precipi-
tation. This left us with 1271 rows, 119 mammals, and
24 climatic variables. We call this data Biosmall.

The results are reported in Table 4. The aim of
this experiment is to study how good accuracies can
be obtained with pre-processed buckets compared to
ReReMi. Hence, and due to the lack of space, we do
not report the actual redescriptions.

The first results are the five best (w.r.t. the accu-
racy) from CARTwheels using 10 buckets of approxi-
mately equal number of entities (this method produced
the best overall results, although 10 segments gave very
similar results). The redescriptions have again very high
accuracy, and, again, they cover almost all of the studied
area. Furthermore, two of them are clearly insignificant
and one is not very significant, according to the p-values.
Results of this type are rarely of any interest for users,
as they do not convey any interesting information.

We pruned out results that had too high maximum
support (above 250) or too high p-value. CARTwheels
can still return rather accurate redescriptions, but the
quality drops quickly after the first ones.

5Details of the grid can be found in www.fmnh.helsinki.fi/

english/botany/afe/index.html.

The last results in this experiment are from
ReReMi. As CARTwheels obtained almost all of its
results using negations, we allowed also ReReMi to use
negations. As can be seen, ReReMi positions itself
between non-pruned and pruned CARTwheels. But
unlike the non-pruned CARTwheels, ReReMi does
not return insignificant results.

We also experimented with bucketed data and
Boolean ReReMi (results omitted). The results were
similar to those with pruned CARTwheels, but with-
out the quick drop in accuracy. Also, they were con-
siderably worse than the results with ReReMi using
on-the-fly bucketing.

We conclude that with similar constraints, the on-
the-fly bucketing of ReReMi gives the best results.

5.6 Real-world application: Finding biocli-
matic envelopes. ReReMi was run on full Bio data
for a maximum of 100 initial pairs, minimum score for
the initial pairs 0.2, minimum support 15, minimum
number of uncovered entities 500, and minimum contri-
bution 3, disallowing negated variables. This was done
because the negated variables can lead to counterintu-
itive redescriptions in this type of application. The algo-
rithm found 69 redescriptions within these constraints.
Again, we see it positively that our algorithm returns
only a reasonable amount of results.

The data was randomized using swap-
randomization and permutation. With both methods,
500 random matrices were generated, and in both cases
the best redescription had lower accuracy than the
lowest original accuracy. Hence, all redescriptions were
considered significant w.r.t. these null hypotheses. The
algorithm processed the full data in about 13 min.

Some of the results are in Table 5. The redescrip-
tions have varying support sizes: some cover only a
small part of the data, while others cover almost the
whole data. Yet they all have very high accuracy. The
first two redescriptions cover exactly the same area.
They represent the Svalbard archipelago (see Fig. 4(a)).
The climate in Svalbard is so different from other areas
that it allows multiple ways to define it, causing mul-
tiple redescriptions. The fourth redescription has only
European Elk on the left hand side, but the right hand
side is more complex, characterizing very accurately the
environment in Scandinavia and Baltia (Fig. 4(b)), the
area occupied by the European Elk. The remaining re-
descriptions are more complex. The fifth redescription
(Fig. 4(c)) covers Northern and Central Europe, while
the last covers only Central Europe (Fig. 4(d)).

We point out that while the results of [5] are
superficially similar, the differences in the methods used
and the goals pursued make the results incomparable.

Table 4: Five best accuracies of CARTwheels and ReReMiwith Biosmall.

CARTwheels CARTwheels (pruned) ReReMi

J supp p-value J supp p-value J supp p-value

0.980 1244 0.007 0.896 937 0.000 0.948 931 0.000

0.974 1237 0.158 0.832 944 0.000 0.947 931 0.000
0.974 1237 0.074 0.824 940 0.000 0.934 911 0.000

0.974 1235 0.000 0.674 225 0.000 0.926 888 0.000

0.964 1224 0.337 0.522 175 0.000 0.924 823 0.000

Table 5: Example redescriptions from Bio data: tmin
X , tmax

X , and tavgX stand for minimum, maximum, and average
temperature of month X in degrees Celsius, and pavgX stands for average precipitation of month X in millimeters.

qL qR J supp p-value

(1) Polar Bear [−7.0727 ≤ tavgMay ≤ − 3.375] 0.973 36 0.000

(2) Polar Bear [−16.694 ≤ tavgMar ≤ − 11.462] 0.973 36 0.000

(3) Bank Vole ∨ Northern Red-backed Vole

∨ Steppe Mouse ∨ Harbor Seal

(
([11.20 ≤ tmax

Jul ≤ 15.40] ∨ [13.10 ≤ tmax
Aug ≤ 27.40])

∧ [42.5 ≤ pavgJul]
)
∨ [17.10 ≤ tmax

Apr ≤ 17.50]

0.818 1679 0.000

(4) European Elk ([−9.80 ≤ tmax
Fev ≤ 0.40] ∧ [12.20 ≤ tmax

Jul ≤ 24.60]

∧ [56.852 ≤ pavgAug ≤ 136.46]) ∨ [183.27 ≤ pavgSep ≤ 238.78]

0.814 582 0.000

(5) Arctic Fox ∨ Stoat
(
([2.60 ≤ tmax

Jun ≤ 8.50] ∨ [7.20 ≤ tmax
Sep ≤ 22.20])

∧ [36.667 ≤ pavgAug]
)
∨ [21.133 ≤ tavgJul ≤ 21.20]

0.813 1477 0.000

(6) Greater White-toothed Shrew

∧ Egyptian Mongoose

([15.60 ≤ tmin
Aug ≤ 19.00] ∧ [1.625 ≤ pavgAug ≤ 7.4444]

∧ [66.222 ≤ pavgDec ≤ 137.27]) ∨ [19.083 ≤ tavgOct ≤ 19.10]

0.790 49 0.000

(7) House Mouse ∨ Caucasian Squirrel

∨ Marbled Polecat

(
([3.50 ≤ tmax

Jan] ∧ [4.40 ≤ tmax
Fev])

∨ [3.5071 ≤ tavgMar ≤ 4.1727]
)
∧ [3.30 ≤ tmax

Dec]

0.765 1034 0.000

(8) Southwestern Water Vole ∨ Azores Noctule

∨ Common Noctule ∨ Blind Mole

([17.10 ≤ tmax
Mar] ∨ [19.30 ≤ tmax

Aug ≤ 26.90]

∨ [12.40 ≤ tmax
Nov ≤ 14.50]) ∧ [14.60 ≤ tmax

Sep]

0.697 1072 0.000

(9) Brown Long-eared Bat ([13.70 ≤ tmax
Sep ≤ 22.70] ∨ [8.4111 ≤ tavgNov ≤ 8.6444])

∧ [17.30 ≤ tmax
Jul ≤ 28.40] ∧ [−8.15 ≤ tavgJan ≤ 6.0083]

0.693 963 0.000

(10) Harvest Mouse ∧ European Mole [−0.30 ≤ tmin
Apr ≤ 8.70] ∧ [19.40 ≤ tmax

Aug ≤ 27.20]

∧ [45.417 ≤ pavgJun] ∧ [48.75 ≤ pavgAug ≤ 126.33]

0.677 774 0.000

(11) (Serotine Bat ∨ Lesser Mole Rat)

∧ European Mole

[19.70 ≤ tmax
Jul] ∧ [16.90 ≤ tmax

Sep ≤ 23.70]

∧ [43.111 ≤ pavgJul ≤ 149.5] ∧ [31.875 ≤ pavgOct ≤ 119.5]

0.634 664 0.000

(12)Wood Mouse ∧ Natterer’s Bat

∧ Eurasian Pygmy Shrew

([3.20 ≤ tmax
Mar ≤ 14.50] ∧ [17.30 ≤ tmax

Aug ≤ 25.20]

∧ [14.90 ≤ tmax
Sep ≤ 22.80]) ∨ [19.60 ≤ tavgJul ≤ 19.956]

0.623 681 0.000

Figure 4: Support of redescriptions when mining Bio data. From left to right, rows 1, 4, 5 and 12 in Table 5.
Green circles, cyan plus signs and magenta crosses respectively indicate areas where both queries hold, only the
left query holds and only the right query holds.

6 Conclusions

We have presented a new algorithm to mine redescrip-
tions from real-valued data. Unlike previous algorithms,
ours does not require any pre-processing when used with
non-Boolean data. It is based on a beam-search type of
method. We have shown with both synthetic and real-
world data sets that our algorithm performs better than
its peers. In particular, the experiments show the ben-
efits of on-the-fly bucketing against pre-processing.

The non-Boolean redescription mining has many
applications in various fields of science, of which niche-
finding is the one we have studied here. One of the
most prominent future works would be to work together
with biologists and ecologists and explore the true
value of redescription mining in finding the bioclimate
envelopes. Also other fields should be considered.
Medical data describing patients where the matrices
would contain genetic or physiological characteristics
and symptoms, respectively, is one example.

While our algorithm seems to be working fine, it is
by no means the final word. Building better algorithms
is, as always, an important future direction. For a
concrete example, the selection of initial pairs seems to
have space for improvements.

Finally, having proofs of the behaviour of the algo-
rithms is important. Is there, for example, an algorithm
for real-valued redescription mining for which one can
prove that it finds a redescription, provided that the
redescription is sufficiently strong?

Acknowledgements

The authors are grateful to Dr. Jussi Eronen for helpful
comments and suggestions.

References

[1] R. Bellman, On the approximation of curves by line
segments using dynamic programmming, Comm. ACM,
4 (1961), p. 284.

[2] E. Boros et al., An implementation of logical analy-
sis of data, IEEE Trans. Knowl. Data Eng., 12 (2000),
pp. 292–306.

[3] U. Fayyad and K. Irani, Multi-interval discretization
of continuous-valued attributes for classification learn-
ing, Mach. Learn., (1993), pp. 1022–1027.

[4] A. Gallo, P. Miettinen, and H. Mannila, Finding
subgroups having several descriptions: Algorithms for
redescription mining, in SDM, 2008, pp. 334–345.

[5] G. C. Garriga, H. Heikinheimo, and J. K.
Seppänen, Cross-mining binary and numerical at-
tributes, in ICDM, 2007, pp. 481–486.

[6] J. Grinnell, The niche-relationships of the California
Thrasher, The Auk, 34 (1917), pp. 427–433.

[7] H. Grosskreutz and S. Rüping, On subgroup dis-
covery in numerical domains, Data Min. Knowl. Disc.,
19 (2009), pp. 210–226.

[8] R. J. Hijmans et al., Very high resolution interpo-
lated climate surfaces for global land areas, Int. J. Cli-
matol., 25 (2005), pp. 1965–1978. www.worldclim.org.

[9] D. Kumar, Redescription mining: Algorithms and
applications in bioinformatics, PhD thesis, Department
of Computer Science, Virginia Tech, 2007.

[10] D. Leman, A. Feelders, and A. J. Knobbe, Excep-
tional model mining, in ECML/PKDD, 2008, pp. 1–16.

[11] A. J. Mitchell-Jones et al., The atlas of Euro-
pean mammals, Academic Press, London, 1999. www.

european-mammals.org.
[12] P. K. Novak, N. Lavrac, and G. I. Webb, Super-

vised descriptive rule discovery: A unifying survey of
contrast set, emerging pattern and subgroup mining, J.
Mach. Learn. Res., 10 (2009), pp. 377–403.

[13] M. Ojala, N. Vuokko, A. Kallio, N. Haiminen,
and H. Mannila, Randomization methods for assess-
ing data analysis results on real-valued matrices, Stat.
Anal. Data Min., 2 (2009), pp. 209–230.

[14] L. Parida and N. Ramakrishnan, Redescription
mining: Structure theory and algorithms, in AAAI,
2005, pp. 837–844.

[15] R. G. Pearson and T. P. Dawson, Predicting the
impacts of climate change on the distribution of species:
Are bioclimate envelope models useful?, Global Ecol.
Biogeogr., 12 (2003), pp. 361–371.

[16] N. Ramakrishnan et al., Turning CARTwheels:
An alternating algorithm for mining redescriptions, in
KDD, 2004, pp. 266–275.

[17] J. Soberón and M. Nakamura, Niches and distri-
butional areas: Concepts, methods, and assumptions,
PNAS, 106 (2009), p. 19644.

[18] J. Soberón and A. T. Peterson, Interpretation of
models of fundamental ecological niches and species
distributional areas, Biodiv. Inform., 2 (2005).

[19] R. Srikant and R. Agrawal, Mining quantitative
association rules in large relational tables, in SIGMOD,
1996, pp. 1–12.

[20] G. Tsoumakas, I. Katakis, and I. Vlahavas, Min-
ing multi-label data, in Data Mining and Knowledge
Discovery Handbook, O. Maimon and L. Rokach, eds.,
Springer, 2010, pp. 667–685.

[21] L. Umek et al., Subgroup discovery in data sets with
multi-dimensional responses: A method and a case
study in traumatology, in AIME, 2009, pp. 265–274.

[22] M. van Leeuwen, Maximal exceptions with minimal
descriptions, Data Min. Knowl. Disc., 21 (2010), pp. 1–
18.

[23] M. J. Zaki, Scalable algorithms for association mining,
IEEE Trans. Knowl. Data Eng., 12 (2000), pp. 372–
390.

[24] M. J. Zaki and N. Ramakrishnan, Reasoning
about sets using redescription mining, in KDD, 2005,
pp. 364–373.

