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Abstract

Finding latent factors of the data using matrix factorizations
is a tried-and-tested approach in data mining. But finding
shared factors over multiple matrices is more novel problem.
Specifically, given two matrices, we want to find a set of
factors shared by these two matrices and sets of factors
specific for the matrices. Not only does such decomposition
reveal what is common between the two matrices, it also
eliminates the need of explaining that common part twice,
thus concentrating the non-shared factors to uniquely specific
parts of the data. This paper studies a problem called
Joint Subspace Boolean Matrix Factorization asking exactly
that: a set of shared factors and sets of specific factors.
Furthermore, the matrix factorization is based on the Boolean
arithmetic. This restricts the presented approach suitable to
only binary matrices. The benefits, however, include much
sparser factor matrices and greater interpretability of the
results. The paper presents three algorithms for finding
the Joint Subspace Boolean Matrix Factorization, an MDL-
based method for selecting the subspaces’ dimensionality,
and throughout experimental evaluation of the proposed
algorithms.

1 Introduction

Consider the following problem: We are given two sets
of tagged images with tags from a common collection.
We know that these tags are rather precise (for example,
if an image contains a building, it typically has tags
such as ‘building’, ‘door’, and ‘window’). But the two
sets do not contain same images, and are also tagged
by different people. Our aim is two-fold: First, we want
to reduce the number of tags by using latent super-tags
(in the above example, we could replace the three tags
with ‘building’ super-tag, as most buildings indeed have
doors and windows). Second, we want to know which of
these super-tags appear in both image sets, and which
are specific to one of them.

A conventional answer would be to represent the
image—tag information as two matrices, and decompose
these matrices into factors in order to find the super-
tags. But this approach has few problems. First, if
we use conventional matrix factorization methods such
as SVD or NMF, we have to define our super-tags
differently. With SVD, we only project the original
tags into some lower-dimensional space, but this lower-
dimensional space on itself is not enough to define which
tags ‘go together’. With NMF the lower-dimensional
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space is restricted to the nonnegative orthant, which
helps as the factor can be interpret as giving weights to
tags’ commitment to the super-tags, but does not solve
the problem fully. For example, if tag ¢ is in supertag
s1 by weight 0.8 and in super-tag s by weight 0.7, an
image that has both of these super-tags would have tag
t by weight 1.5. And if you lower the weights, you also
lower the weight of tag t in images with only one of these
super-tags.

The other problem is that doing the decomposition
does not tell which super-tags are shared and which are
specific. We could decompose the matrices independently
and call similar supertags shared, and dissimilar specific.
But then we have to decide which similarity measure
to use, and how similar is similar enough. Moreover, it
is quite possible that the super-tags are not similar at
all: it might be that the differences in the tagging (or
images) make different types of super-tags optimal for
the different image sets.

The purpose of this paper is to propose a solution
that overcomes both of these problems: the super-
tags are uniquely defined and the shared and specific
supertags are found simultaneously. This is achieved
by merging two earlier approaches, the Boolean Matrix
Factorization and Joint Subspace Matrix Factorization,
into Joint Subspace Boolean Matrix Factorization. The
paper will present the existing approaches and the
proposed approach (Section 3) and algorithms for
finding the Joint Subspace Boolean Matrix Factorization
(Section 4). The algorithms require three parameters,
namely the dimensionalities of shared and specific
subspaces, and setting these correctly is not a trivial task.
Therefore, Section 5 presents a method for automatically
evaluating the best parameter combination using the
Minimum Description Length Principle. The proposed
algorithms are tested extensively in Section 6.

2 Notation and Terminology

If A is an n-by-m binary matrix, |A| denotes the number
of 1s in it, i.e. [A| = 3, a;;. The sum of absolute
differences between two binary matrices A and B is
|A — B|. The squared Frobenius norm of an arbitrary
matrix A, ||A|%, is defined as >, az;- If Ais binary,

1Al = | Al



If A is a matrix and c is a scalar, ¢+ A is a shorthand
for increasing each element of A by c.

Let B be n-by-k and C be k-by-m binary matrices.
Their Boolean matriz product, BoC is the binary matrix

. k
A with Ai5 = Vl:l bilclj.

The Boolean rank of an n-by-m binary matrix A,
rankp(A), is the least integer k such that there exists
an n-by-k binary matrix B and a k-by-m binary matrix
C for which A = B o C. Matrices B and C are factor
matrices of A, and the pair (B, C) is the (approximate)
rank-k Boolean factorization of A.

A binary vector a is dominated by a binary vector
b if a; < b; for all i. The same terminology is extended
to binary matrices. A Boolean factorization (B, C) of a
binary matrix A is dominated if B o C is dominated by
A. Factorization (B, C) of A covers a;; if (BoC);; = 1.

Finally, given a proposition P, in Iverson bracket
notation [P] = 1 if P is true, and [P] = 0 otherwise.

3 The Problem

The Joint Subspace Boolean Matrix Factorization is
an amalgam of two ideas: the Joint Subspace Matrix
Factorization and Boolean Matrix Factorization. These
two ideas are covered first, before giving the definition
of the Joint Subspace Boolean Matrix Factorization.

3.1 Background on Joint Subspace Matrix Fac-
torization. The idea of Joint Subspace Matrix Factor-
ization (JSMF) is to factorize two matrices with equal
number of rows into three subspaces: one is shared
between the two matrices, and two are specific to the
matrices. The motivations for doing JSMF' are varied,
including the aim to separate the shared space from
data-specific spaces and the aim of improving the fac-
torization of one matrix with the auxiliary data of the
other matrix. Formally, we can define the Joint Subspace
Matrix Factorization as follows.

PrROBLEM 3.1. (JSMF) Given an n-by-m matriz X,
an n-by-l matriz Y, and positive integers k, p, and q,
find n-by-k matriz W, n-by-p matriz U, n-by-q matrix
V., (k+ p)-by-m matrix H, and (k + q)-by-l matriz L
such that X ~ W U|H andY ~ [W VL .

In Problem 3.1, matrices X and Y are the data
matrices, matrix W defines the shared subspace, matrices
U and V define the specific subspaces, and matrices
H and L are the mizing matrices. The definition of
Problem 3.1 leaves open the precise error metric (loss
function), as it is application-specific. The Frobenius
norm is a common choice, however.

An important variation of JSMF is the Joint Sub-
space Nonnegative Matrix Factorization, JSNMF, pro-
posed by Gupta et al. [4]. Along the lines of standard

Nonnegative Matrix Factorization, JSNMF requires all
involved matrices to be nonnegative. This gives ‘parts-
of-whole’ representation of the data, possibly helping
with interpretation and when applying the factorization
to other problems. The particular application Gupta
et al. [4] concentrate is the media retrieval based on
tags. It is also claimed that JSNMF yields to sparse
representation of the data.

Gupta et al. [4] also suggest weighting the loss
function. If the two data matrices, X and Y, have very
different norms, the one with larger norm dominates the
overall error. The normalized loss function is
(3.1)

Y11 — W OVH I+ [ X Y~ (W VL]

3.2 The Boolean Case. Many data sets that could
be used in JSMF are binary by nature, that is, they
contain only 0Os and 1s. For example, any data
that records the presence (or absence) of variables in
observations is binary. The tags of media files are a
specific example, as tags usually do not have quantity
attached to them. When data is binary, it is often natural
to think it as a collection of sets, for example, each
image is attached to a set of tags. But set arithmetics
is different from normal arithmetics: if an element is in
two sets, their union still has that element only once. In
terms of matrix factorization, this idea is captured in
the Boolean Matriz Factorization.

The Boolean Matrix Factorization (BMF) is like
normal matrix factorization, except that all involved
matrices (data and factors) are required to be binary
and the Boolean matrix product is used. As the factors
are binary, they can be interpet as sets, and the Boolean
matrix multiplication corresponds to the set union of
the factors.

Another benefit of Boolean Matrix Factorization is
that it is show to yield sparse factorizations [9]. Indeed,
the factor matrices can be considerably sparser than
those obtained via Nonnegative Matrix Factorization.

3.3 Problem Definition. We are now ready to de-
fine the main problem of this paper, the Joint Subspace
Boolean Matrix Factorization (JSBMF) problem.

PRrROBLEM 3.2. (JSBMF) Given an n-by-m binary ma-
triz X and an n-by-l binary matrix’ Y and positive in-
tegers k, p, and q, find n-by-k binary matriz W, n-by-p
binary matriz U, n-by-q binary matriz V', (k + p)-by-m
binary matriz H, and (k+ q)-by-l binary matriz L such
that they minimize

(32) X - [WU]oH|+|Y —[W V]oL|.

Equation (3.2) gives the unweighted reconstruction
error. If, say, |X| < |Y|, this can yield unbalanced



results. Similar to (3.1), we can add weights so that
the errors are proportional to the number of 1s in the
matrices. This gives us

(33) |Y[|IX - [WU]oH|+|X||Y —[W V]oL|.

3.4 Computational Complexity. The computa-
tional complexity of JSBMF does not differ from BMF,
not at least in the case of lower bounds: setting X =Y
and p = ¢ = 0 the problem reduces back to the normal
BMF, and therefore we can conclude that JSBMF is
NP-hard even to approximate [10].

4 The Algorithms

We will present three different algorithms for JSBMF.
The first could be considered more as a baseline method
against which the other two are tested. The second is
a relatively straight forward extension of an existing
method for BMF, and the third algorithm is a modi-
fication of the second that can circumvent some of its
potential problems. All these three algorithms need to
solve the BMF problem. An adapted version of the Asso
algorithm [10] is used for that purpose.

4.1 An Adapted Asso Algorithm and a Greedy
Algorithm for Updating the Factors. To do the
BMF, we employ the Asso algorithm of Miettinen
et al. [10], but modified to work with element weights.
To explain how this is obtained, we need to know how
Asso works. Due to space constraints, the full Asso
algorithm is not presented, however, but focus is on what
will change. Full details of the algorithm can be found
from [10]. Notice, however, that we use the modified
Asso algorithm as a black box; any algorithm for BMF
that accepts element-wise weights could be used instead.

The algorithm first creates a set of candidate
(column) factors based on pairwise row association
confidencies of the data (see [10] for more details). It
then selects, greedily, one of the candidate factors to be
the first column factor, and builds the corresponding row
factor. This selection is done based on cover function,
which is computed for each candidate factor and each
column of the data matrix. If @ is a column of the data
matrix and b is a candidate factor, cover is defined as
(4.4)
cover(a, b, c) = Z(c(i)[ai =

2
where ¢(7) is 0 if a; is already covered by the decomposi-
tion, and ¢(i) = 1 otherwise.

Initially ¢(z) = 1 for all . The selected candidate
is the one that has highest cover value summed over
all columns of the data matrix. The corresponding row
factor has 1s for those columns where cover is positive.

After the row and column factors are build, function
c is updated to have zeros on those elements that are
already covered.

Updating Asso to work with weights is straight
forward. We just replace ¢ with a weight function w that
gives (positive) weight for each element that is not yet
covered, and 0 for the covered elements. This is enough
to make sure that Asso minimizes the weighted loss. The
calling sequence of Asso is Asso(X, k, V), where X is
the data matrix, k is the rank of the decomposition, and
N is a (nonnegative) matrix of same size than X that
defines the element-wise weights.

The second algorithm we need is an algorithm to
(greedily) update the factors. The algorithm, called
updateFactors works as follows. Given X, Y, W,
U, V, H, and L, the algorithm first considers each
element of W and sees if ‘flipping’ the value (i.e. setting
w;j = 1—w;;) would reduce the (possibly weighted) cost.
After it has iterated over W, it iterates over matrices
U and V, and then over matrices H and L. After this,
it returns the updated factors. An important property
of the algorithm is that it is guaranteed to either return
the original factors or to reduce the error by at least 1.

The updateFactors method is very simple method.
It might seem that it will be overly expensive to use,
but in fact this was not the case in the experiments.
The time complexity is O(nml max{n,m,[}?) at worst
case, but in practice it is faster as we can speed up
the Boolean matrix multiplication by noticing that we
only need to compute the sum defining the value of a
matrix element up to the point where we see the first
1. Also we can parallelize the computation: the rows
of W, U, and V, and the columns of H and L can be
updated simultaneously as they do not interfere with
each other. We can also update V and U, and H and
L simultaneously.

4.2 The ConcatAsso Algorithm. The simplest way
to solve a joint subspace factorization is by concatenat-
ing the two data matrices into one and decomposing
that matrix using existing tools. This is exactly what
ConcatAsso does: given X and Y, it finds the Boolean
factorization of [ X Y]. The rank of the BMF decomposi-
tion is set to k+p+gq, such that the factorization contains
n-by-(k+p+q) binary matrix B and (k+p-+q)-by-(m-+1)
binary matrix C. The factor matrices B and C' are split
into the JSBMF factor matrices W, U, V, H, and L
as follows.

Consider b, a column of B, and its corresponding
row of C, c¢. If ¢ has 1s only on first m columns
(corresponding to the columns of X'), vector b is a column
of U and c¢ (truncated to proper length) is added to H;
if ¢ has 1s only on columns corresponding to the columns



Algorithm 1 The baseline algorithm for JSBMF.

Algorithm 2 A greedy algorithm for JSBMF.

Input: Binary matrices X and Y, parameters k, p, and q.
Output: Binary factor matrices W, U, V., H, and L.
1: function ConcatAsso(X,Y,k,p,q)
(B,C) + Asso([X Y],k+p+q)
(W,U,V,H,L) + splitFactors(B,C)
repeat
(W, U,V,H,L) +
updateFactors(X,Y, W U,V H, L)
until converged
return W .U,V H L

of Y, vector b is a column of V' and truncated c is added
to L; otherwise b is a column of W (we assume c is not
empty) and c is split into two vectors that are added
to H and L. The overview of ConcatAsso algorithm
is given in Algorithm 1 where the splitting process is
referred to as splitFactors.

For the sake of clarity the pseudocode of ConcatAsso
(and all upcoming pseudocodes) is presented without the
weighting of (3.3). Applying it is, however, straight
forward: the weight parameter for Asso has to be
changed, and updateFactors has to use weighting.

The ConcatAsso algorithm will not necessarily yield
to W with k& columns or V' with p columns (or U
with ¢ columns); it can be, for example, that one of
these matrices is completely empty. Therefore, in the
strict sense, ConcatAsso does not solve the Problem 3.2.
Instead, it has more power as it can define the number of
factors such that they minimize the reconstruction error.
As such, it is to be assumed that it will produce the
smalles reconstruction error of the proposed methods
(this, indeed, is the case — see Section 6).

The time complexity of ConcatAsso is dominated
by that of updateFactors, and by the number of times
it has to be called. As the updateFactors algorithm
reduces the error in each iteration by at least 1, the
algorithm will converge in at most n(m + 1) steps. In
practice the iterative update converges very fast, often
in less than 5 iterations.

4.3 The SharedAsso Algorithm. The first algo-
rithm to actually solve Problem 3.2 is called SharedAsso.
Like ConcatAsso it is based on the Asso algorithm, but
with slightly more complex implementation. The algo-
rithm will work in three phases. In the first phase it
finds the shared factors by calling Asso with [X Y] and
with & factors (unlike ConcatAsso that used k + p + ¢
factors). The result of Asso provides the initial matrices
W, Hy, and Ly (the latter two matrices are the first
k rows of H and L, respectively).

In the second phase it calls Asso twice to produce
the initial specific factors for X and Y. But to take the

Input: Binary matrices X and Y, parameters k, p, and q.
Output: Binary factor matrices W, U, V, H, and L.
1: function SharedAsso(X,Y,k,p,q)

2: (W, [Hw Lw]) + Asso([X Y], k)

3: (U,Hy) + Asso(X,p,1 — W o Hw)

4: (V,Ly) < Asso(Y,q,1 — W o Lw)

5: H«+ [Hy HH)"; L« [Ly, LTT

6: repeat

7: (W, U,V,H,L) +
updateFactors(X,Y ,W U,V , H,L)

8: until converged

9: return W, .U,V H,L

already-found shared factors into account, it sets zero
weight for those elements of X and Y that are already
covered by the shared factors (i.e. elements that 1 in
WOHW or WOLw).

At the begin of the third phase, SharedAsso has
initial versions of W, U, V, H, and L. It then
calls updateFactors to obtain the final versions. The
pseudocode of SharedAsso is provided in Algorithm 2.

As with ConcatAsso, the time complexity of
SharedAsso is dominated by that of updateFactors
and the number of iterative updates done.

4.4 The Dominated Algorithm. The Boolean de-
composition has the property that if one pair of cor-
responding row and column factors cover some 0 of the
data matrix, that error cannot be fixed without chang-
ing those factors. Because of this, overly greedy initial
selection can yield bad end results.

These thoughts serve as the motivation for our third
algorithm, the Dominated algorithm. It has one major
difference to SharedAsso: the way the initial matrix
W is selected. Instead of using Asso, Dominated, as
the name indicates, finds dominated shared factors (i.e.
factors that cover only 1s in the data).

To do this, it uses the greedy Set Cover (or rather,
Max k-Cover) algorithm. In short, the idea is to reduce
the BMF problem to the Set Cover problem in such a
way that the 1s in the data matrix correspond to the
elements in the ground set, and the sets in the set system
are all possible dominated factors [1,9]. One can then
apply the standard greedy heuristic [7] to this set system
to obtain e/(e — 1) approximation for the Max k-Cover
problem. This translates into e/(e — 1) approximation
of the dominated BMF [9].

The problem with this approach is that if the data
matrix is not sparse, the number of sets in the set
system grows exponentially, yielding exponential-time
algorithm. Miettinen [9] characterized the sparsity
properties required to keep the algorithm polynomial-



time, but we cannot expect all our data sets to fulfill
those requirements.

To overcome this problem we approximate the set
system itself when needed. Intuitively, the largest sets
matter most and we can omit the small ones. But how
to effectively find the largest ones? The answer is to use
frequent itemset mining. A large set in the set system
corresponds to a factor that covers many 1s in the data
without covering any Os (i.e. is dominated). But such
factors are exactly the large, monochromatic submatrices,
i.e. tiles [2]. Assuming there is no minimum frequency
threshold for the itemsets, this gives us exactly the same
approximation result.

PROPOSITION 4.1. Using the Mazimum k-tiling [2], we

can obtain an e/(e — 1) approzimation of the dominated
BMF.

Proof. A maximum k-tiling of a matrix is a set of k
tiles (all-1s submatrices) that together cover as much
of the 1s of the matrix as possible. Each tile defines
corresponding pair of row and column factors as each tile
can be expressed (uniquely) as an outer product of two
binary vectors. Geerts, Goethals, and Mielikdinen [2]
proved that maximum k-tiling can be approximated
within e/(e — 1), from which the claim follows.

So far we have not been able to overcome the problem
of too many sets (the proof of [2] requires an access
to an oracle), we have just changed the terminology
from sets to tiles. The approach we use here is to only
use tiles induced by closed itemsets. When using this
collection, the algorithm is no more guaranteed to admit
any approximation factor, but the number of sets is
reduced considerably. Furthermore, we require that the
itemsets have items from both matrices.

To sum up, the Dominated algorithm works as
follows. First, it finds dominated shared factors for the
initial versions of W, Hy,, and Ly . Then it proceeds
as SharedAsso: it calls Asso with the weight of the
already-covered elements set to 0, and with those results,
starts the iterative update phase updateFactors. The
pseudocode is given in Algorithm 3.

Notice that the greedy Max k-cover algorithm lends
itself nicely to element-wise weights. The algorithm
works as well with the elements having weights, and the
requirement for the dominated factors means that we do
not have to worry about the costs of covering Os.

The time complexity of updateFactors is in prac-
tice (and in theory) dominated by the tiling which, de-
pending on the minimum frequency parameter f, can
take exponential time. Other than that, its behaviour
is akin to the two other algorithms, ConcatAsso and
SharedAsso.

Algorithm 3 A tiling-based algorithm for JSBMF.

Input: Binary matrices X and Y, parameters k, p, and q,
minimum frequency f.
Output: Binary factor matrices W, U, V, H, and L.
1: function Dominated(X,Y ,k,p,q, f)

2: (W,[Hw Lw]) < tiling([X Y], k, f)

3: (U,Hy) + Asso(X,p,1 — W o Hw)

4: (V,Lvy) < Asso(Y,q,1 — W o Lw)

5  H<+ [Hy HY)"; L« LY, LY

6: repeat

7 (W, U,V,H,L) +
updateFactors(X,Y , W U,V , H, L)

8: until converged

9: return W, U,V . H,L

5 Selecting the Correct Approximation Ranks

An important problem with any matrix decomposition
method is the selection of the rank of the approximation.
The problem is even more pronounced with joint matrix
factorizations, where the user has to select not just one,
but three ranks.

To solve the problem of selecting the ranks, we apply
the Minimum Description Length (MDL) principle. The
MDL principle says that the correct ranks are those
that allow us to represent the data with fewest bits.!
To use the MDL principle, we must first select some
ranks, compute the factorization, and then compute the
encoding length of the factorization. After repeating
this process with different ranks, we can select the
combination of ranks that gives the shortest encoding.

To apply the MDL principle, we will encode the
factor matrices W, U, V, H, and L, and the error
introduced by the factorization. The error is represented
as matrices Ex = X®([W Ul]o H) and Ey =
Y @ ([W V]oL), where @ is the element-wise exclusive-
or operator. With the knowledge of factors and error,
we can reconstruct X and Y exactly.

The intuition of using MDL is that expressing
structure with factors and noise with noise matrices
takes less bits than if factors are expressed with noise
matrices or noise with factors. MDL is also well-suited
for JSBMF, as it selects the individual ranks of the
subspaces. Let u be a specific factor for X and v be a
specific factor of Y. If we remove u and v and replace
them with a single shared factor w we (typically) save
on encoding length of the factor matrices. Depending
how similar w and v were, this saving can carry on to
the total encoding length, or be nullified by the increase
of encoding length for error matrices. In the former case,
we consider the replacement of u and v with w beneficial
even if the error is slightly increased. Notice that if we

TFor more information about MDL, see [3].



let k, p, and ¢ vary, but fix k£ + p and k + ¢, and aim
just to minimize the error, letting £ = 0 yields always
the best solution.

To compute the encoding length, we will adapt a
recently-proposed method of using MDL for standard
Boolean matrix factorization [11].

First we need to encode the factor matrices. In MDL
parlance, this corresponds to the encoding of the model
(or hypothesis). We start by encoding the dimensions
n, m, and [ using Elias-Delta coding [3], requiring
log(z) 4 2log(log(x) + 1) + 1 bits to encode integer .
We then encode the ranks k, p, and ¢. We do not wish to
introduce bias for small ranks by using Elias-Delta here,
so instead we encode them using fixed number of bits.
This works as we can bound the ranks from given n, m,
and [. To encode k, we need L(k) = log(min{n,m,(})
bits (if ¥ = min{n,m, 1}, at least one of the data matrices
can be encoded trivially using identity matrix as the
other factor). With k known, we can further bound p
and ¢:

L(p) = log(min{n, m—k}) and L(q) = log(min{n,l—k}).

Following [11], we encode each factor separately.
This means that we encode columns of W, U, and V
and rows of H and L independently. We will explain
how to encode W; other factor matrices are encoded
analogously. Each column of W is encoded using the
optimal prefix code. This can be computed when one
knows the fraction of 1s in the column, p}”* = |w;| /n.
Value pi”* takes logn bits to encode. The optimal prefix
code lengths for 1 and 0 in a column w; are then

—log(1 —pi"").

The number of bits we need to encode the matrix W is
(5.5)

k
LW) =klogn+ > (lwi by (w;) + (n — Jwi|)lo(w;)).

i=1

l1(w;) = —log(p}”) and Ilo(w;) =

Encoding the remaining factor matrices using anal-
ogous process finishes the model part. What remains
is the error matrices Ex and Ey, i.e. the data given
the model. To encode the error, we use the Typed XOR
model from [11] (for motivation behind the model, and
some alternative models, see [11]). This approach is
based on idea of first dividing the error to false posi-
tives (i.e. those elements that are 0 in the data but are
represented as 1) and false negatives (that are 1 in the
data but are represented as 0). For Ex, we denote these
two error types by E} and E 'y, respectively, yielding
Ex =E} + Ex.

Let X = [W U] o H. We define the probability
of 1s in E% to be pf = |E¥|/(nm — |X|) and the

probability of 1s in Ey to be p; = |Ex| /|X|. With
these probabilities we can again make optimal prefix
codes for 1s and 0s in EY and Ex. For E% these have
length I = —log pj and I = —log(1—p} ), respectively.
Prefix code lengths [ and [; are computed analogously.
We now have

(5.6) L(Ex)=L(E%) + L(E%)

with
L(EY) = log(nm — |X|) + |EX|If
+ (nm — | X| - |EX |
L(Ex) =log|X| + |Ex|I + (IX| - |Ex )y

The length for encoding FEy is computed analogously,
finishing our encoding length computation.

6 Experimental Evaluation

The proposed methods were compared using both
synthetic and real-world data. The effectiveness of the
MDL rank selection was also studied with both types
of data. In addition to the Boolean methods proposed
here, the JSNMF algorithm proposed by Gupta et al. [4]
was used.

Comparing Boolean methods to JSNMF is not straight
forward. When X and Y are binary the normalization
constants in (3.1) become just the number of 1s in the
respective matrices, i.e. the weighting is the same as used
with the Boolean methods. But as the factor matrices
are allowed to be non-negative rather than binary, the
errors are not computed equivalently. As the element-
wise errors are squared, all residual errors less than 1
are considered less than their face value; this generally
favors dense factors that yield small errors in most (if
not all) elements. As the Boolean methods cannot have
errors smaller than 1, using Frobenius distance generally
places them in a disadvantage. On the other hand, if
we use sum of absolute differences, the small error made
by JSNMF yields high overall error — but this approach is
unfair to JSNMF.

We resolve this problem by reporting, when applica-
ble, both types of error for JSNMF. When we report the
error in the sum of absolute distances, the method is re-
ferred as JSNMFg, and when we report the error using the
squared residual error, we use JSNMFr. In both cases the
underlying algorithm is the same, just the error metrics
changes.

As JSNMF is based on iterative updates form a
random starting point, all results are the best of 13 re-
starts with identical parameters. The maximum number
of iterations was set to 300.

The various parts of the algorithms were imple-
mented using Matlab, C, and Python. For mining the



closed itemsets we used Christian Borgelt’s implementa-
tion? of the FPgrowth algorithm [5].

6.1 Synthetic Data. The purpose of the experi-
ments with the synthetic data is to study, in a controlled
manner, the effects various data characteristics have to
the algorithms. These characteristics are (i) noise level;
(i1) number of shared factors; (4i) number of specific
factors; and (iv) density of the factors. In addition, we
also varied [, the number of columns in Y: it was set
to either [ = 40, representing a case with a narrow data
matrix, or to [ = 200, representing a case with a more
square data matrix. The number of rows in X and Y
was always 150 and the number of columns in X was
always 110.

To create the synthetic data we created random fac-
tor matrices W, U, V, H, and L for each combination
of parameters. The factor matrices were multiplied to
form X and Y, after which the noise was added. This
process was repeated to create 10 random data matrix
pairs for each parameter combination. The default val-
ues for the parameters were: noise level 5% (with respect
to the number of 1s in the data), number of shared fac-
tors k = 10, number of specific factors p = ¢ = 10, and
density of factor matrices 0.05.

In the following figures, Boolean methods are
compared to JSNMFr when the Boolean methods used
weighted loss (i.e. when all methods used the same
weighting scheme). Notice that the error of JSNMFg
is the weighted squared Frobenius distance, not the
(weighted) sum of absolute distances. That error was also
computed (JSNMFg), but the results were considerably
worse than those of the other methods, and are omitted.
In the figures, all points are averages over the 10 random
matrices (5 in Fig. 5) and the width of the error bars is
twice the standard deviation.

Noise. Figure 1 presents the results with varying
noise level. Here [ = 200 and the noise level is reported
with respect to the number of 1s in the data matrices.

From Fig. 1(a) (unweighted loss) we can see that,
rather unsurprisingly, the error of the methods increases
as the noise level increases. Furthermore, the increase is
almost linear (notice that the z-axis is not linear). All
three methods are close to each other, with the order
being, as expected, SharedAsso (the worst), Dominated,
and ConcatAsso (the best).

Using the weighted loss (Fig. 1(b)) does not change
the ordering of the Boolean methods. But some-
what surprisingly, JSNMFr is worse than Dominated or
ConcatAsso with smaller amounts of noise. Apparently
here the Boolean methods can use the power of the

Zhttp://www.borgelt.net/fpgrowth.html

Boolean arithmetic while JSNMF cannot benefit form its
larger expressive power.

Number of Shared Factors. Figure 2 presents
the error when the number of shared factors increases.
This also yields increase in the reconstruction error, as
is to be expected: the more there are latent factors, the
more complex combinations of them appear in the data,
making the decomposition harder. In all cases the order
of the Boolean methods is the same as it was in Fig. 1.

In Fig. 2(a) we can see the results when Y is narrow,
that is, has only 40 columns. Here, when k£ < 20, all
methods have very small variance and results close to
each other; with k = 20, though, JSNMFf is clearly
the best, and all methods have much higher standard
deviation.

With Y having 200 columns (Fig. 2(b)), the results
are slightly different. With k£ = 5,10, Dominated is
better than JSNMFg, and still with k& = 20, ConcatAsso
is the best.

Number of Specific Factors. The results for
varying the number of specific factors (Fig. 3) mostly
follow those presented above. Again, with low values
of p and ¢, JSNMF is slightly better than SharedAsso,
but slightly worse than Dominated and ConcatAsso.
With p = 10,q = 30 it is in par with ConcatAsso.
Note, however, that with weighted errors (Fig. 3(b)) and
p = 10,9 = 30, Dominated is just slightly worse than
SharedAsso. The probable reason for this is discussed
below.

Density of the Factor Matrices. The results of
Fig. 4 probably explain some of the phenomena we have
seen above. First, in weighted and unweighted case we
can see that as the density increases, Dominated becomes
significantly worse. This not surprising, as higher
minimum support threshold for closed itemset mining
was used for denser matrices. In other experiments,
and here with factor matrix density 0.05, no minimum
support threshold was used; with factor matrix density
0.2, the resulting data matrix was so dense® that
minimum frequency threshold of 0.6 was used in order
to make the algorithm run in competitive time. This
clearly had the expected adverse effect on the results.

On the other hand, from Fig. 4 we also see that
JSNMFg is, for the first time, clearly the best method.
This probably explains why it is doing better with higher
number of shared or specific factors: as the overall
number of factors is increased, the expected density
of the data also increases, and JSNMFg seems to be least
affected with that.

3The expected density of the data matrices is 1 — (1 — d?)*+?,
where d is the density, i.e. with d = 0.2 and k£ = p = 10, the
expected density is 0.56.
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Figure 1: Reconstruction error with respect to noise.
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Figure 2: Weighted reconstruction error with respect to
the number of shared factors. (a) Y has 40 columns.
(b) Y has 200 columns.

Selecting the Rank. The MDL method for select-
ing the ranks was tested with data for varying k, varying
p and ¢, and varying noise level. Only the [ = 200 ver-
sion was used. In the first two cases, we only tried to
estimate the varied parameter (k or p = ¢), while the
other parameter(s) were kept constant. With varying
noise levels, all parameters were varied. The results for
varying k and noise level are presented in Fig. 5. The
results for varying p and g were similar to the results for
varying k.

To estimate k, the algorithms were run with k
taking values from 1 to 40, and the value of k giving
the smallest encoding length was selected. This was
repeated for the five random copies of the synthetic data,
and the results in Fig. 5(a) are the averages over these
matrices. Generally all methods work reasonably well,
though SharedAsso tends to overestimate, and, with
true k£ = 20, the other two underestimate slightly.

With varying noise level, all parameters were esti-
mated. True parameters were k = p = ¢ = 10, and the
tried values were 2,4,6,...,40. In total 400 parameter
configurations were tried as p and ¢ were fixed equal.
Again, the results are averages over five random data
with identical parameters. The results, in Fig. 5(b),
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Figure 3: Reconstruction error with respect to the num-
ber of specific factors. (a) Unweighted loss. (b) Weighted
loss. x-axis shows ¢, the number of specific factors to Y.
The number of specific factors to X, p, was equal to ¢
except with ¢ = 30, when p = 10 was used.
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Figure 4: Reconstruction error with respect to factor
matrix density. (a) Unweighted loss. (b) Weighted loss.
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show clearly that Dominated is the best method in this
experiment. It returns almost perfect answer (very
slightly overestimating k& and underestimating p and
q). SharedAsso gives initially a good estimate to k, but
starts to underestimate as noise level increases, and con-
stantly overestimates p and q. In addition, SharedAsso
suffers from very large deviation within noise levels. Fi-
nally, ConcatAsso is not affected by noise, but constantly
overestimates k and underestimates p and q.

Discussion. The synthetic experiments mostly
agree with the intuition: of the Boolean methods the
ConcatAsso algorithm is the best, but with only small
margin to the Dominated algorithm in most cases. The
Dominated algorithm then is typically somewhat better
than SharedAsso, except when the data is more dense.

Perhaps somewhat surprisingly, JSNMF is usually no
better than the Boolean methods. Furthermore, JSNMF
returns the densest factor matrices (this is studied more
below) and was almost always the slowest method.

When estimating the ranks, Dominated is the best
performer. Its performance also establishes that the
proposed MDL method works.
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Figure 5: Estimated reconstruction ranks. (a) Estimated
k for different true values of k. (b) Estimated ranks
for true K = p = ¢ = 10 and varying noise. Solid
lines represent estimated k and dashed lines represent
estimated p and gq.

6.2 Real-World Data. The algorithms were also
studied using five real-world data sets of varying charac-
teristics. The main focus is again on the reconstruction
error, but also the density of the factor matrices was
studied. All data sets come with row and/or column
labels, and we will also provide some examples on the
found factors. But as the space constraints render all
such studies anecdotal at the best, the focus will be on
the numerical results.

The five data sets used are the following. The
News data contains an excerpt of the 20 Newsgroups
data*. Matrices X and Y contain posts from newsgroups
sci.space and soc.religion.christian, respectively.
Both matrices have 100 columns (documents) and the
rows are 800 most common terms (excluding the stop
words). As the data is binary, only the presence of the
term is recorded, not its frequency. The DBLP® data
contains information about authors that have published
in 19 conferences and their co-authors. Here, rows
correspond to the authors and columns of X are the
conferences (i.e. X has 19 columns), while the columns of
Y represent the same authors as the rows, and therefore
Y is symmetric. The data has 2345 authors.

The Mammals data is a subset of the European Mam-
mal Atlas® [12]. The rows correspond to spatial locations
in Europe, and matrix X records the presence of car-
nivorous mammal species while matrix Y records the
presence of herbivorous species. There are 2670 spatial
locations, 40 carnivorous species, and 51 herbivorous
species. The Web data’ contains terms from the web
pages of US Universities’ CS departments. The rows

Thttp://people.csail.mit.edu/jrennie/20Newsgroups/

Shttp://www.informatik.uni-trier.de/~ley/db/

Shttp://www.european-mammals.org

"http://www.cs.cmu.edu/afs/cs/project/theo-11/wuw/
wwkb/

correspond to the pages. The columns of X correspond
to the terms found in the body text of the page and the
columns of Y correspond to the terms found in links
pointing to that page. There are 1051 pages, 1798 terms
in the body text, and 438 terms in the links.

Finally, the Tags data is gathered from the La-
belMe® [13] and Flickr? databases. The rows correspond
to 119 tags associated to images, and the columns cor-
respond to the images. The data has 735 images from
LabelMe and 4159 images from Flickr.

Reconstruction Error. We only give the results
with weighted loss functions (Table 1); the unweighted
results were analogous. The two JSBMF methods,
Dominated and SharedAsso, are mostly very close
to each other, but unlike with synthetic data, here
SharedAsso is often somewhat better. Part of this is
probably due to the fact that Dominated had to use 5%
minimum support with the Web data and 10% minimum
support with the Mammals data. Nevertheless, the
differences between the best and worst Boolean method
(including ConcatAsso) are typically small, peaking at
15% with the Tags data.

In all other data sets except the DBLP data there is
a pair of parameter configurations that keep the total
number of factors used to explain each matrix constant
(the first and the last row of each data sets’ results). This
allows us to study the effects of increasing the fraction
of shared factors. One could assume that this decreases
the reconstruction error slightly, as the shared factors
cannot cover the specific parts of data that well.

Indeed, this seems to be the case. Interestingly,
though, with News and Web data, increasing the total
number of factors per matrix from 16 to 20 did not
improve ConcatAsso’s results, and moreover, it even
increased the error of Dominated.

Comparing the results of the Boolean methods to
JSNMFr and JSNMFg we see that even if the Boolean
methods were on a par with JSNMFg in the synthetic
experiments, with real-world data JSNMFy obtains smaller
reconstruction errors (the sole exception being the first
row of Tags data, where ConcatAsso is better), whereas
in all cases, JSNMFg is much worse than any other
method (as expected). That JSNMFr is better than
the Boolean methods is also in accordance with the
results from the previous studies where Boolean and
non-negative methods are compared (e.g. [10]). Yet,
with the exception of the Mammals data, the difference
is modest. The behaviour with the Mammals data is
probably explained by the fact that it is the most dense
of the tried data sets.

Shttp://labelme.csail.mit.edu/
mttp://www.flickr.com/



Table 1: Weighted reconstruction errors for real-world data. JSNMFr uses squared Frobenius distance, all others

use sum of absolute distances. Values are scaled by 10°.

Dataset (k,p,q) Dominated SharedAsso ConcatAsso JSNMFg JSNMFE
News (4,16, 16) 9.57 9.27 9.25 18.06 7.40
(8,8,8) 11.62 11.03 11.02 20.96 8.87

(16,4,4) 12.61 11.02 11.02 21.18 8.88

DBLP (4,8,20) 288.76 265.90 250.16 496.19 221.27
(8,4,16) 316.19 268.44 253.48 522.15 225.29

Mammals (4,8,8) 196.79 183.13 174.11 294.85 117.16
(8,4,4) 217.11 206.17 205.36 362.76 144.88

Web (4,16, 16) 306.73 303.83 297.66 560.00 260.08
(8,8,8) 326.00 315.74 312.04 576.43 273.51

(16,4,4) 339.78 312.79 312.04 593.77 271.24

Tags (4,16, 16) 161.12 157.03 121.19 287.54 135.59
(8,8,8) 176.13 179.32 156.11 311.02 150.99

(16,4,4) 166.84 162.60 156.11 299.57 142.15

Density of the Factors. In addition to the recon-
struction error, the density (or sparsity) of the factor
matrices is an important characteristic in many appli-
cations. The Boolean methods generally produce very
sparse factors.

The matrix decomposition methods based on the
standard linear algebra, on the other hand, tend to
produce very dense factors, at least if no regularizes are
used to control the density. We are not aware of any joint
subspace matrix factorization algorithm that would use
regularizes, and therefore we used JSNMF also in these
experiments. The results are presented in Table 2.

As can be readily seen from Table 2, JSNMF produces
much denser factors than any of the Boolean methods,
which tend to produce very similar densities with each
other. Unsurprisingly, SharedAsso produces almost
always denser factors than Dominated.

Selecting the Ranks. The description lengths for
the computed factorizations can be found in Table 3. The
purpose of this experiment was not to find the optimum
parameter combination for each data, as that would
require very extensive computations; rather, the goal
is to study if the selected parameter combinations give
rise to any special phenomena. Thus the code lengths
themselves are less interesting than their relations to
each other.

The first notable phenomenon is that all values are
close to each other within same data set. In the case of
News, Mammals, and Web, SharedAsso and Dominated
agree with the parameter combination. Excluding the
Mammals data, ConcatAsso agrees with either one of
the two.

Studying the trends within data, we notice that
Mammals seems to benefit from moving factors to
shared subspace, even if this increased the error (and
average density). Similar thing happens with Tags and
Dominated, where moving from (4,16,16) to (8,8,8)
decreases the MDL score. This shows how the MDL
principle works with JSBMF: even if moving factor
matrices from specific subspaces to shared subspace can
never improve the error (if the total number of factors is
reduced), it can improve the MDL score by being easier
to encode.

Interpertability of the Results. One of the
main reasons behind using the Boolean methods is the
interpretability of the results [10]. The iterpretability
of plain BMF is studied previously (see e.g. [10]), and
therefore we concentrate here on the specific properties
of JSBMF.

Because of space constraints, we only report results
with the News and Tags datasets. For News, the
algorithm was Dominated without weighting (as the
matrices are of the same size and of similar density,
weighting would have not changed the results much) and
the parameters were k = p = ¢ = 8. The shared factors
in W contain terms that appear in both newsgroups.
This can be easily seen from the results. The factors
in W are rather sparse (no more than 30 terms in any
of the factors), and contain words such as ‘year’; ‘fact’,
“system’, ‘air’, ‘understand’, ‘human’, ‘true’, ‘teach’ or
‘fact’, ‘live’, ‘discuss’, ‘question’ — clearly general words
found in any English corpus. Interestingly, W contains
also factors with terms ‘christian’, ‘god’ and ‘space’.
While these terms are often associated to one of the



Table 2: Average densities (fraction of non-zero elements) of the factor matrices.

Dataset (k,p,q) Dominated SharedAsso ConcatAsso JSNMF
News (4,16,16) 0.075 0.080 0.082 0.499
(8,8,8) 0.080 0.090 0.096 0.611
(16,4, 4) 0.065 0.089 0.096 0.712
DBLP (4,8,20) 0.035 0.043 0.051 0.768
(8,4, 16) 0.029 0.043 0.059 0.790
Mammals  (4,8,8) 0.247 0.234 0.224 0.860
(8, 4 ,4) 0.251 0.269 0.265 0.906
Web (4,16,16) 0.030 0.030 0.024 0.850
(8,8,8) 0.030 0.029 0.025 0.899
(16,4,4) 0.024 0.022 0.025 0.952
Tags (4,16,16) 0.102 0.117 0.089 0.996
(8,8,8) 0.111 0.134 0.109 0.998
(16,4,4) 0.115 0.122 0.109 0.999

Table 3: MDL scores for different parameter combina-
tions. Values are scaled by 10%.

Dataset
(k,p,q) Dominated SharedAsso ConcatAsso
News
(4,16,16) 3.544 3.575 3.584
(8,8,8) 3.532 3.571 3.565
(16,4,4) 3.535 3.576 3.565
DBLP
(4,8,20) 26.612 26.663 27.350
(8,4,16) 26.593 26.704 27.359
Mammals
(4,8,8) 10.448 10.033 9.668
(8,4,4) 10.217 9.892 9.830
Web
(4,16,16) 43.886 43.818 43.755
(8,8,8) 44.439 43.984 44.086
(16,4, 4) 44.968 43.880 44.086
Tags
(4,16,16) 13.423 13.588 13.858
(8,8,8) 13.354 13.611 13.800
(16,4, 4) 13.714 13.622 13.800

newsgroups, they in fact are common enough to appear
in both newsgroups’ posts.

Matrix U contains terminology that is specific to the
newsgroup sci.space, for example, ‘planetary’, ‘nasa’,
‘rocket’, ‘astronomy’ or ‘fuel’, ‘chemistry’, ‘spacecraft’,

‘lunar’. Similarly, V' has terms typical to discussion
about Christianity: ‘bibl’, ‘holy’, ‘cathol’, ‘scriptur’,
‘testam’ or ‘david’, ‘paul’, ‘book’; ‘jewish’, ‘condem’,

‘corinthian’. Notice that as the Boolean decomposition
does not penalize for overlapping factors, same words
appear many times: for example the term ‘bibl’ appears
in five of eight factors in V.

For Tags data, the algorithm was again Dominated
but this time with weighting (as the matrices have
different characteristics). The parameters were k = p =
q = 8, as this was the MDL-optimal combination. The
two matrices have very different density, and this can be
seen from the results. The LabelMe data (in matrix X)
has density of about 12%, while the Flickr data (in matrix
Y') has much lower density (about 3%). Consequently,
the specific factors in U have more elements that those
in V. The factors in W are in between, having generally
fewer items than the factors in U but more than those in
V. All factors were meaningful; for example the factor
having words ‘sky’ and ‘tree’ in W has tags that can be
used to describe many outdoor images. Another factor
had tags ‘building’, ‘car’, ‘road’, ‘sidewalk’, and ‘tree’ —
together they fit to many images from city streets.

The factors in U were more specific than those in
W. An example is ‘building’, ‘car’, ‘headlight’, ‘mirror’,
‘road’, ‘sidewalk’, ‘windshield’, which provides more
specific designation of the images.



Scalability. The algorithms were run on Linux
servers with 8 hyperthreading 2.5GHz cores and 32GB of
main memory. All reported times are wall-clock times.

In general, the three Boolean methods are approx-
imately equivalently fast. With the News data, for ex-
ample, they all took around 11 seconds to find the de-
compositions for the three different parameter combi-
nations. JSNMF was considerably slower, taking over
100 seconds. An exception to this was the Mammals
data, where SharedAsso was the fastest needing 15 sec-
onds, ConcatAsso was second with 27 seconds, JSNMF
was third with 108 seconds, and Dominated needed in
total 1700 seconds. This increase in Dominated’s time is
explained by the density of the Mammals data and the
consequently high number of closed itemsets. Almost all
of that time was spend on building the set system and
solving the Max k-cover.

We also experimented increasing the minimum
support for closed itemsets with Mammals data from 10%
to 20%. This reduced the running time to 202 seconds
with almost no effect to the error.

7 Related Work

Boolean matrix factorizations have enjoyed some amount
of research interest in data mining recently. They were
introduced in data mining in [10], although similar
concepts, such as tiling [2], had been studied earlier.
The algorithm of Belohlavek and Vychodil [1] stems
from different, but closely related origin: formal concept
analysis.

Joint (or shared) subspace learning is also an emerg-
ing topic in data mining and machine learning. The uses
include relational learning [14], theme discovery [8], tag-
ging [15], multi-label classification [6], and social media
retrieval [4]. Here we have understood shared subspace
learning in a broad sense; of the above, only [4,8,14] do
matrix factorization. Of these, only [4] allows mixing
shared and specific factors in the way we do.

8 Conclusions

We have formulated the JSBMF problem and presented
three algorithms to solve it. The algorithms are,
arguably, rather simple and straight forward. We
consider this being a virtue of the algorithms, not a
drawback: their simple construction allows for efficient
implementation, as is demonstrated in the experiments.
The experiments show that the algorithms work as
expected, and with synthetic data they were even better
than the JSNMF algorithm. With real-world data JSNMF
obtained smaller reconstruction error, but also returned
much denser factor matrices. The benefits of the Boolean
decomposition are rarely on better reconstruction error;
rather, Boolean factorizations benefit from sparse and

easy-to-interpret factors. The case of joint subspace
factorization seems to be no different.

This paper focuses on the methodology of doing the
joint subspace Boolean factorization. While we did not
study the applications, save the data exploration done
using JSBMF, one could easily think that JSBMF could
be applied to similar tasks as, say, JSNMF has been
applied. Studying these applications is an interesting
topic for the future work.
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