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Redescription Mining: An Overview
Esther Galbrun and Pauli Miettinen

Abstract—In many real-world data analysis tasks, we have
different types of data over the same objects or entities, perhaps
because the data originate from distinct sources or are based
on different terminologies. In order to understand such data, an
intuitive approach is to identify the correspondences that exist
between these different aspects. This is the motivating principle
behind redescription mining, a data analysis task that aims at
finding distinct common characterizations of the same objects.
This paper provides a short overview of redescription mining;
what it is and how it is connected to other data analysis methods;
the basic principles behind current algorithms for redescription
mining; and examples and applications of redescription mining
for real-world data analysis problems.

Index Terms—Redescription mining, alternative characteriza-
tions, visualizations, data mining.

I. INTRODUCTION

CONSIDER an ecologist who wants to understand the
bioclimatic conditions that define species’ habitats.1 She

has data on the regions where the species live and on the
bioclimatic conditions (e.g. monthly average temperatures and
precipitation) of those regions, and she would like to find
explanations such as the following.

The areas inhabited by either the Eurasian lynx or
the Canada lynx are approximately the same areas as
those where the maximum March temperature ranges
from −24.4 ◦C to 3.4 ◦C.

The above is an example of a redescription. It describes
regions of the earth in two different ways; on the one hand,
by the fact that certain species inhabit them, and on the other
hand, by the fact that they have a certain climate. We can see
the areas described above in Figure 1. The medium purple
colour denotes the areas where both of the above conditions
hold (inhabited by one of the lynx species and with maximum
March temperatures in the correct range), light red denotes the
areas inhabited by one of the lynx species but where March
temperatures are out of the range, and dark blue denotes the
areas where the maximum March temperature is in the correct
range but neither of the lynxes is found.

Informally, a redescription is a pair of descriptions, both de-
scribing roughly the same entities (here, geographical regions).
And, as we can see from this example, both the descriptions
and what they describe can be of interest. The ecologist is
interested in the descriptions in order to understand the model
of the niche and in the geographical areas in order to understand
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1In ecology, the task is known as bioclimatic niche (or envelope) finding
[2, 3].

Figure 1. Map of a bioclimatic niche. The areas inhabited by either the
Eurasian lynx or the Canada lynx (light red and medium purple) and the areas
where the maximum March temperature is between −24.4 ◦C and 3.4 ◦C
(dark blue and medium purple).

where the niche is (or is not). While such redescriptions could
be constructed manually, the goal of redescription mining is to
find them automatically without any information other than the
raw data (and some user-provided constraints). For instance,
the ecologist should not have to define the species she is
interested in. Rather, the goal of redescription mining is to
find all redescriptions that characterize sufficiently similar sets
of entities and adhere to some simple constraints regarding,
for example, their type and complexity and how many entities
they cover.

In this article, we present a brief overview of redescription
mining. We start by giving the formal definition of the task in
the next section. In Section III, we explain the main algorithmic
ideas used in redescription mining, before discussing the
techniques for removing redundant redescriptions, in Section IV.
Sections V, VI, and VII contain, respectively, a brief study
of the existing redescription mining tools, an outline of some
example applications, and a summary of related methods. We
present some open problems and directions to future work in
the concluding Section VIII. We will not delve into the details
of the different algorithms, tools, or applications. Such details
can be found in the original publications, as well as in our
recent tutorials2 and book [1].

II. FORMALIZING THE TASK

Redescription mining can, of course, be applied to other
use cases than bioclimatic niche finding, but we will use that
example as our running example throughout this article. In this
section we provide the formal definition of redescription mining.
Our definition uses the so-called table-based model [1]; other,
more general, formulations exist (see [1]), but that generality
is unnecessary for the discussion in this article.

2Slides available at http://siren.mpi-inf.mpg.de/tutorial/
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In the table-based model, the data are arranged as a table
(or tables; we will discuss that below). The rows of the table
D correspond to the entities in the data and the columns
correspond to the attributes; for example, in the bioclimatic
niche finding example, the geographical regions are the entities,
the table contains one row for each location where observations
have been recorded, and the species and bioclimatic variables
(that is, the observations) are the attributes. The value of
attribute j in entity i is denoted as dij . The attributes can be of
different types, such as binary, categorical, or numerical, and
some entity–attribute values might be missing. In our example,
the presence or absence of a species in a region constitutes
a binary attribute, whereas the bioclimatic variables, such
as temperatures or precipitations, are recorded as continuous
numerical attributes.

A redescription is a pair of descriptions, and we formalize
the descriptions as Boolean queries over the attributes. Each
predicate in the queries assigns a truth value to (observed)
entity–attribute pairs, that is, to the elements of a column of the
data table. The queries over the predicates and their negations –
together known as literals – in turn assign a truth value to each
entity. The query can, in principle, be an arbitrary Boolean
function of the literals, but it is common to restrict the queries
to some query language for the sake of interpretability and
efficiency of computation. Common query languages include
monotone conjunctive queries, linearly parsable queries (where
each variable can appear at most once and both conjunction
and disjunction operators have the same precedence), and tree-
shaped queries (a special case of disjunctive normal forms,
encoding the paths from the root to the leaves in a decision
tree).

Applying this formalism to our example niche redescription,
the query corresponding to ‘The areas inhabited by either
Eurasian lynx or Canada lynx’ could be written as

Eurasian lynx ∨ Canada lynx ,

and the query ‘maximum March temperature ranges from
−24.4 ◦C to 3.4 ◦C’ as

[−24.4 ≤ t+3 ≤ 3.4] .

To avoid tautological redescriptions (e.g. ‘Eurasian lynx lives
where Eurasian lynx lives’), we require that the queries do not
share any attributes. In many applications, the attributes have a
natural division into two disjoint sets. In our running example,
the species form one set of attributes and the bioclimatic
variables form the other set. In these cases, it is natural to
model the data, not as a one, but as two data tables; one table
for the species and one table for the bioclimatic variables, in
our example. In this setup, the queries of a redescription are
required to be over attributes from different tables.

The support of a query q, supp(q), is the set of entities
(rows) that satisfy the query.3 The support of the query
Eurasian lynx ∨ Canada lynx contains the regions depicted
in light red and in purple in Figure 1, while the support of

3Some sources call this set the support set and reserve the term support for
what we call the size of the support.

the query [−24.4 ≤ t+3 ≤ 3.4] contains the regions depicted in
dark blue and in purple.

To form a good redescription, the queries should explain
roughly the same entities, that is, their supports should be
similar. The most common choice for measuring the similarity
of the supports is the Jaccard (similarity) index J , defined as

J(p, q) = J(supp(p), supp(q)) =
|supp(p) ∩ supp(q)|
|supp(p) ∪ supp(q)|

.

The Jaccard index is by no means the only possible similarity
measure, but it is by far the most common one. Its use
can be motivated in many ways. For example, when using
algorithms based on decision-tree (see Section III), it has a
natural connection to the information gain splitting criteria [4].
On the other hand, if we consider redescription mining as
mining bi-directional association rules (see again Section III),
the Jaccard index of a redescription can be interpreted as the
lower bound on the confidence of the corresponding association
rules conf(p⇒ q) and conf(q ⇒ p).

How similar should their supports be for the pair (p, q) to
be considered a valid redescription is something the user must
decide, depending on the data and her needs. Therefore, we say
that the supports of p and q are similar enough if J(p, q) ≥ τ
for some user-specified constant τ ∈ [0, 1], and write p ∼ q.

We can now define what a redescription is. For data that
consist of two tables, D1 and D2, a redescription is a pair
of queries (p, q) expressed over attributes from D1 and D2,
respectively, such that p ∼ q. In addition, a redescription might
have to satisfy other constraints specified by the user, such as
limitations on the size of the support, the maximum p-value,
or the complexity of the queries (in terms of the number of
variables involved, for instance). Then, the goal of redescription
mining is to find all valid redescriptions pi ∼ qi that also satisfy
the other potential constraints.

III. ALGORITHMS

Readers familiar with classification and association rule
mining might have noticed similarities between redescription
mining and these two core data mining tasks. These two tasks
provide basic techniques that have been adapted to develop
algorithms for mining redescriptions.

Consider a case where one query is fixed and the goal is to
find a matching query to make a good redescription; taking
the support of the fixed query as the labels of the entities, the
problem becomes that of a binary classification problem (see,
e.g. [5, Ch. 10]). This fact has inspired a family of iterative
algorithms that alternate between the views to build the re-
descriptions. These algorithms derive target labels from a query
obtained at a previous iteration and use classification techniques,
typically decision tree induction, to build a matching query in
the next iteration. The first algorithm proposed for redescription
mining, the CARTwheels algorithm [4], is based on the idea
of alternatively growing decision trees over one data table
with only binary attributes. The decision-tree-based methods
for arbitrary data types introduced by Zinchenko et al. [6]
also belong to this family of redescription mining algorithms.
Predictive clustering trees were used in a similar manner for
mining redescriptions by Mihelčić et al. [7].
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On the other hand, association rule mining (see, e.g. [5,
Ch. 4]) can be seen as a precursor of redescription mining,
with the latter allowing for more complex descriptions and
focusing on equivalences instead of implications [4]. This
inspired algorithms that first mine queries separately from the
different views before combining the obtained queries across
the views into redescriptions. The method proposed by Zaki
and Hsiao [8] and the MID algorithm of Gallo et al. [9] both
belong to this second family of algorithms. Along similar lines,
Zaki and Ramakrishnan [10] studied exact and conditional
redescriptions over binary data, focusing on conjunctive queries,
while Parida and Ramakrishnan [11] studied the theory of exact
redescriptions over binary attributes, where the queries are pure
conjunctions, whether in monotone conjunctive normal form
or monotone disjunctive normal form.

A third approach for mining redescriptions consists in
growing them greedily. Such a strategy of progressively
extending the descriptions by appending new literals to either
query, always trying to improve the quality of the redescription,
was first introduced as the Greedy algorithm of Gallo et al.
[9]. Building upon this work, the ReReMi algorithm Galbrun
and Miettinen [12] extended the approach to handle categorical
and numerical attributes along with binary ones and use a beam
search to keep the current top candidates at each step instead
of focusing on the single best improvement.

The proposed algorithms can also be divided between exhaus-
tive and heuristic strategies. Mine-and-pair algorithms based
on association rule mining techniques are typically exhaustive.
Alternating algorithms based on decision tree induction and
algorithms that grow the queries greedily typically rely on
heuristics.

While the first algorithms only considered binary attributes,
more recent ones also allow to handle numerical and categorical
attributes, possibly including missing entries. In this latter case,
when calculating the supports of the queries and the similarity
of the supports, a choice needs to be made about how to
handle the entities for which the status of the queries cannot
be determined due to missing values. Potential approaches
include – but are not limited to – assuming that the queries
always evaluate false on such entities [7] or assuming that they
evaluate true or false depending on what is the most or the least
favorable in terms of support similarity [12]. In fact, evaluating
whether there is a way the query can evaluate true is NP-hard
in general, though this is not the case with any of the query
languages that are used with the existing algorithms. Of course,
the actual mining algorithm also has to support missing values.
For example, in algorithms using decision tree induction, the
induction procedure must be able to handle missing values.

IV. SETS OF REDESCRIPTIONS

Redescription mining, as defined above, is an exhaustive
enumeration task, the goal being to output all valid re-
descriptions that satisfy the constraints. This is a common
approach in data mining (cf. frequent pattern mining), but it
can yield many redundant redescriptions. Filtering away the
redundant redescriptions, however, requires us to define what
redescriptions are redundant.

Perhaps the simplest approach is to consider the supports of
the queries. We can order all (valid) redescriptions descending
in their similarity, take the topmost redescription, move it to
the list of non-redundant redescriptions, and mark the entities
in its support ‘used’. We can then re-evaluate the remaining
redescriptions while only taking into account the non-used
entities. All redescriptions that are deemed invalid (e.g. their
support becomes too small or their Jaccard index too low) are
considered redundant and removed. We repeat the process with
the remaining redescriptions and entities until either the list of
redescriptions or the set of entities becomes empty.

This simple approach can filter out too many redescriptions,
as it only considers their support and not the attributes that
appear in the descriptions. Kalofolias et al. [13, 14] presented
another approach for defining redundant redescriptions based
on maximum-entropy distributions and the subjective interest-
ingness approach of De Bie [15]. They model the data using
a maximum-entropy distribution that is constrained so that the
already-observed redescriptions have a high probability (or
are certain) to occur. The other redescriptions are then ranked
based on their likelihood of being true in a data following this
model. The redescription that is the least-likely (i.e. the most
surprising) is added as a constraint, the model is re-learned,
and the remaining redescriptions are re-evaluated.

V. TOOLS

The Siren tool was developed for mining, visualizing, and
interacting with redescriptions [16–18]. It provides a complete
environment for redescription mining, from loading the data
to finally exporting the results into various formats, through
mining, visualizing, and editing the redescriptions.

Having good visualizations is crucial, of course, when
designing a tool for visual data analysis. Indeed, visualization
is the key to understanding the results of the mining process
and we designed several visualizations for redescriptions. Maps,
like the one presented in Figure 1, are a great way to understand
where the queries hold (and do not hold), but require, naturally,
that the entities are associated with geographical locations.
Parallel coordinates plots are especially useful to understand the
conditions appearing in the queries, as they allow to visualize
the range of values selected by the predicates. Our example
redescription depicted in a parallel coordinates plot is shown
in Figure 2.

For redescriptions using decision tree induction and for tree-
shaped queries more generally, tree diagrams reveal the tree
structure underlying the queries, facilitating the interpretation
of descriptions that can otherwise appear rather convoluted. A
tree-shaped equivalent of our example redescription depicted
in a tree diagram is shown in Figure 3.

Visualizations in Siren are linked, so that the user can
highlight an entity across different visualizations of the same
redescription, or interactively adjust the thresholds in the
queries through the parallel coordinate plot, for instance. In
addition, the tool allows to use different levels of automation
when mining redescriptions, from letting the algorithm run fully
automatically given a set of parameters, to letting the user edit
the results fully manually, through partial automation where
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Figure 2. Parallel coordinates plot of our example redescription. Every line
corresponds to one geographical location (entity) and the colours of the lines
are as in Figure 1, except that grey correspond to locations where neither of
the queries hold. The plot has three vertical axes corresponding to the three
attributes in the redescriptions. The grey boxes in these axes correspond to the
range of the values of the corresponding variable in the query; if a line passes
through a gray box, the predicate corresponding to the attribute evaluates true
for this entity.

Figure 3. Tree diagram of a tree-shaped equivalent of our example redescription.
Solid leaf nodes correspond to paths in the tree where the queries evaluate
true, while empty leaves correspond to paths where the queries evaluate false.
Lines between the two trees are as in Figure 2.

the algorithm extends and optimizes candidate redescriptions
provided by the user.
Siren also allows to perfom support-based filtering on a set

of redescriptions as explained in Section IV: the redescriptions
are reranked and the redundant ones are marked.

Recently, Mihelčić and Šmuc [19] proposed a tool called
InterSet for visualizing and working with sets of redescrip-
tions. The tool allows to cluster redescriptions based on their
shared attributes and shared entities. The user can also visualize
the statistics of a set of redescriptions, such as the distribution
of their Jaccard indices or of their pairwise support overlap,
and filter the redescriptions based on those statistics.

VI. APPLICATIONS

Redescription mining has been applied in various domains.
Here, we present three examples from ecology, from biology
and from social and policital sciences, respectively.

Instead of modelling the distributions of species directly,
as in the niche finding example presented earlier, one might
look at the distributions of functional traits of species. Galbrun
et al. [20] consider dental traits of large plant eating mammals
and bioclimatic variables (derived from temperature and
precipitation records) from around the globe, looking for
associations between teeth features and climate. The teeth
of plant-eating mammals constitute an interface between the
animal and the plant food available in its environment. Hence,
teeth are expected to match the types of plant food present in
the environment, and dental traits are thus expected to carry a
signal of environmental conditions. In this study, three global
zones are identified, namely a boreal-temperate moist zone,
a tropical moist zone, and a tropical-subtropical dry zone,
each associated to particular teeth characteristics and a specific
climate.

Mihelčić et al. [21] use redescription mining to relate clinical
and biological characteristics of cognitively impaired patients,
with the aim of improving the early diagnosis of Alzheimer’s
disease. In this study, one data table consists of biological
attributes derived from neuroimaging, from blood tests, and
from genetic markers, for instance, while the other data table
contains clinical attributes that record patients’ answers to
several questionnaires, observations by physicians, and results
of cognition tests. The results obtained largely confirmed the
findings of previous studies. In addition, they highlighted
some additional biological factors whose relationships with the
disease require further investigation, such as the pregnancy-
associated plasma protein-A (PAPP-A), which they found to
be highly associated with cognitive impairment in Alzheimer’s
disease.

Galbrun and Miettinen [22] applied redescription mining
to analysing political opinion polls. Specifically, they used
data from Finnish on-line voting advice applications, where
candidates in the Finnish parliamentary elections have answered
to a number of questions regarding their opinions on political
matters, and had also provided socio-economical background
data. Galbrun and Miettinen [22] analysed, first, the correlations
between the socio-economical status and the political opinions
of candidates, and, second, compared the answers of candidates
who run for both 2011 and 2015 elections between these years.
Their findings partially followed the party platforms, but they
also found unsuspected connections; for example, candidates
who were over 37 years old or who had children were not
strongly supporting legalizing euthanasia, and vice versa.

VII. RELATED METHODS

As we have seen, the work on redescription mining has
significantly expanded and diversified since the task was first
formalized by Ramakrishnan et al. [4]. Problem variants have
also been introduced: storytelling aims at building a chain of
redescriptions linking given objects or queries while relational



5

redescription mining aims to find redescriptions in heterogenous
networks.

Beside classification and association rule mining (see Sec-
tion III), the task also has connections with subgroup discovery,
clustering and multi-view approaches, in particular.

In subgroup discovery [23], the input contains features and a
target variable over observations, and the goal is to find queries
that describe groups that have an ‘interesting’ behaviour in the
target variable, that is, groups of entities that have different
statistical properties (e.g. average) in the target variable when
compared to the rest of the observations.

Clustering is a classical unsupervised data analysis method
with the goal of grouping the entities in such a way that entities
in the same group are as similar to each other as possible,
and the objects in different groups are as dissimilar from each
other as possible. A query can be interpreted as selecting a
subset of the attributes and a group of entities that are in some
sense ‘similar’ to each other, although not in the classical sense
(e.g. of having short Euclidean distance). Among clustering
techniques, redescription mining is most related to subspace
clustering [24] and biclustering [25].

An important feature of redescriptions is their ability to
describe data from different points of view, i.e. their ‘multi-
view’ aspect. Other examples of multi-view data mining
methods include multi-view clustering [26], where the attributes
are divided into two views and the clustering is done separately
over each view; multi-view subgroup discovery [27], where the
subgroup discovery is done over multiple views; and various
multi-view matrix and tensor factorization [28–30], which use
(partially) the same factors to decompose multiple matrices or
tensors.

VIII. CONCLUSION AND FUTURE WORK

Redescription mining is a powerful data analysis technique
that is gathering wider interest, among data analysis researchers
and practitioners alike. The availability of efficient algorithms
that can handle heterogeneous data types has undoubtably
contributed to the increasing adoption. Yet, redescription
mining is, in many ways, in its infancy, and there are still
many interesting open questions to be addressed. Developing
redescription mining methods that work over time series data
is one important future direction. Another interesting direction
is to add predicates that are functions of the attributes, such
as square roots, logarithms, squares, and so on, and perhaps
also multivariate composite attributes. This would naturally
allow the query to capture more complex structures, but the
exact functions would have to be application-dependant. Finally,
redescription mining could also be extended to more complex
data (relational redescription mining [31] can be seen as one
step in that direction), such as graphs and multimodal (e.g.
tensor) data.

REFERENCES

[1] E. Galbrun and P. Miettinen, Redescription Mining. Springer,
2018.

[2] J. Soberón and M. Nakamura, “Niches and distributional areas:
Concepts, methods, and assumptions,” Proc. Natl. Acad. Sci.
U.S.A., vol. 106, no. Supplement 2, pp. 19 644–19 650, 2009.

[3] J. Grinnell, “The niche-relationships of the California thrasher,”
The Auk, vol. 34, no. 4, pp. 427–433, 1917.

[4] N. Ramakrishnan, D. Kumar, B. Mishra, M. Potts, and R. F.
Helm, “Turning CARTwheels: An alternating algorithm for
mining redescriptions,” in Proceedings of the 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining (KDD’04), 2004, pp. 266–275.

[5] C. C. Aggarwal, Data Mining: The Textbook. Cham: Springer,
2015.

[6] T. Zinchenko, E. Galbrun, and P. Miettinen, “Mining predictive
redescriptions with trees,” in IEEE International Conference on
Data Mining Workshops, 2015, pp. 1672–1675.
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