
Esther Galbrun and Pauli Miettinen

Redescription Mining

January 25, 2018

Springer

Preface

‘What is redescription mining?’ is a question our colleagues and students often ask
when we mention it as a topic we are working on. In short, redescription mining is
the art of saying ‘that is’. That is, redescription mining tries to describe the same
phenomenon in two different ways. We usually augment this minimalistic definition
with various details, leading to further questions such as ‘Why do you use Jaccard
similarity?’, ‘Can you apply your method to my data?’, or ‘What if you have more
than two data sets?’

Wanting to provide answers for all of these questions, we prepared and presented
tutorials on redescription mining. But not everybody could attend those tutorials,
and although the slides are available online, they are not entirely self-explanatory.
Moreover, there is a third group of persons who ask us those detailed questions and
who are not satisfied if we say that we discussed the answers in our tutorial—the
reviewers of our papers.

This short book is intended as an introduction to redescription mining, accessible
to both practitioners and researchers alike. It develops a uniform framework in which
the various formulations of redescription mining can be defined, explains the main
algorithmic approaches used to mine redescriptions, and presents applications and
variants of redescription mining, in addition to future research directions.

We hope this book will help those new to the field of redescription mining become
familiar with the topic and let them consider how to apply redescription mining
in their fields of interest. Those already familiar with redescription mining will
hopefully find the book useful as a short reference work, and perhaps as a guide
for further research directions. Reviewers for papers on redescription mining will
hopefully find answers to some of their favourite questions in this book.

We are grateful to Krista Ames for providing language feedback for this book.
Any mistakes that remain are—naturally—our own.

Saarbrücken, Esther Galbrun
October 2017 Pauli Miettinen

v

Contents

1 What is Redescription Mining . 1
1.1 First Examples of Redescriptions . 1
1.2 Formal Definitions . 5

1.2.1 The Data . 5
1.2.2 The Descriptions . 6
1.2.3 The Redescriptions . 8
1.2.4 Other Constraints . 11
1.2.5 Distance Functions: Why Jaccard? . 13
1.2.6 Sets of Redescriptions . 15

1.3 Related Data Mining Problems . 18
1.4 A Short History . 20
References . 21

2 Algorithms for Redescription Mining . 25
2.1 Finding Queries Using Itemset Mining . 26

2.1.1 The MID Algorithm . 28
2.1.2 Mining Redescriptions with the CHARM-L Algorithm 29

2.2 Queries Based on Decision Trees and Forests 30
2.2.1 The CARTwheels Algorithm . 33
2.2.2 The SplitT and LayeredT Algorithms 35
2.2.3 The CLUS-RM Algorithm . 38

2.3 Growing the Queries Greedily . 40
2.3.1 The ReReMi Algorithm . 41

2.4 A Comparative Discussion . 45
2.5 Handling Missing Values . 46
References . 48

3 Applications, Variants, and Extensions of Redescription Mining 51
3.1 Applications of Redescription Mining . 52

3.1.1 In Biology . 52
3.1.2 In Ecology . 55

vii

viii Contents

3.1.3 In Social and Political Sciences and in Economics 56
3.1.4 In Engineering . 59

3.2 Relational Redescription Mining . 61
3.2.1 An Example of Relational Redescriptions 61
3.2.2 Formal Definition . 63

3.3 Storytelling . 66
3.3.1 Definition and Algorithms . 66
3.3.2 Applications . 69

3.4 Future Work: Richer Query Languages . 72
3.4.1 Time-Series Redescriptions . 73
3.4.2 Subgraph Redescriptions . 75
3.4.3 Multi-Query and Multimodal Redescriptions 76

References . 78

List of Figures

1.1 Visualization: map of a bioclimatic niche . 2
1.2 Visualization: parallel coordinates plot of Premier League matches . . 4
1.3 Example of mammals and climate as two-table data 6
1.4 Venn diagram of the support subsets . 11

2.1 Classification of redescription mining algorithms 27
2.2 Simple classification tree . 31
2.3 Visualization: tree diagram of a redescription . 32
2.4 Depiction of the CARTwheels, SplitT, and LayeredT

algorithms as a sequence of steps . 37
2.5 Example of repartition of the entities for a numerical attribute 43

3.1 Visualization: 2D embedding of the political data 58
3.2 Example of a sequential circuit . 60
3.3 Genealogic graph from the Alyawarra data set 62
3.4 Kinship graph from the Alyawarra data set . 63
3.5 Example of graph queries . 63
3.6 Example of predicates in the relational redescription mining variant . 64
3.7 Storytelling example with tree diagrams . 69
3.8 Example of data for uncovering the plot . 71
3.9 Example of an uncovered plot . 73

ix

List of Symbols

E Set of all entities in the data
A Set of attributes of the entities
V Set of views the attributes can be divided into
D Entities-by-attributes table corresponding to one view
D The data
P Set of all predicates over E ×A
L Set of all literals, i.e. all predicates and their negations
Q Query language, i.e. a set of Boolean functions over L
supp(q) Support (set) of a query q
att(q) Attributes of a query q
views(q) Views of a query q
d(p,q) Distance between the supports of queries p and q
p∼ q Set supp(p) is similar to set supp(q)
p≡ q Sets supp(p) and supp(q) are the same
J(p,q) Jaccard similarity between supp(p) and supp(q)

xi

Chapter 1
What is Redescription Mining

Abstract In scientific investigations, data oftentimes differ in nature; for instance,
they might originate from distinct sources or be cast over separate terminologies.
In order to gain insight into the phenomenon of interest, an intuitive first task is
to identify the correspondences that exist between these different aspects. This is
the motivating principle behind redescription mining, a data analysis task that aims
at finding distinct common characterizations of the same objects. In this chapter,
we provide the basic definitions of redescription mining, including the data model,
query languages, similarity measures, p-value calculations, and methods for pruning
redundant redescriptions. We will also briefly cover related data analysis methods
and provide a short history of redescription mining research.

What is redescription mining? The answer to the eponymous question of this
chapter involves some amount of theoretical framework-building: definitions that
are used to make other definitions that in turn are used to define yet new concepts
that—hopefully—finally yield a coherent and complete definition of redescription
mining. That, at least, is the mathematical way to answer the question. A more
holistic approach would be to consider how redescription mining relates to other
data analysis methods, defining it not by what it is, but through its similarities and
dissimilarities. Or, perhaps one could define redescription mining by looking at its
evolution, asking how it started and how it became what it is.

These are three valid approaches for defining redescription mining, and we will
examine them in this chapter. First, though, let us answer the titular question of this
chapter with an ostensive definition of redescription mining.

1.1 First Examples of Redescriptions

Consider an ecologist who wants to understand what kind of bioclimatic environment
different mammal species require. She knows the regions the different mammal
species inhabit, and she knows the bioclimatic conditions of those places, such as

1

2 1 What is Redescription Mining

Fig. 1.1 The areas inhabited by either the Eurasian lynx or the Canada lynx (light red and medium
purple) and the areas where the maximum March temperature is between −24.4 ◦C and 3.4 ◦C (dark
blue and medium purple).

monthly average temperatures and precipitation. In ecology, her task is known as
bioclimatic niche (or envelope) finding (Soberón and Nakamura, 2009).

What would such a niche1 look like? One example could say that:

The areas inhabited by either the Eurasian lynx or the Canada lynx are approximately the
same areas as those where the maximum March temperature ranges from −24.4 ◦C to 3.4 ◦C.

The above sentence describes areas of the earth in two different ways; on the one
hand, by the fact that certain species inhabit them, and on the other hand, by the fact
that they have a certain climate. We can see the areas described above in Figure 1.1.
Visualizations of redescriptions help us to interpret the redescriptions and understand
what they describe and how. We will explain different visualization techniques
throughout the book as we encounter them. These explanations are set in a distinctive
block, as below.

Visualization: Maps

Maps are an easy way to visualize redescriptions over geographical regions. Ev-
erybody is familiar with maps and knows how to read them. Their use, naturally,
requires that the data is associated with geographical locations. In Figure 1.1, the
medium purple colour denotes the areas where both of the above conditions hold
(inhabited by one of the lynx species and with maximum March temperatures in
the correct range), light red denotes the areas inhabited by one of the lynx species

1 We use the term niche as defined by Grinnell (1917).

1.1 First Examples of Redescriptions 3

but where March temperatures are out of the range, and dark blue denotes the areas
where the maximum March temperature is in the correct range but neither of the
lynxes is found.

The above explanation of a niche is an example of a redescription: it provides two
different ways to describe the (approximately) same regions on the earth. In short,
a redescription is simply a pair of descriptions, both describing roughly the same
entities (here, geographical regions). And, as we can see from this example, both the
descriptions and what they describe can be of interest. The ecologist is interested in
the descriptions in order to understand the model of the niche and in the geographical
areas in order to understand where the niche holds (or does not hold).

Let us consider another example application of redescriptions. This time, an avid
association football2 fan wants to analyse the statistics of the matches in his favourite
game. Specifically, he analyses the matches played in the UK’s Premier League in
the 2013/14 season. What he finds is the following:

In two thirds of the matches where Phil Dowd was the referee, the away team players were
cautioned three to five times.

We can see this result visualized in Figure 1.2 using a parallel coordinates plot
(Inselberg, 2009).

Visualization: Parallel Coordinates

Parallel coordinates are an intuitive way to visualize entities with many attributes.
They are also well-suited for visualizing redescriptions from the point of view of the
descriptions rather than of the entities being described. Parallel coordinates plots can
be used to visualize any redescription, though if the descriptions are complex, the
visualization gets harder to interpret.

To understand how parallel coordinates visualize a redescription, consider Fig-
ure 1.2. Here, each match from Premier League’s 2013/14 season is represented by a
line running from the left to the right of the plot. The lines are depicted by the same
colours as the geographical regions in Figure 1.1: medium purple corresponds to
matches where the away team players were cautioned three to five times and Phil
Dowd was the referee, light red lines represent the matches where the away team
players were shown the yellow card three to five times but the referee was somebody
other than Mr. Dowd, and dark blue lines represent the games where Mr. Dowd was
the referee, but he cautioned the away team players fewer than three times. (In no
matches did he show the yellow card to the away team players more than five times.)

2 The game is known as either soccer or football; we will use the latter term, but want to emphasize
that the game must not be confused with gridiron football, rugby football, Australian rules football,
or Gaelic football.

4 1 What is Redescription Mining

Away cautions Referee

1.0

0.8

0.6

0.4

0.2

0.0

Fig. 1.2 Parallel coordinates plot for the matches in the Premier League’s 2013/14 season. The
matches where the away team players were cautioned three to five times are in light red or medium
purple, and the matches where Phil Dowd was the referee are in dark blue or medium purple. Very
light grey lines correspond to matches where neither of the conditions hold.

Figure 1.2 also tells us about the match statistics related to the features used in the
above descriptions. There are three virtual vertical axes in the plot, one in the middle,
and two labelled as Away cautions and Referee. The point where a line crosses these
axes indicates the value of that feature in the corresponding match; for example, a
line that crosses the grey box in the Away cautions axis corresponds to a match where
the away team players were shown the yellow card three to five times, and a line that
crosses the (small) grey box in the Referee axis corresponds to a match where Phil
Dowd was the referee. All values are scaled to unit range to facilitate the drawing.

From Figure 1.2, we can see that there were many matches where the away team
players were cautioned three to five times by a referee other than Phil Dowd, but he
showed the yellow card to the away team players three to five times in all but ten of
the 26 matches he refereed that season.

The above examples give some understanding of what redescriptions are and
what a redescription looks like. While such redescriptions could be constructed
manually, the goal of redescription mining is to find them automatically without any
information other than the raw data (and some user-provided constraints). In the
bioclimatic niche finding example, the ecologist should not have to define the species
she is interested in, and in the football example, the analyst should not have to define
his interest in yellow cards or referees. Rather, the goal of redescription mining is to
find all redescriptions that characterize sufficiently similar sets of entities and adhere

1.2 Formal Definitions 5

to some simple constraints regarding, for example, their type and complexity and
how many entities they cover.

Definition 1 (Redescription Mining, Informal Definition). A redescription is a
way to characterize roughly the same objects in two (or more) different ways. The
goal of redescription mining is to find all redescriptions that satisfy specified con-
straints.

In the following, we will formalize this informal definition.

1.2 Formal Definitions

The formalization of redescription mining we present here comes mostly from Gal-
brun (2013). In addition to the general formalization, we will also present a somewhat
simplified version that is suitable for most applications, though its simplicity makes
certain definitions and extensions more cumbersome than necessary.

1.2.1 The Data

The basic building block of the redescription data model is the set of entities E . Each
entity e ∈ E is associated with a set of attributes from A. The value of attribute a in
entity e is denoted by a(e). To keep the notation clean, we write a to denote both the
actual attribute and its value in some unspecified entity. Entities and their attributes
comprise the data.

Redescriptions aim at providing different views on the same data. We assume that
the attributes are partitioned into views V = {V1,V2, . . . ,Vk}. V is a partition of A,
that is, Vi ∩Vj = /0 for all i 6= j and

⋃k
i=1 Vi = A. The view to which attribute a is

assigned is denoted by view(a).
The set of attributes A must always be divided into at least two views; if the data

does not have any natural partition, we can use the finest partition of A: there are
|A| views, and each view Vi is a singleton containing attribute ai ∈A. The reason for
this restriction will become clear later.

The formal definition of the data model is:

Definition 2 (Data Model). The data D for a redescription problem is a tuple
D = (E ,A,V), where entities e ∈ E are associated with attributes from A, and
the attributes are partitioned in views V ∈ V .

Example 1. In the ecological niche finding example above, the entities are the geospa-
tial regions, and their attributes are the species inhabiting those regions and climate
variables. The attributes are divided into two views: the species and the climate
variables. In the football example, the entities are the matches, while the attributes
are the various match statistics, such as the number of goals, shots, corners, free

6 1 What is Redescription Mining

kicks, etc. There is no natural division of these attributes, and hence, each view is a
singleton set containing just one attribute.

We will need the above general framework when we discuss variants of the
redescription mining problem in Chapter 3. For most applications of redescription
mining, the simpler data model below is perfectly adequate.

Definition 3 (Table-Based Data Model). In the table-based data model, the data
consist of one or more tables D1,D2, The rows of the tables are the entities, and
each table’s rows must correspond to the same entities. The columns of the tables are
the attributes, and the value Dk(i, j) is the value that entity i takes for attribute j in
table k.

In this simplified model, the views are implicitly encoded in the tables: each view
corresponds to one table, except in the case when all views are singletons; in this
case, there is only one table.

Example 2. The data the ecologist would use in the bioclimatic niche finding appli-
cation has a natural interpretation as a pair of tables. The first table contains the
binary attributes describing the presence of mammal species in different geographical
regions, while the second table describes the climate of those regions. A subset of
such data is presented in Figure 1.3.

mammals climate

ge
og

ra
ph

ic
al

ar
ea

s

Fig. 1.3 Example of the mammals-and-climate data as two tables. The table on the left has Boolean
values and indicates which mammals (columns) are observed in which regions (rows). The table on
the right has numerical values and contains the climate variables (columns) over the same regions
(rows) as in the table on the left.

1.2.2 The Descriptions

Our definition of attributes leaves open their types. Indeed, as we saw in the exam-
ples, the attributes can be numerical (e.g. temperature or number of yellow cards),

1.2 Formal Definitions 7

categorical (e.g. the referee of the match), or Boolean (e.g. whether a species inhabits
a certain region or not), and might not even be observed for every entity. To form the
descriptions, we need to endow entity–attribute pairs with predicates. A predicate
for attribute a ∈ A is a function pa : E → {true, false} that assigns a truth value for
this attribute in every entity. The set of literals L contains all predicates and their
negations.

What the predicates look like depends on the type of the attributes and on the
user’s needs (or algorithm’s capabilities). We write a predicate for attribute a of
entity e as pa(e) = [Pa(e)], where Pa(e) is some logical proposition involving the
value of attribute a in entity e. The predicate is true if the proposition is true, and
false otherwise. For Boolean attributes, their predicates simply return the value
of the attribute in the entity. For categorical attributes, the propositions can be
more complicated. In this book, we mostly consider the equivalence proposition,
pa(e) = [a(e) = X], where X is some constant. We write this as [a = X] when
we mean the predicate as a function. Another possible proposition for categorical
attributes could be the set inclusion proposition, [a ∈ {X ,Y,Z, . . .}].

For numerical attributes, we mostly concentrate on propositions that test whether
the attribute’s value is in some interval or half-line, that is, on predicates [x≤ a≤ y],
[a ≤ x], and [a ≥ x]. Much more complex predicates could be built by applying
arbitrary functions on the values of the numerical attributes; for instance, we could
consider predicates of the type [

√
a ≤ x] that would test whether the square root

of the value of attribute a is below some threshold x. We do not consider such
predicates here, though. First, for many functions, the equivalent result can be
obtained by transforming the threshold (e.g. [a≤ x2]), and as the predicates are built
by the redescription mining algorithms, adding the functions in the predicates would
needlessly complicate them. Second, for the functions where we cannot easily move
the transformation to the threshold (e.g. [sin(a) ≤ 0]), we can obtain the desired
result by adding a new attribute containing the transformed value.

A description is a Boolean query q : E → {true, false} over the literals that assigns
a truth value to each entity e ∈ E . The query can, in principle, be an arbitrary Boolean
function of the literals, such as (`1 ∧ `2)∨¬(`1 ∨ `3)∧ (`2 ∨ `3), but such queries
are often difficult to interpret and have a great risk of overfitting, in addition to
being difficult to optimize. Hence, it is common to restrict the queries to some query
language Q. Examples of query languages include monotone conjunctive queries,
linearly parsable queries, and tree-shaped queries. Monotone conjunctive queries
(e.g. a∧b∧ c∧d) are the simplest of queries, and they are also often the easiest to
work with. Algorithms based on itemset mining are often limited to such queries (see
Section 2.1). Linearly parsable queries (e.g. ((a∨ b)∧¬c)∨ d) draw their names
from the fact that their parse tree looks like a line: all the operations are evaluated
from left to right, ignoring the normal operator precedence, no variable can appear
more than once, and negations are only applied to predicates. Hence, linearly parsable
queries can be written without parentheses with the convention that all operators have
the same precedence; the query above, for example, would turn into a∨b∧¬c∨d.
This structure is amenable for algorithms building the queries literal-by-literal (see
Section 2.3). Tree-shaped queries (e.g. (a∧b)∨ (¬a∧ c)∨ (¬a∧¬b∧ c)) encode a

8 1 What is Redescription Mining

decision tree (the clauses are different paths down the tree) and have a very particular,
and sometimes unintuitive, form. They are most commonly seen with methods that
are based on decision tree induction (see Section 2.2).

Example 3. The descriptions we saw at the beginning of this chapter can now be
expressed more formally. The query corresponding to ‘The areas inhabited by either
Eurasian lynx or Canada lynx’ could be written as

Eurasian lynx∨Canada lynx ,

where Eurasian lynx(e) = true if Eurasian lynx inhabits the area e. The description
‘maximum March temperature ranges from −24.4 ◦C to 3.4 ◦C’ could be written as

[−24.4≤ t+3 ≤ 3.4] ,

where t+3 is the attribute for the maximum March temperature. The descriptions in
the football example would be

[3≤ away cautions≤ 5] and [referee = P. Dowd] .

The queries can be associated with three important sets: support, attributes, and
views of a query.

Definition 4 (Support, Attributes, Views). Let q ∈ Q be a query. Its support,
supp(q), is the set of entities that evaluate true in q, that is, supp(q) = {e ∈ E :
q(e) = true}. The attributes of q, att(q), is the set of attributes that appear in
q. The views of q, views(q), is the union of all views of all attributes in att(q):
views(q) =

⋃
a∈att(q) view(a).

Notice that many authors in data analysis use the term support to refer to the size
(or cardinality) of what we call support. That is, what they call support of q is the
size of the support, |supp(q)|, for us. Conversely, what we call support is sometimes
referred to as the support set.

1.2.3 The Redescriptions

A redescription is a pair (p,q) of descriptions with disjoint views and with suffi-
ciently similar supports. The second constraint is easy to understand. If the queries’
supports are very different, they do not ‘explain (approximately) the same entities’.
To formalize this, we need some way to measure the difference between two sets
of entities. To that end, we can use any distance function d : 2E ×2E → [0,∞). We
require that d is at least a semimetric, that is,

d(X ,Y) = 0 if and only if X = Y ; and (1.1)

d(X ,Y) = d(Y,X) for all X ,Y ∈ 2E , (1.2)

1.2 Formal Definitions 9

although it is often a metric with a triangle inequality

d(X ,Y)≤ d(X ,Z)+d(Z,Y) for all X ,Y,Z ∈ 2E . (1.3)

For a pair of queries (p,q), we write d(p,q) to denote d(supp(p),supp(q)). The
most common choice for a distance measure between descriptions is the Jaccard
distance, which is based on the Jaccard similarity index:

Definition 5. The Jaccard (similarity) index J between the supports of two descrip-
tions p and q is defined as

J(p,q) = J(supp(p),supp(q)) =
|supp(p)∩ supp(q)|
|supp(p)∪ supp(q)| . (1.4)

The Jaccard distance is defined as

1− J(p,q) = 1− |supp(p)∩ supp(q)|
|supp(p)∪ supp(q)| . (1.5)

Definition 5 requires that either supp(p) 6= /0 or supp(q) 6= /0. As the descriptions
are supposed to describe something, we require that supports of both p and q are
non-empty. The Jaccard distance is not the only possible distance function, but since
it is the most common one, we will postpone the discussion of other alternatives until
Section 1.2.5.

With a distance function, we can measure how similar the supports of two queries
are. If the supports are the same, that is, d(p,q) = 0, we say that the redescription
(p,q) is exact and write p≡ q.

Most redescriptions are not exact, however, and we are often content with de-
scriptions that are similar enough. But how similar is ‘similar enough’? That is
something the user must decide, depending on the data, her needs, and the selected
distance function. Therefore, we say that the supports of p and q are similar enough
if d(p,q)≤ τ for some user-specified constant τ ∈ [0,∞). We denote this by ∼τ , that
is,

p∼τ q if and only if d(p,q)≤ τ (1.6)

and drop the subscript τ in most cases, writing just p ∼ q. Notice that ∼ is not
transitive, that is, it is possible that p∼ q and q∼ r but p 6∼ r.

The distance—in addition to measuring whether the descriptions are similar
enough—is also often used to measure the quality of the redescription. The smaller
the distance between the two descriptions, the better the redescription (provided it
adheres to the other constraints, naturally).

The first constraint for a pair (p,q) to be a valid redescription is that their views
must be disjoint, that is, views(p)∩views(q) = /0. Why such a constraint? The goal
of a redescription is to provide different ways to describe the same entities. At
minimum, this requires that the descriptions have different attributes because, for
example, a redescription that says ‘the regions inhabited by the polar bear are the
regions not inhabited by the kangaroo and inhabited by the polar bear’ would not be

10 1 What is Redescription Mining

very interesting at all. This constraint could be achieved by just requiring that the
attributes are disjoint, that is, att(p)∩ att(q) = /0. When each attribute is mapped to a
singleton view, this constraint becomes equivalent with the constraint that the views
of the queries are disjoint.

But many data sets have natural divisions of the attributes; for example, in the
bioclimatic niche finding example, we can naturally divide the attributes into the
mammal species’ inhabitancy attributes and climate attributes. With such data sets,
we often want to restrict the queries to take attributes only from one view (e.g. one
query over the inhabitancy attributes and another over the climate attributes). This
can also be achieved by dividing the attributes into two views and requiring that the
views of the queries are disjoint.

We can now define what a redescription is.

Definition 6 (Redescription). A redescription in query language Q over data D
with similarity ∼ is a pair of queries (p,q) ∈Q×Q such that

p∼ q and views(p)∩views(q) = /0 . (1.7)

Example 4. We can now write the redescriptions from Section 1.1 (using the queries
from Example 3) as follows:

Eurasian lynx∨Canada lynx∼ [−24.4≤ t+3 ≤ 3.4]
[3≤ away cautions≤ 5]∼ [referee = P. Dowd] .

Defining the redescriptions in the simplified table-based data model of Definition 3
is in fact a bit more cumbersome. The similarity function stays the same, but the
requirement of disjoint views changes depending on how many tables are used.

Definition 7 (Redescription in the Table Data Model). If the data consist of one
table D, a redescription over that table is a pair of queries (p,q) ∈Q×Q such that
p∼ q and att(p)∩att(q) = /0. If the data consist of two tables, D1 and D2, we instead
require that att(p) ⊆ att(D1) and att(q) ⊆ att(D2), where att(D) denotes the set of
attributes that correspond to the columns of D.

The definition of a support of a description extends naturally to redescriptions.

Definition 8 (Support of a Redescription). Let (p,q) be a redescription in data D.
The support of (p,q) is the support of query p∧q in D, that is,

supp(p,q) = supp(p∧q) = supp(p)∩ supp(q) .

Consider a pair of queries (p,q). The supports of queries p and q and the support
of the redescription (p,q) define four important sets of entities:

1.2 Formal Definitions 11

supp(p) supp(q)

E

E10 E11 E01

E00

Fig. 1.4 A Venn diagram showing the relationships between the sets in (1.8).

E11 = supp(p)∩ supp(q) , (1.8a)
E10 = supp(p)\ supp(q) , (1.8b)
E01 = supp(q)\ supp(p) , and (1.8c)

E00 = E \
(
supp(p)∪ supp(q)

)
. (1.8d)

Figure 1.4 illustrates the relationships between these sets and how they correspond
to the colours used in the visualizations.

The goal of redescription mining is to find all valid redescriptions from the data.

Definition 9 (Redescription Mining). Given data D, query language Q, similarity
∼, and other potential constraints, the goal of redescription mining is to find all valid
redescriptions (pi,qi) that also satisfy the other potential constraints.

1.2.4 Other Constraints

In the above definition of redescription mining, the redescriptions were restricted to
those that ‘also satisfy the other potential constraints’. Why have other constraints,
and what could these be? The main purpose of the constraints is to remove unwanted
redescriptions. What kind of redescriptions are unwanted depends strongly on the
application and on the data.

Some of the most common constraints limit the total support of the redescription.
The support can be bounded either from above or from below. Rejecting redescrip-
tions that have too small a support is intuitive; such redescriptions do not describe
many entities, and hence, do not (usually) provide interesting insights on the data.
Redescriptions with too large a support, on the other hand, are often uninteresting be-
cause they either describe a general tautology in the data, or—especially if the query
language allows negations and disjunctions—they cover the entities using negations
of redescriptions with very small a support, or by chaining unrelated attributes with
disjunctions. For example, a redescription on football that says

12 1 What is Redescription Mining

those games where the home team made at least zero goals are exactly those games where
the away team made at least zero goals

is not very interesting, as neither team can make fewer than zero goals, and hence,
the redescription covers every football match ever played.

The complexity of the redescriptions is another common constraint. Choosing the
correct query language is one—and arguably the most powerful—way to control the
complexity of redescriptions, but another way is to limit the length of the descriptions.
The length of the descriptions is usually defined as the number of literals that appear
in them, though in the case of tree-shaped descriptions (see Sections 1.2.2 and 2.2),
the depth of the tree is potentially a more intuitive measure.

Measuring the statistical significance of the found redescriptions is yet another
way of removing uninteresting results. One can think of different null hypotheses
to identify uninteresting redescriptions, but most of the existing literature uses the
simple null hypothesis proposed originally by Ramakrishnan et al (2004). The null
hypothesis is that the supports for p and q are random independent sets with expected
sizes of |supp(p)| and |supp(q)|, respectively, and the associated p-value is the
probability that two such sets overlap as much as they do. This probability is a tail
of the binomial distribution. Let X ⊆ E and Y ⊆ E be two random independent sets
such that Pr(e ∈ X) = |supp(p)|/ |E| and Pr(e ∈ Y) = |supp(q)|/ |E| for all e ∈ E ,
and let α be the probability that some random e ∈ E is in X ∩Y . Denoting |E| by n
and using the independency of X and Y , we get that

α = Pr(e∈X ,e∈Y)= Pr(e∈X)Pr(e∈Y)=
|X |
n
|Y |
n

=
|supp(p)| |supp(q)|

n2 . (1.9)

The size of X ∩Y is binomially distributed with probability α and maximum size
n = |E|, and hence, the probability that |X ∩Y | ≥ |supp(p,q)| is

n

∑
k=|supp(p,q)|

(
n
k

)
αk(1−α)n−k , (1.10)

which is the desired p-value.
This null hypothesis favours redescriptions where the supports of the queries

are small; the probability that two independent small sets have a large overlap is
quite small, while if the sets are large (and hence α is large), they are expected to
have a large overlap simply by chance. The p-value can be used as a constraint for
redescriptions in a natural way: the user can define the maximum p-value that still
corresponds to significant redescriptions (e.g. 0.01 or 0.05), and all redescriptions
with higher a p-value can be removed.

The above p-value calculation fixes the expected sizes of the supports for queries
p and q. Alternatively, we can also fix the sizes to the true sizes and calculate the
p-value based on fixed support sizes. This is equivalent to the one-sided p-value
in Fischer’s exact test and can be calculated using the hypergeometric distribution.
Using the same notation as above, we get

1.2 Formal Definitions 13

n

∑
k=|supp(p,q)|

(|supp(p)|
k

)(|E|−|supp(p)|
|supp(p)|−k

)
(|E|
|supp(q)|

) . (1.11)

Another way to measure the significance is to consider the queries themselves.
Consider first a query q with just one attribute, a. Assuming that the attributes’ values
in the entities are independent, the probability of the query having the support it
has is αq = supp(q)/ |E|. For more complex queries q, the probability under the
independence assumption can be defined recursively:

αq =


αq1αq2 if q = q1∧q2

1−αq1 if q = ¬q1

αq1 +αq2 −αq1αq2 if q = q1∨q2 .

(1.12)

Similarly to (1.10), the total probability of seeing a query q with support supp(q)
or higher is a tail of the binomial distribution:

n

∑
k=|supp(q)|

(
n
k

)
αk

q(1−αq)
n−k . (1.13)

This p-value can be used to evaluate individual queries or the full redescription (p,q)
by setting the query to p∧q.

It is sometimes convenient to consider only a subset of the entities when evaluating
a redescription. Let E ′ be a subset of E . The redescription (p,q) conditional to
E ′, denoted (p ∼ q | E ′), is evaluated only over the entities in E ′. A conditional
redescription (p∼ q | E ′) is exact if supp(p)∩E ′ = supp(q)∩E ′, that is, the supports
of the queries agree in E ′. Often, the entities in E ′ are selected to be the support
of some query. Denoting this query by r, we write (p ∼ q | r) as a shorthand to
(p∼ q | supp(r)). When using the Jaccard distance, we can identify (p∼ q | r) with
(p∧ e ∼ q∧ r); though this identity does not necessarily hold with other distance
functions.

1.2.5 Distance Functions: Why Jaccard?

We measure the similarity of two descriptions using the Jaccard distance J(p,q)
from (1.5). The use of Jaccard can be motivated in many ways. Ramakrishnan et al
(2004) motivated their choice of Jaccard via an argument to entropy distance. The
supports supp(p) and supp(q) can be identified with random variables X and Y ,
respectively, where X chooses elements from supp(p) uniformly at random (i.e.
Pr(e ∈ X : e ∈ supp(p)) = 1/ |supp(p)| and Pr(e ∈ X : e /∈ supp(p)) = 0), and Y
chooses elements from supp(q) similarly uniformly at random. The entropy distance
between X and Y is

14 1 What is Redescription Mining

DH(X ,Y) = 1− I(X ;Y)
H(X ,Y)

, (1.14)

where I(X ;Y) is the mutual information of X and Y , and H(X ,Y) is the joint entropy
of X and Y . In the standard set-theoretic interpretation of information theory (Reza,
1961), the mutual information corresponds to the intersection of sets X and Y and the
joint entropy to the union of X and Y , and hence, (1.14) corresponds to the Jaccard
distance (1.5). In particular, it is clear that if J(p,q) = 0, then DH(X ,Y) = 0 as well.

This motivation is particularly compelling when using algorithms based on deci-
sion tree induction (see Section 2.2) with the information gain splitting criteria (see,
e.g. Aggarwal, 2015, p. 297).

Another motivation for the Jaccard distance comes from association rule mining
(see, e.g. Aggarwal, 2015, Chapter 4). If all of the attributes are Boolean and the query
language limits the descriptions to monotone conjunctive queries, a redescription
(p,q) can be seen as a bidirectional association rule: p⇒ q and q⇒ p. A standard
measure for the quality of an association rule is its confidence: conf(p⇒ q) =
supp(p∧q)/supp(p), and in case of a redescription, we would like to have a high
confidence on both p⇒ q and q⇒ p.

Using the notation from (1.8), we can write the confidences as conf(p⇒ q) =
|E11|/(|E11|+ |E10|) and conf(q⇒ p) = |E11|/(|E11|+ |E01|). The Jaccard similarity
index (or similarity coefficient) can be written as J(p,q) = |E11|/(|E11|+ |E10|+
|E01|). It is easy to see that the Jaccard similarity index is never more than either of
the confidences. Hence, if p∼τ q, then we know that

min{conf(p⇒ q),conf(q⇒ p)} ≥ 1− τ .

Naturally, our argument carries over to other types of attributes and broader query
languages, as we are only operating on the support sets. But in the case of Boolean
attributes and monotone conjunctive queries, we can also motivate the use of the
Jaccard from the point of view of computational efficiency. It turns out that we
can find all association rules with the higher-than-defined Jaccard similarity index
efficiently using the min-wise hashing trick (see Aggarwal, 2015, Section 4.5.6).
These association rules are the redescriptions in the monotone conjunctive query
language. Jaccard also has other convenient properties regarding the computation of
the redescriptions, as we will see in Section 2.3.

We motivated the use of Jaccard distance above by the fact that it ensures good
confidence on the association rules. It is natural to ask whether we could consider a
mean of the association confidences instead of the minimum. Taking the harmonic
mean of the confidences, for example, we obtain

2
(|E11|+ |E10|

|E11|
+
|E11|+ |E01|
|E11|

)−1

=
2 |E11|

2 |E11|+ |E10|+ |E01|
,

which is the famous F1-score (or Sørensen–Dice coefficient). It is also very close to
the Jaccard similarity coefficient,3 the only difference being that the shared elements

3 Indeed, we get the Jaccard similarity via simple transformation J = F1/(2−F1).

1.2 Formal Definitions 15

are weighted as being twice as important. Unlike the Jaccard, however, the distance
based on the F1-score (i.e. 1−F1) is not a metric, as it does not satisfy the triangle
inequality. While being a metric is not strictly necessary for this purpose, it is often
beneficial, and we can motivate the use of Jaccard also as a metricized variant of the
harmonic mean of the association confidences.

Another common way of taking the mean of the confidences is the geometric
mean. This yields√

|E11|
|E11|+ |E10|

|E11|
|E11|+ |E01|

=
|E11|√

|E11|+ |E10|
√
|E11|+ |E01|

,

that is, the cosine similarity. Cosine similarity has an appealing interpretation, as it
is the cosine of the angle between the characteristic vectors of supp(p) and supp(q).
The related cosine distance is not a metric, although the closely related angular
distance is. Assuming nonnegative vectors, the angular distance is defined as

cos−1

(
|E11|√

|E11|+ |E10|
√
|E11|+ |E01|

)
/π .

The third common mean is the standard arithmetic mean, yielding

1
2

(|E11|
|E11|+ |E10|

+
|E11|

|E11|+ |E01|

)
=
|E11|(2 |E11|+ |E10|+ |E01|)

2(|E11|+ |E10|)(|E11|+ |E01|)
.

This mean is arguably the least interesting of the three. If we denote the Jaccard
similarity by J, the F1-score by F1, the cosine similarity by C, and the arithmetic
mean by A, then, by the inequality of arithmetic and geometric means, we have that

J ≤ F1 ≤C ≤ A , (1.15)

with the first inequality being strict unless |E11| = 0 or |E10| = |E01| = 0. The last
two inequalities are strict unless |E11|= 0 or |E10|= |E01|.

The means of the association confidences are not the only possible alternatives to
the Jaccard. There has been an extensive study of different interestingness measures
for association rules (see, e.g. Geng and Hamilton, 2006), and in principle, any
symmetric interestingness measure could be used as the basis for the distance between
the redescriptions. But given the many benefits of the Jaccard distance—and the fact
that all current redescription mining algorithms aim at optimizing it—there would
have to be very strong reasons to use other distances.

1.2.6 Sets of Redescriptions

Redescription mining, as defined in Definition 9, is an exhaustive enumeration task,
the goal being to output all valid redescriptions that satisfy the constraints. This

16 1 What is Redescription Mining

Table 1.1 Redundant redescriptions in the bioclimatic niche finding setting. Variables tn stand for
average temperature in month n, while variables t+n stand for the maximum temperature in month n,
both in degrees Celsius. The example is adapted from Kalofolias et al (2016).

p ∼ q

polar bear ∼ [−7.1 ≤ t5 ≤ −3.4]
polar bear ∼ [−16.7 ≤ t3 ≤ −11.5]
polar bear ∼ [−4.5 ≤ t+10 ≤ −1.0]
polar bear ∼ [1.0 ≤ t+9 ≤ 3.5]
polar bear ∼ [−9.6 ≤ t+4 ≤ −5.6]

is a common approach in data mining (cf. frequent itemset and subgraph mining),
but it can yield many redundant redescriptions. For example, consider again the
ecologist using redescription mining to find bioclimatic niches for mammals. The
top redescriptions she found from the data covering Europe are listed in Table 1.1.

All redescriptions in Table 1.1 have just one mammal, the polar bear, in query p.
Query q always describes cold environments using different months’ temperatures.
In summary, these five redescriptions all describe the same phenomenon: polar bears
can be found in cold environments (in the northern hemisphere). It is clear that we
do not need all of these redescriptions, and some pruning would be beneficial.

Some pruning has, in fact, been done already. These five redescriptions are not
the only possible ones; any conjunction or disjunction of the right-hand side queries
q would yield equally good results in this data set. But as the results would not be
any better, redescription mining algorithms usually apply Occam’s razor and report
only the simplest redescriptions that achieve the same quality.

The pruning of overly complex redescriptions still does not solve the problem of
redundant redescriptions, though. Indeed, all the quality measures and constraints
discussed above consider each redescription separately, and they do not consider the
final set of redescriptions.

The simplest way to reduce redundancy is to consider either the supports of the
redescriptions or their attributes. When considering the attributes, we can limit the
number of times an attribute can appear in different queries (Ramakrishnan et al,
2004). The problem with this approach is that we need to remove the often-used
attributes from the set of attributes during the mining, thus creating the risk that we
will not find some good redescription because we have removed an attribute that was
vital to it earlier in the mining process.

Galbrun and Miettinen (2012c) propose a simple support-based filtering to remove
redundant redescriptions. In this scheme, we first order all (valid) redescriptions
descending in their similarity. We then take the topmost redescription, move it to the
list of non-redundant redescriptions, and mark the entities in its support ‘used’. We
can then re-evaluate the remaining redescriptions, but only taking into account the
non-used entities. All redescriptions that are deemed invalid (e.g. their support size
becomes too low or their distance too high) are considered redundant and removed.
The process is then re-run with the remaining redescriptions and entities. The process
ends when either the list of redescriptions or the set of entities becomes empty, at

1.2 Formal Definitions 17

which point only the redescriptions in the list of non-redundant redescriptions are
returned to the user.

This approach can prune also interesting redescriptions as all redescriptions
with the same entities in the support are considered redundant to each other, even
if their attributes are completely different. A more fine-grained alternative, pro-
posed for itemset mining by Gallo et al (2007), is to consider the rectangles
rect(p,q) = supp(p,q)× att(p,q), that is, rect(p,q) is a set of entity–attribute pairs
rect(p,q) = {(e,a) : e ∈ supp(p,q),a ∈ att(p,q)}. Ordering the redescriptions again
based on their similarity, we consider redundant those redescriptions (p,q) for which
|rect(p,q)∩ rect(p′,q′)|/ |rect(p′,q′)|> θ for some higher-similarity redescription
(p′,q′) and for some predetermined threshold θ .

Another alternative for filtering out redundant redescriptions was proposed by
Kalofolias et al (2016). Their approach is based on the formalization of surprisingness
(or interestingness), using the likelihood of the result under a constrained maximum-
entropy distribution (De Bie, 2011). The idea is to build a probability distribution for
the data, allowing us to determine the likelihood of seeing a particular redescription
with a particular support size if the data were a random sample from that distribution.
If this likelihood is high, we consider the redescription unsurprising, and hence
redundant; vice versa, redescriptions with low likelihood are considered surprising.
The crux of this approach is the distribution: it should have maximum entropy over
all distributions under which those redescriptions that we have already considered
surprising are certain. To that end, the distribution is updated every time we find a
new surprising redescription. The update is done by adding a constraint that limits
the values the distribution can take in the just-seen redescription’s rectangle (to make
sure the redescription becomes certain under the new distribution). The distribution
of the data is then added to the maximum-entropy distribution that admits this (and
previous) constraints.

The approach of Kalofolias et al (2016) facilitates a principled way of removing
redundant (or unsurprising) redescriptions. We can first add the highest-quality
redescription (determined, e.g. by the similarity) as a constraint and sort the remaining
redescriptions ascending on their likelihood. After adding the least-likely (i.e. most
surprising) redescription, we update the distribution and the likelihoods and re-order
the remaining redescriptions. We do not have to prune out the redescriptions, as the
uninteresting ones are just pushed to the bottom of the list.

The problem with the maximum-entropy based approach is that updating the
distribution is computationally very expensive (especially if the redescriptions involve
complex queries with many variables). This means that the ordering cannot be done
in real-time, and the likelihood cannot be used as a search or pruning criterion for
the redescription mining algorithms. Nonetheless, it does provide an appealing way
of turning a set of good redescriptions into a good set of redescriptions.

A different approach for removing the redundant redescriptions was proposed
by van Leeuwen and Galbrun (2015). Their approach is inspired by the minimum
description length (MDL) principle of Rissanen (1978). Van Leeuwen and Galbrun
(2015) consider the translation rules between two data sets. The translation rules are
essentially association rules between the data sets, and van Leeuwen and Galbrun

18 1 What is Redescription Mining

(2015) consider translations to both directions. When a translation rule applies in
both directions, it can be considered a monotone conjunctive redescription over
Boolean attributes. Given two data tables D1 and D2, the goal of van Leeuwen and
Galbrun is to find the set of translation rules (i.e. association rules and redescriptions)
that minimizes the total number of bits needed to encode (i) the translation rules
themselves, (ii) the corrections that are needed in order to build D2 given D1 and the
translation rules, and (iii) the corrections that are needed to build D1 given D2 and
the translation rules. With the translation rules and corrections, one can rebuild one
data set if the other is known.

The MDL-inspired approach of van Leeuwen and Galbrun (2015) seeks a balance
between having as few translation rules as possible and having as few corrections as
possible. The encoding also takes into account how well the entities are covered by
the supports of the translation rules. Those entity–attribute pairs that are present in
the data but are not covered by any of the translation rules must be encoded in the
corrections; everything else being equal, this increases the encoding length.

1.3 Related Data Mining Problems

Association rule mining (Agrawal et al, 1993) is one of the classical problems in data
mining. It can be seen as a precursor of redescription mining, with the latter allowing
for more complex descriptions and focusing on equivalences instead of implications
(Ramakrishnan et al, 2004). That said, many redescription mining algorithms draw
ideas and inspiration from association rule mining. This is especially true when the
query language is restricted to monotone conjunctive queries over Boolean attributes,
in which case one can use algorithms for association rule mining, closed itemset
mining, or formal concept analysis (Ganter and Wille, 1999) almost directly (see
Section 2.1).

Another classical problem that has strongly influenced redescription mining is
classification. Let query q be fixed; our goal is to find query p. This can be seen
as a binary classification problem. Our data are the entities and their attributes
that do not belong to views(q). The class labels are given by supp(q): the label
for entities e ∈ supp(q) is 1, and the label for entities e /∈ supp(q) is 0. Finding a
classifier with good precision and recall is now essentially equivalent to finding a
query p that is close to q in the Jaccard distance. For the classifier to be a proper
description, it must come from our query languageQ; in practice, the query language
can be defined so that it matches the classifiers. More limiting to the use of various
classification algorithms in redescription mining is the common aim of having
interpretable descriptions. This makes otherwise successful classification methods
such as kernel support vector machines (Cortes and Vapnik, 1995) or deep belief
networks (Hinton et al, 2006) less appealing for redescription mining. Decision tree
induction, on the other hand, is a common approach for mining redescriptions (see
Section 2.2).

1.3 Related Data Mining Problems 19

In subgroup discovery (Wrobel, 1997), the input contains features and a target
variable over observations, and the goal is to find queries that describe groups that
have ‘interesting’ behaviour in the target variable. What is considered interesting is,
of course, application-dependant, but the found subgroups are often assumed to have
different statistical properties (e.g. average) in the target variable when compared to
the rest of the observations. Exceptional model mining (Leman et al, 2008) extends
subgroup discovery by replacing the target variable with a target model; now, the
interesting subgroups are those that violate the target model. The supervised nature
of subgroup discovery and exceptional model mining as well as their concentration
on the exceptional subgroups distinguishes them from redescription mining. It could
be argued, though, that redescription mining also aims for exceptional subgroups: if
the support of p is not in any way exceptional in the other views, there will be no way
to build the query q with high similarity. In that sense, redescription mining can be
seen as an unsupervised version of subgroup discovery or exceptional model mining.

In constraint programming (Rossi et al, 2006), a task is formulated by specifying
the constraints a solution must satisfy in order to be acceptable. De Raedt et al (2010)
first modelled the itemset mining task as a constraint programming problem, and
Guns et al (2013) later proposed a formulation in this framework for several pattern
mining tasks, including the task of mining exact conjunctive redescriptions.

Clustering is a classical unsupervised data analysis method with the goal of
grouping the entities in such a way that entities in the same group are as similar
to each other as possible, and the objects in different groups are as dissimilar from
each other as possible. In subspace clustering, the similarity of the objects is only
calculated over a subset of the attributes (for more information, see, e.g. Kröger and
Zimek, 2009, and references therein). Biclustering (Madeira and Oliveira, 2004) is
a related method where we simultaneously cluster the objects based on a subset of
attributes, and the attributes based on a subset of objects. A query q can be interpreted
to select a subset of the attributes, namely att(q), and a group of objects, supp(q),
that are in some sense ‘similar’ to each other. This similarity, however, should not
be understood in the classical sense (e.g. as an Euclidean distance), as the query
can allow a wide range of values for different attributes. Furthermore, if the query
contains disjunctions, two objects in supp(q) do not have to agree in any attribute.
But while the general queries do not make good biclusters, the connection can be
utilized the other way around, using subspace or biclustering algorithms to find
good queries. CLIQUE (Agrawal et al, 1998) is an example of a subspace clustering
algorithm that finds redescription-style queries as the minimal descriptions of the
clusters, while Jin et al (2008) use biclusters to build redescriptions.

The above methods mostly concentrate on finding one query, but the distinctive
characteristics of redescription mining are the ‘two views’ it provides from the pair
of queries. Indeed, redescription mining is an example of multi-view data mining
methods. Other examples include, but are not limited to, multi-view clustering (Bickel
and Scheffer, 2004), where the attributes are divided into two views and the clustering
is done separately over each view; multi-view subgroup discovery (Umek et al, 2009),
where the subgroup discovery is done over multiple views; and various multi-view
matrix and tensor factorization methods (e.g. Miettinen, 2012; Gupta et al, 2013;

20 1 What is Redescription Mining

Khan and Kaski, 2014), which use (partially) the same factors to decompose multiple
matrices or tensors.

Let us look at the last group of methods more carefully. In its simplest form,
the goal of multi-view matrix factorization is to factorize two matrices, A and B,
both having the same number of rows, as A ≈ XY and B ≈ XZ. The relation to
redescription mining is easy to see when we restrict all matrices to be binary and
consider the rank-1 factorizations A≈ xyT and B≈ xzT . Now, the entries of vectors
y and z that are 1 select some columns of A and B, respectively, and the non-zero
entries of x select the rows of the matrices. In the rows selected by x, matrices A and
B should have 1 in all columns selected by y or z, respectively. Hence, the vectors x
and y correspond to conjunctive queries over the columns of A and B, while vector x
corresponds to the support of these queries. Unlike redescription mining, however, in
this setting, vector x is chosen by the algorithm and does not have to correspond to
all rows where the queries hold; indeed, x can also select rows where the queries do
not hold. The goal of the factorization is not to find queries with similar support, but
to find the query and the support that minimize the reconstruction error.

1.4 A Short History

Redescription mining was first formalized by Ramakrishnan et al (2004). Their algo-
rithm, CARTwheels, was based on the idea of alternatively growing decision trees
over one data table with only Boolean attributes. After the seminal work of Ramakr-
ishnan et al, the work on redescription mining continued to concentrate on Boolean
data. Zaki and Ramakrishnan (2005) studied exact and conditional redescriptions
over Boolean data. They concentrated only on conjunctive queries and presented a
way to use existing closed itemset mining algorithms for exhaustively enumerating all
exact conjunctive redescriptions over Boolean data. Parida and Ramakrishnan (2005)
studied the theory of exact redescriptions over Boolean attributes, presenting general
frameworks for mining all redescriptions where the queries are pure conjunctions,
whether in monotone conjunctive normal form or monotone disjunctive normal form.

Linearly parsable queries over Boolean attributes were introduced by Gallo et al
(2008). Their general approach was extended to numerical and categorical attributes
by Galbrun and Miettinen (2012b) in an algorithm called ReReMi. Decision-tree-
based methods for arbitrary data types were introduced by Zinchenko et al (2015),
who also studied how well the redescriptions predict the unseen data. In a similar man-
ner, Mihelčić et al (2016) used predictive clustering trees for mining redescriptions
and Mihelčić et al (2017) extended that approach to random forests.

The Siren tool was developed for mining, visualizing, and interacting with
redescriptions (Galbrun and Miettinen, 2012a,c, 2014). Later, Mihelčić and Šmuc
(2016) proposed a tool called InterSet for visualizing and working with sets of
redescriptions.

Finding redundant redescriptions has been a problem since the begin of redescrip-
tion mining. Ramakrishnan et al (2004) allow each attribute to appear in only a

References 21

predefined number of redescriptions before being removed from the set of attributes.
Zaki and Ramakrishnan (2005) studied the minimal generators of exact redescriptions
over Boolean variables and showed how to mine non-redundant exact redescriptions
from the minimal generators.

Galbrun and Miettinen (2012c) proposed a way to prune the redundant redescrip-
tions based on the support of already-found redescriptions. This idea was further
extended by Mihelčić et al (2017). Other methods for removing redundant redescrip-
tions were proposed by van Leeuwen and Galbrun (2015) (for monotone conjunctive
queries over Boolean attributes using MDL) and Kalofolias et al (2016) (for general
queries over arbitrary attributes, using maximum-entropy distributions).

Redescription mining has been applied in various domains, including bioinfor-
matics (e.g. Kumar, 2007; Ramakrishnan and Zaki, 2009; Gaidar, 2015), electrical
engineering (Goel et al, 2010), and political sciences (Galbrun and Miettinen, 2016),
to name a few. We will discuss some of these applications in Section 3.1.

In addition to standard redescription mining, various extensions and variants of
redescription mining have been proposed over the years. Relational redescription
mining (Galbrun and Kimmig, 2014) extends redescription mining to relational data,
finding ways to describe groups of entities based on their individual properties and
the relations between them. Ramakrishnan et al (2004) proposed storytelling as a
method for connecting different entities via chains of redescriptions. We will discuss
these variants in more details respectively in Sections 3.2 and 3.3.

References

Aggarwal CC (2015) Data Mining: The Textbook. Springer, Cham, DOI 10.1007/
978-3-319-14142-8

Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large
databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management
of Data (SIGMOD’93), pp 207–216, DOI 10.1145/170035.170072

Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of high
dimensional data for data mining applications. SIGMOD Rec 27(2):94–105, DOI 10.1145/
276305.276314

Bickel S, Scheffer T (2004) Multi-view clustering. In: Proceedings of the 4th IEEE International
Conference on Data Mining (ICDM’04), pp 19–26, DOI 10.1109/ICDM.2004.10095

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297, DOI 10.1007/
BF00994018

De Bie T (2011) Maximum entropy models and subjective interestingness: an application to tiles in
binary databases. Data Min Knowl Discov 23(3):407–446, DOI 10.1007/s10618-010-0209-3

De Raedt L, Guns T, Nijssen S (2010) Constraint programming for data mining and machine
learning. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI’10)

Gaidar D (2015) Mining redescriptors in Staphylococcus aureus data. Master’s thesis, Universität
des Saarlandes, Saarbrücken

Galbrun E (2013) Methods for redescription mining. PhD thesis, Department of Computer Science,
University of Helsinki

Galbrun E, Kimmig A (2014) Finding relational redescriptions. Mach Learn 96(3):225–248, DOI
10.1007/s10994-013-5402-3

22 1 What is Redescription Mining

Galbrun E, Miettinen P (2012a) A case of visual and interactive data analysis: Geospatial
redescription mining. In: Proceedings of the ECML PKDD 2012 Workshop on Instant
and Interactive Data Mining (IID’12), URL http://adrem.ua.ac.be/iid2012/
papers/galbrun_miettinen-visual_and_interactive_geospatial_
redescription_mining.pdf, Accessed 25 Oct 2017.

Galbrun E, Miettinen P (2012b) From black and white to full color: Extending redescription mining
outside the Boolean world. Stat Anal Data Min 5(4):284–303, DOI 10.1002/sam.11145

Galbrun E, Miettinen P (2012c) Siren: An interactive tool for mining and visualizing geospatial
redescriptions [demo]. In: Proceedings of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD’12), pp 1544–1547, DOI 10.1145/2339530.
2339776

Galbrun E, Miettinen P (2014) Interactive redescription mining. In: Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data (SIGMOD’14), pp 1079–1082,
DOI 10.1145/2588555.2594520

Galbrun E, Miettinen P (2016) Analysing political opinions using redescription mining. In: IEEE
International Conference on Data Mining Workshops, pp 422–427, DOI 10.1109/ICDMW.2016.
0066

Gallo A, De Bie T, Cristianini N (2007) MINI: Mining informative non-redundant itemsets. In: Pro-
ceedings of the 11th European Conference on Principles and Practice of Knowledge Discovery
in Databases (PKDD’07), pp 438–445

Gallo A, Miettinen P, Mannila H (2008) Finding subgroups having several descriptions: Algorithms
for redescription mining. In: Proceedings of the 8th SIAM International Conference on Data
Mining (SDM’08), pp 334–345, DOI 10.1137/1.9781611972788.30

Ganter B, Wille R (1999) Formal Concept Analysis: Mathematical Foundations. Springer, Berlin,
DOI 10.1007/978-3-642-59830-2

Geng L, Hamilton HJ (2006) Interestingness measures for data mining: A survey. ACM Comput
Surv 38(3):Article 9, DOI 10.1145/1132960.1132963

Goel N, Hsiao MS, Ramakrishnan N, Zaki MJ (2010) Mining complex Boolean expressions for
sequential equivalence checking. In: Proceedings of the 19th IEEE Asian Test Symposium
(ATS’10), pp 442–447, DOI 10.1109/ATS.2010.81

Grinnell J (1917) The niche-relationships of the california thrasher. The Auk 34(4):427–433
Guns T, Nijssen S, De Raedt L (2013) k-Pattern set mining under constraints. IEEE Trans Knowl

Data En 25(2):402–418, DOI 10.1109/TKDE.2011.204
Gupta SK, Phung D, Adams B, Venkatesh S (2013) Regularized nonnegative shared subspace

learning. Data Min Knowl Disc 26(1):57–97, DOI 10.1007/s10618-011-0244-8
Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural

Comput 18(7):1527–1554, DOI 10.1162/neco.2006.18.7.1527
Inselberg A (2009) Parallel Coordinates: Visual Multidimensional Geometry and Its Applications.

Springer, Dordrecht, DOI 10.1007/978-0-387-68628-8
Jin Y, Murali TM, Ramakrishnan N (2008) Compositional mining of multirelational biological

datasets. ACM Trans Knowl Disc Data 2(1):2–35, DOI 10.1145/1342320.1342322
Kalofolias J, Galbrun E, Miettinen P (2016) From sets of good redescriptions to good sets of

redescriptions. In: Proceedings of the 16th IEEE International Conference on Data Mining
(ICDM’16), pp 211–220, DOI 10.1109/ICDM.2016.0032

Khan SA, Kaski S (2014) Bayesian multi-view tensor factorization. In: Proceedings of the 2014
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML-PKDD’14), pp 656–671, DOI 10.1007/978-3-662-44848-9 42

Kröger P, Zimek A (2009) Subspace clustering techniques. In: Liu L, Özsu MT (eds) Encyclopedia of
Database Systems, Springer, New York, pp 2873–2875, DOI 10.1007/978-0-387-39940-9 607

Kumar D (2007) Redescription mining: Algorithms and applications in bioinformatics. PhD thesis,
Department of Computer Science, Virginia Polytechnic Institute and State University

van Leeuwen M, Galbrun E (2015) Association discovery in two-view data. IEEE Trans Knowl
Data Eng 27(12):3190–3202, DOI 10.1109/TKDE.2015.2453159

http://adrem.ua.ac.be/iid2012/papers/galbrun_miettinen-visual_and_interactive_geospatial_redescription_mining.pdf
http://adrem.ua.ac.be/iid2012/papers/galbrun_miettinen-visual_and_interactive_geospatial_redescription_mining.pdf
http://adrem.ua.ac.be/iid2012/papers/galbrun_miettinen-visual_and_interactive_geospatial_redescription_mining.pdf

References 23

Leman D, Feelders A, Knobbe AJ (2008) Exceptional model mining. In: Proceedings of the 2008
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML-PKDD’08), vol 5212, pp 1–16, DOI 10.1007/978-3-540-87481-2 1

Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: A survey.
IEEE Trans Comput Bio Bioinform 1(1):24–45, DOI 10.1109/TCBB.2004.2

Miettinen P (2012) On finding joint subspace boolean matrix factorizations. In: SIAM International
Conference on Data Mining (SDM’12), pp 954–965, DOI 10.1137/1.9781611972825.82

Mihelčić M, Šmuc T (2016) InterSet: Interactive redescription set exploration. In: Proceedings of
the 19th International Conference on Discovery Science (DS’16), vol 9956, pp 35–50

Mihelčić M, Džeroski S, Lavrač N, Šmuc T (2017) A framework for redescription set construction.
Expert Syst Appl 68:196–215, DOI 10.1016/j.eswa.2016.10.012

Mihelčić M, Džeroski S, Lavrač N, Šmuc T (2016) Redescription mining with multi-target predictive
clustering trees. In: Proceedings of the 4th International Workshop on the New Frontiers in
Mining Complex Patterns (NFMCP’15), pp 125–143, DOI 10.1007/978-3-319-39315-5 9

Mihelčić M, Džeroski S, Lavrač N, Šmuc T (2017) Redescription mining augmented with random
forest of multi-target predictive clustering trees. J of Intell Inf Syst pp 1–34, DOI 10.1007/
s10844-017-0448-5

Parida L, Ramakrishnan N (2005) Redescription mining: Structure theory and algorithms. In:
Proceedings of the 20th National Conference on Artificial Intelligence and the 7th Innovative
Applications of Artificial Intelligence Conference (AAAI’05), pp 837–844

Ramakrishnan N, Zaki MJ (2009) Redescription mining and applications in bioinformatics. In:
Chen J, Lonardi S (eds) Biological Data Mining, Chapman and Hall/CRC, Boca Raton, FL

Ramakrishnan N, Kumar D, Mishra B, Potts M, Helm RF (2004) Turning CARTwheels: An
alternating algorithm for mining redescriptions. In: Proceedings of the 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’04), pp 266–275,
DOI 10.1145/1014052.1014083

Reza FM (1961) An Introduction to Information Theory. McGraw-Hill, New York
Rissanen J (1978) Modeling by shortest data description. Automatica 14(5):465–471, DOI 10.1016/

0005-1098(78)90005-5
Rossi F, Van Beek P, Walsh T (2006) Handbook of constraint programming. Elsevier
Soberón J, Nakamura M (2009) Niches and distributional areas: Concepts, methods, and assumptions.

Proc Natl Acad Sci USA 106(Supplement 2):19,644–19,650, DOI 10.1073/pnas.0901637106
Umek L, Zupan B, Toplak M, Morin A, Chauchat JH, Makovec G, Smrke D (2009) Subgroup

discovery in data sets with multi-dimensional responses: A method and a case study in trauma-
tology. In: Proceedings of the 12th Conference on Artificial Intelligence in Medicine (AIME’09),
vol 5651, pp 265–274, DOI 10.1007/978-3-642-02976-9 39

Wrobel S (1997) An algorithm for multi-relational discovery of subgroups. In: Proceedings of the
First European Symposium on Principles of Data Mining and Knowledge Discovery (PKDD’97),
vol 1263, pp 78–87, DOI 10.1007/3-540-63223-9 108

Zaki MJ, Ramakrishnan N (2005) Reasoning about sets using redescription mining. In: Proceedings
of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’05), pp 364–373, DOI 10.1145/1081870.1081912

Zinchenko T, Galbrun E, Miettinen P (2015) Mining predictive redescriptions with trees. In: IEEE
International Conference on Data Mining Workshops, pp 1672–1675, DOI 10.1109/ICDMW.
2015.123

Chapter 2
Algorithms for Redescription Mining

Abstract The aim of redescription mining is to find valid redescriptions for given
data, query language, similarity relation, and user-specified constraints. In other
words, we need to explore the search space consisting of query pairs from the
query language, looking for those pairs that have similar enough support in the
data and that satisfy the other constraints. In this chapter, we present the different
methods that have been proposed to carry out this exploration efficiently. Existing
methods can be arranged into three main categories: (i) mine-and-pair approaches,
(ii) alternating approaches, and (iii) approaches that use atomic updates. We consider
each one in turn, explaining its general common principles and looking at different
algorithms designed on these principles. Next, we compare the different methods and
discuss their relative strengths and weaknesses. Finally, we consider how to adapt
the algorithms to handle cases where some values are missing from the input data.

As explained in the previous chapter, the aim of redescription mining is to find
valid redescriptions for given data, query language, similarity relation, and user-
specified constraints. In other words, we need to explore the search space consisting
of query pairs from the query language, looking for those pairs that have similar
enough support in the data and that satisfy the other constraints.

The input to the algorithms discussed in this chapter takes the form of data tables,
as described in Definition 3. Therefore, our discussion of algorithmic techniques
for mining redescriptions focuses on this simpler model. In fact, the presentation of
most algorithms will assume that the data consist of two tables, D1 and D2, since
it is the setting most commonly encountered and because it will make the different
algorithms more readily comparable. Still, as we will see, most of the algorithms can
be adapted to accommodate an arbitrary number of views. Throughout this chapter,
the similarity of descriptions is evaluated using the Jaccard index as defined in (1.4).
Indeed, the Jaccard index is used for this purpose almost universally by existing
redescription mining algorithms.

Depending on the query language, the search space might be very large. In
particular, there are 22k

non-equivalent unrestricted Boolean expressions over a set
of k predicates. Hence, given a set of n predicates, there are

25

26 2 Algorithms for Redescription Mining

κn =
n

∑
k=0

(
n
k

)
22k

different expressions of arbitrary length. Therefore, when looking at two Boolean
data tables with n1 = 2 |att(D1)| and n2 = 2 |att(D2)| predicates, respectively (all
attributes as well as their negations), there are potentially up to (κn1 −1)(κn2 −1)
pairs of non-empty queries to examine. In the presence of non-Boolean attributes,
the number of predicates that can be constructed might be extremely large, and
the number of query pairs will be even larger. For reasons of interpretability, one
would generally only consider queries involving at most a small fixed number of
predicates and would impose syntactic restrictions on the combination of predicates,
significantly reducing the amount of candidate pairs. Still, the search space of query
pairs generally remains very large, and we need efficient strategies for exploring it.
In this chapter, we present the different strategies that have been proposed for mining
redescriptions, that is, we look in more detail at the various algorithmic approaches
available for the task.

As mentioned in Section 1.3, redescriptions are strongly related to two other data
mining tasks: association rule mining and classification. These two tasks provide basic
techniques that have been adapted to develop algorithms for mining redescriptions.
On the one hand, association rule mining inspired algorithms that first mine queries
separately from the different views before combining the obtained queries across
the views into redescriptions. On the other hand, the fact that building one query
of a redescription when the other query is fixed corresponds to a classification
task has yielded another family of algorithms: iterative algorithms that alternate
between the views. These algorithms derive target labels from a query obtained
at a previous iteration and use classification techniques, typically decision tree
induction, to build a matching query in the next iteration. A third approach for
mining redescriptions consists in growing them greedily. In this approach, the queries
are extended progressively through atomic updates, such as appending new literals to
either query, always trying to improve the quality of the redescription.

The proposed algorithms can be divided between exhaustive and heuristic strate-
gies. Mine-and-pair algorithms based on association rule mining techniques are
typically exhaustive. Alternating algorithms based on decision tree induction and
algorithms that use atomic updates to grow the queries greedily typically rely on
heuristics. This classification of redescription mining algorithms is illustrated in
Figure 2.1.

2.1 Finding Queries Using Itemset Mining

The simplest exploration strategy consists of two steps. First, individual queries are
mined from the data set independently. Second, queries with similar supports are
paired to form redescriptions.

2.1 Finding Queries Using Itemset Mining 27

Exhaustive Heuristic

Mine-and-pair
Alternating scheme

Atomic updates

Fig. 2.1 Classification of redescription mining algorithms.

The main advantage of such a mine-and-pair strategy is that it allows to adapt
frequent itemset mining algorithms in a very straightforward fashion. On the other
hand, because they build on techniques from itemset mining and rely on an exhaustive
enumeration, the query language handled with this strategy is typically limited to
monotone conjunctive queries over Boolean attributes.

Monotone conjunctive queries, such as a∧ b∧ c, can be considered as a way
to select a subset of predicates (simple Boolean attributes as well as binarized
numerical or categorical attributes). If we identify the predicates with items and
entities with transactions, monotone conjunctive queries become itemsets, in this
case {a,b,c} (see e.g. Aggarwal, 2015, Chapter 4). In what follows, we denote the
monotone conjunctive queries and the corresponding itemsets with capital letters, as
in A = a∧b∧c = {a,b,c}. The support of an itemset is the same as the support of the
corresponding query. A particular feature of Boolean data tables is that we can always
switch the roles of attributes and entities, simply by transposing the table. Hence, if
E ⊆ E is a set of entities, we can identify it with a monotone conjunctive query in the
transpose of the data. The support of this query, that is, the set of all predicates that
are true for all entities in E, is denoted by dscr(E) = {p : p(e) = true for all e ∈ E}.

In the literature of frequent itemset mining (FIM) (see e.g. Aggarwal, 2015,
Section 5.2), an itemset I is said to be closed if none of its supersets has the same
support, that is, I is closed if and only if dscr(supp(I)) = I. In Formal Concept
Analysis (FCA) (Ganter and Wille, 1999), the pair (I,E) comprising a closed itemset
I and its support E is called a formal concept. The itemset lattice is a fundamental
concept in itemset mining. It is the partial ordering of itemsets based on set inclusion
relationships, that is, the ordering such that itemset A is less than itemset B whenever
A⊂ B. When restricted to only closed itemsets (formal concepts), such a lattice is
known as a closed itemset lattice (in FIM) or a concept lattice (in FCA). For a closed
itemset I, a subset J ⊆ I such that supp(J) = supp(I) is called a generator of I. The
generator is said to be proper when the inclusion is strict and minimal when there is
no other generator J′ of I such that J′ ⊂ J. We denote the set of minimal generators
of an itemset I asM(I).

28 2 Algorithms for Redescription Mining

Over the last couple of decades, a great number of algorithms have been developed
to mine monotone conjunctive queries over a fixed set of predicates (see Aggarwal,
2015, Section 4.4 for an overview). Typically, they exploit the anti-monotonicity of
the support of queries to safely prune the search space, resulting in highly efficient
complete enumeration procedures.

In particular, monotone conjunctive redescriptions can be mined exhaustively in
a level-wise fashion similar to the Apriori algorithm (Agrawal and Srikant, 1994;
Mannila et al, 1994). The support cardinality of both queries and of their intersection,
as well as some associated measures, are anti-monotonic and can be used safely for
pruning. However, distance measures such as the Jaccard distance are typically not
monotonic, even in this simplest case, and thus do not provide an effective pruning
criterion.

If the number of views is small, the most practical approach is to mine queries
from each view separately, then to pair them across the views. If the number of
views is large, in particular when each attribute is associated to a distinct view, one
might instead mine queries over all predicates pooled together, then pair queries with
similar supports, provided that they involve attributes from disjoint sets of views.

An alternative to this approach is to replace the pairing step with a splitting step,
that is, to pool together all predicates for the mining step, then split the queries
depending on views. However, the existence of a query does not imply that it can be
split into two subqueries that both hold with the same supports. More generally, there
is no guarantee that there will be a way to split the query found into two subqueries
over disjoint views with sufficiently similar supports.

2.1.1 The MID Algorithm

One algorithm that follows the mine-and-pair strategy is the MID algorithm of Gallo
et al (2008). A sketch of the algorithm is provided in Algorithm 2.1.

With two tables D1 and D2 as input, the MID algorithm starts by mining frequent
closed itemsets from either table separately (line 2 in Algorithm 2.1). Still considering
the two sides separately, the obtained itemsets are combined into more complex
queries using conjunctions and disjunctions (line 7), up to a level κ chosen by the
user. In each iteration, only the N most significant candidate queries, that is, the N
candidates with the lowest p-values are retained (line 9) to be combined further in the
next iteration. The p-values are computed as explained in Section 1.2.4, using (1.12)
and (1.13). Finally, the queries found for either side are combined into pairs, storing
those that are sufficiently similar (line 12).

2.1 Finding Queries Using Itemset Mining 29

Alg. 2.1 Sketch of the MID algorithm.
Input: Two Boolean data tables D1 and D2, similarity ∼, maximum p-value pmax, number of

queries to select N, and maximum level κ .
Output: Redescriptions R.
1: for side i ∈ {1,2} do
2: Q(0)

i ←{q : q is a closed frequent itemset from Di or its negation and p-value(q)≤ pmax}
3: Q(1)

i ← N queries with the lowest p-value from Q(0)
i

4: for level k ∈ {1, . . . ,(κ−1)} do
5: Q(k+1)

i ←Q(k)
i

6: for operator ◦ ∈ {∧,∨} do
7: Q(k+1)

i ←Q(k+1)
i ∪{q◦q′ : q,q′ ∈Q(k)

i , p-value(q◦q′)≤ pmax}
8: end for
9: Q(k+1)

i ← N queries with the lowest p-value from Q(k+1)
i

10: end for
11: end for
12: R←{(p,q) ∈Q(κ)

1 ×Q(κ)
2 : p∼ q}

13: return R

2.1.2 Mining Redescriptions with the CHARM-L Algorithm

Zaki and Hsiao (2005) introduced a frequent itemset mining algorithm that operates
on the closed itemset lattice, called CHARM, as well as its variant that explicitly con-
structs the lattice, called CHARM-L. Zaki and Ramakrishnan (2005) then developed
a method to extract all minimal exact conditional redescriptions from the lattice
returned by CHARM-L.

Recall that a conditional redescription is an expression (p∼ q | r) where p, q and
r are queries over disjoint sets of attributes, with at least p and q being non-empty
(see Section 1.2.4). It is exact if supp(p)∩ supp(r) = supp(q)∩ supp(r). Such an
exact conditional redescription is denoted (p≡ q | r).

A sketch of the procedure for mining redescriptions with the CHARM-L algorithm
is provided in Algorithm 2.2. This algorithm is designed to handle cases where the
data consist of a single table D such that each attribute belongs to its own distinct
view. The algorithm first builds the closed itemset lattice for D using CHARM-L
(line 1 in Algorithm 2.2). Each closed itemset, that is, each point in the lattice,
is then considered in turn. Every pair (J,J′) of minimal generators of the current
closed itemset I generates an exact conditional redescription of the form (X ≡Y | Z),
stored as a triple (X ,Y,Z) (line 6), where X = J \ J′ and Y = J′ \ J are the disjoint
itemsets that form the two descriptions, while Z = J∩ J′ is the itemset on which the
redescription is conditioned. We have J \ J′ 6= /0 and J′ \ J 6= /0 by definition of the
minimal generators.

Zhao et al (2006) later proposed BLOSOM as a generalization of CHARM for mining
closed Boolean propositions beyond conjunctions, with specific closure operators
also for disjunctions, as well as expressions in disjunctive normal form (DNF) and
conjunctive normal form (CNF). Substituting BLOSOM for CHARM in the procedure

30 2 Algorithms for Redescription Mining

Alg. 2.2 Sketch of the procedure for mining exact conditional redescriptions with the
CHARM-L algorithm.
Input: A Boolean data table D.
Output: Redescriptions R.
1: L←closed itemset lattice built from D using CHARM-L
2: R← /0
3: for each closed itemset I in L do
4: for each pair (J,J′) ∈M(I)×M(I) do
5: X ← J \ J′; Y ← J′ \ J; Z← J∩ J′

6: R←R∪{(X ,Y,Z)}
7: end for
8: end for
9: return R

of Algorithm 2.2 allows us to obtain conditional redescriptions involving queries that
are less restricted than pure conjunctions (Ramakrishnan and Zaki, 2009).

2.2 Queries Based on Decision Trees and Forests

Another strategy for mining redescriptions is to use an alternating scheme. The
general idea is to start with one query, find a good matching query to complete the
pair, drop the first query and replace it with a better match, and continue to alternate
in this way, constructing a fresh query on one or the other side until no further
improvement can be achieved.

For example, in the case where we have two data tables D1 and D2, we would
start with an initial query p(0) over D1 and look for a good matching query q(1) over
D2. Next, we would drop p(0) and look for another query p(2) over D1 to form a
better pair (p(2),q(1)), and so on.

In fact, if one query of the redescription is fixed, finding an optimal query to
complete the pair constitutes a binary classification task (see Section 1.3). The entities
supporting the fixed query provide positive examples, and the remaining entities
might be considered as negative examples. Thus, any feature-based classification
technique could potentially make up the basis for a redescription mining algorithm,
with the associated query language consisting of the possible classification criteria.
However, we require interpretable queries that specify explicit constraints on the
range of the values taken by the attributes. This requirement directs our choice of
classification technique, precluding, for instance, the direct use of kernel support
vector machines (Cortes and Vapnik, 1995).

A decision tree represents a succession of tests on the value of attributes, leading to
some outcome (see Aggarwal, 2015, Section 10.3). The tree is called a classification
tree or a regression tree, depending on whether the value to predict is a class label (the
learning target is discrete) or a numerical value (the learning target is continuous),
respectively. Each leaf node in the tree represents a decision, predicting a class

2.2 Queries Based on Decision Trees and Forests 31

label or a numerical value, depending on the type of tree. Each intermediate node
represents a test on the value of an attribute. An example of a simple decision tree is
shown in Figure 2.2. It is a classification tree predicting a binary class label y and
containing tests on one Boolean attribute a and two numerical attributes b and c.

In the learning phase, decision trees are induced iteratively from the data (Breiman
et al, 1984; Quinlan, 1986). From a high-level perspective, the induction works as
follows: For a fixed target and set of attributes and starting from a root node that
contains all the entities, each attribute is evaluated in turn, computing a score that
indicates how well a test on this attribute is able to discriminate between the different
target values. The test that yields the best split is selected and appended to the tree
as a new node, with outgoing edges representing the various possible outcomes of
the test and the corresponding subsets of entities. The same splitting procedure is
applied recursively and independently on each edge, considering only the associated
subset of entities. This refinement process stops if one of three conditions is reached:
(i) the entities in the subset all take the same value for the target, (ii) no better split of
the entities can otherwise be achieved, or (iii) the branch has reached the maximum
depth set by the user. A leaf node is then appended to the branch, containing the
decision which is set to the majority label or average value among the entities in the
associated subset.

Once the tree has been learnt, prediction is very straightforward. For a given entity,
one simply travels through the tree, choosing which edge to follow according to the
outcome of the tests in the nodes encountered along the way, starting from the root
node and reaching a leaf node. The label or value prediction is indicated in that leaf
node.

For a given decision tree, one can build a query by reading off the conditions of
the tests along the branches of the tree. A branch from the root down to some leaf
corresponds to a conjunction of predicates, and different branches can be combined
with a disjunction. For example, the query

no

yes

no

yes

no

yes

y = 0

y = 1

y = 1

y = 0

[b≤ 4]

[c≤ 2]

a

Fig. 2.2 An example of a simple decision tree with tests on Boolean attribute a and numerical
attributes b and c (square nodes), leading to a binary classification decision (round nodes).

32 2 Algorithms for Redescription Mining

Fig. 2.3 A redescription obtained with the LayeredT algorithm, depicted in a tree diagram.

[b≤ 4]∧ a

encodes the conditions of the topmost branch in the tree shown in Figure 2.2, while
the query (

[b≤ 4]∧¬a
)
∨
(
[4 < b]∧ [c≤ 2]

)
encodes the conditions leading to the positive class, through the two middle branches.
Because of the way in which they are obtained, these queries follow a specific syntax,
and we call them tree-shaped queries.

Visualization: Tree diagram

Figure 2.3 shows a redescription depicted in a tree diagram. This redescription was
mined by the LayeredT algorithm, which we will present shortly. The data consist
of two tables; one contains records of the presence of some mammal species and
the other contains temperature and precipitation, such as can be studied to find
bioclimatic niches (see Section 1.1). The redescription depicted is(

Eurasian lynx∧moose
)
∨
(
¬Eurasian lynx∧grey red-backed vole

)
∼ [t−2 ≤ 6.9]∧ [t+2 ≤−0.6] .

On the left- and right-hand sides of the diagram are the trees built over species
variables and climate variables, respectively. As in Figure 2.2, intermediate nodes,
which represent tests, are drawn as squares, while leaves, which represent decisions,
are drawn as circles, with positive and negative leaves drawn as black and white
circles, respectively. The two trees are joined by their leaves in the middle. The lines
joining a pair of leaves of either tree represent the entities (in this case geographical
regions), that simultaneously satisfy the conditions of the respective branches. For

2.2 Queries Based on Decision Trees and Forests 33

Alg. 2.3 Sketch of the CARTwheels algorithm.
Input: Two Boolean data tables D1 and D2, similarity ∼, and number of iterations κ .
Output: Redescriptions R.
1: R← /0
2: τ1← initialize the multi-class target with attributes from D1
3: T2← induce tree over D2 with target τ1
4: τ2← extract classification vector from T2
5: T ← (T2)
6: for iteration k ∈ {1,2, . . . ,κ} do
7: for sides (s, t) ∈ {(1,2),(2,1)} do
8: Ts← induce tree over Ds with target τt
9: τs← extract classification vector from Ts

10: append Ts to T
11: end for
12: end for
13: for each pair (T1,T2) of consecutive trees T do
14: for each class c in the leaves of the trees do
15: p← extract query from the branches of T1 leading to class c
16: q← extract query from the branches of T2 leading to class c
17: if p∼ q then
18: R←R∪{(p,q)}
19: end if
20: end for
21: end for
22: return R

example, lines crossing from the bottommost leaf on the left to the topmost leaf on
the right represent entities where neither the Eurasian lynx nor the grey red-backed
vole live and where the minimum and maximum temperatures in February are below
−6.9 ◦C and−0.6 ◦C, respectively. The first leaf of the pair is negative and the second
positive. Indeed, the entities support the climate query but not the species query.
Hence these entities belong to the set E01, and the corresponding lines are drawn in
dark blue. Entities belonging to E10, E11 and E00 are represented by light red, medium
purple, and very light grey lines, respectively.

2.2.1 The CARTwheels Algorithm

The alternating scheme for mining redescriptions was introduced by Ramakrishnan
et al (2004), who proposed the CARTwheels algorithm based on the CART induc-
tion algorithm (Breiman et al, 1984). The CARTwheels algorithm was designed to
handle purely Boolean data. A sketch of this algorithm is provided in Algorithm 2.3.
We only outline its mechanism; more details can be found in the original publications
by Ramakrishnan et al (2004), Kumar (2007), and Ramakrishnan and Zaki (2009).

34 2 Algorithms for Redescription Mining

Given two Boolean data tables D1 and D2, we assume, without loss of generality,
that the initial class labels are obtained from D1 (line 2 in Algorithm 2.3). Specifically,
each Boolean attribute from D1 is considered as a class, and each entity is assigned
to the class of the first attribute that it contains, under some arbitrary order of the
attributes. The result is a one-dimensional multi-label vector, which is used as a
learning target to induce a tree over D2 (line 3). The labels predicted by this tree
will be used in turn in the next iteration to build a new tree over D1. This alternating
process can be run for a fixed number of iterations (lines 6–12), producing a sequence
of classification trees such that every other tree involves attributes from D1 or D2.
Redescriptions can then be extracted from this sequence by selecting consecutive
trees and generating the queries associated with some class (lines 13–21). The
procedure used to construct the trees, using the prediction from one iteration to
induce the tree at the next iteration, is such that the trees are matched at the leaves
and should, hence, produce good matching query pairs.

A classification tree represents a partition of the entities into classes. Each class
predicted by the tree is associated with the leaves labelled with that class. In turn,
these leaves are associated with the subset of entities that belong to them and with the
query formed by taking the union of the branches leading to these same leaves. Each
such partition can be seen as a random variable that assigns a value, in this case a class
label, to each entity. For a partition of the entities into subsets given as a classification
target, called the class partition, the aim is to induce a tree representing a partition,
called the path partition, that matches the class partition as well as possible. That is,
for a class partition corresponding to a random variable X , the aim is to find a path
partition such that the corresponding random variable Y is as informative as possible
about X .

Entropy is typically used to measure how much information is contained in a
variable. The entropy of X , denoted as H(X), measures the amount of information
needed to describe variable X . It is defined as

H(X) =−
n

∑
i=1

P(xi) log(P(xi)) ,

where x1,x2, . . . ,xn are the different values taken by variable X and log denotes the
binary logarithm. The entropy of X conditioned on Y , denoted as H(X |Y), measures
the amount of information needed to describe variable X , given that variable Y is
known. The information gain IG(X ,Y) measures the reduction in the entropy of X
brought by knowing Y , that is, informally, how much we learn about X by knowing Y .
It is defined as IG(X ,Y) = H(X)−H(X | Y) and is equal to the mutual information
of X and Y , I(X ;Y). In particular, finding a classifier with the maximum information
gain IG(X ,Y) = H(X), that is, a classifier such that the entropy H(X | Y) reduces
to zero, means that there is a one-to-one mapping between the two partitions. This
will result in queries that constitute exact redescriptions, that is, redescriptions with
Jaccard index equal to 1. More generally, using the information gain criterion means
building a tree while trying to maximize the mutual information of X and Y , I(X ;Y)

2.2 Queries Based on Decision Trees and Forests 35

Alg. 2.4 Sketch of the SplitT algorithm.
Input: Two data tables D1 and D2, similarity ∼, and maximum depth κ .
Output: Redescriptions R.
1: for sides (s, t) ∈ {(1,2),(2,1)} do
2: for each attribute ai ∈As do
3: τs← initialize the binary target with ai
4: for each iteration k ∈ {1, . . . ,κ} do
5: T (k)

t ← induce tree over Dt with target τs and depth k
6: τt ← extract binary classification vector from T (k)

t

7: T (k)
s ← induce tree over Ds with target τt and depth k

8: τs← extract binary classification vector from T (k)
s

9: end for
10: p← extract query from positive branches of T (κ)

1

11: q← extract query from positive branches of T (κ)
2

12: if p∼ q then
13: R←R∪{(p,q)}
14: end if
15: end for
16: end for
17: return R

and, therefore, indirectly minimizing the Jaccard distance that corresponds to the
entropy distance as given by (1.14).

The goal in standard classification is to find the best match between the target
labels and the prediction. However, in the context of redescription mining and
especially during the first iterations, inducing sub-optimal trees can help increase
the exploratory power of the algorithm. Indeed, finding a near perfect match for
the current target might allow us to find a very accurate redescription, but it also
means that the search will converge. Choosing sometimes the second or third best
splitting test during the tree induction phase can diversify the search. In short, as
Ramakrishnan et al (2004) argue, a balance must be kept between the impurity in the
classification, which drives the exploration, and the redundancy, to ensure a good
coverage of the search space.

2.2.2 The SplitT and LayeredT Algorithms

Zinchenko et al (2015) introduced two more tree-based redescription mining algo-
rithms, SplitT and LayeredT, that differ in the ways in which trees are grown.
Sketches of the algorithms are provided in Figures 2.4 and 2.5, respectively. Both
algorithms use a single variable to generate the initial binary targets (line 3 in Fig-
ures 2.4 and 2.5), considering each attribute in turn. SplitT then grows trees on
either side alternately while progressively increasing their depth, inducing a new
tree from scratch in every iteration (lines 4–9 in Algorithm 2.4). LayeredT instead

36 2 Algorithms for Redescription Mining

Alg. 2.5 Sketch of the LayeredT algorithm.
Input: Two data tables D1 and D2, similarity ∼, and maximum depth κ .
Output: Redescriptions R.
1: for sides (s, t) ∈ {(1,2),(2,1)} do
2: for each attribute ai ∈As do
3: τs← initialize the binary target with ai

4: T (1, /0)
t ← induce tree over Dt with target τs and depth 1

5: τt ← extract binary classification vector from T (1, /0)
t

6: T (1, /0)
s ← induce tree over Ds with target τt and depth 1

7: τs← extract binary classification vector from T (1, /0)
s

8: for each iteration k ∈ {2, . . . ,κ} do
9: for each leaf ` of T (k−1,∗)

t do
10: T (k,`)

t ← induce tree over the subset of Dt contained in `
11: with target τs and depth 1
12: end for
13: τt ← extract binary classification vector from the trees at level k, T (k,∗)

t

14: for each leaf ` of T (k−1,∗)
s do

15: T (k,`)
s ← induce tree over the subset of Ds contained in `

16: with target τt and depth 1
17: end for
18: τs← extract binary classification vector from the trees at level k, T (k,∗)

s
19: end for
20: p← extract query from positive branches of stacked trees T (∗,∗)

s

21: q← extract query from positive branches of stacked trees T (∗,∗)
t

22: if p∼ q then
23: R←R∪{(p,q)}
24: end if
25: end for
26: end for
27: return R

grows trees layer by layer. One layer is added to the current candidate tree by ap-
pending a new decision tree of depth one to each of its branches, each of which is
learnt independently from the others (lines 11 and 16 in Algorithm 2.5). After a pair
of trees has been learnt, the queries are extracted from the positive branches to form
a candidate redescription. This extraction is similar in both algorithms (lines 10–14
in Algorithm 2.4 and lines 20–24 in Algorithm 2.5).

Example 5. The three approaches for mining redescriptions with an alternating tree
induction process are illustrated in Figure 2.4. Stage I shows the sequence of steps
going from an initial target to the obtention of a pair of trees (in bold frames). In
Stage II, the two trees are paired and matched to extract the queries and compute the
supports. The first stage is specific to each algorithm, while the second stage is the
same for all three algorithms. The data in this example consist of two Boolean data
tables D1 and D2 containing attributes a to d (in light red) and e to h (in dark blue),
respectively, and 19 entities. To keep the example simple, the depth of the trees is
limited to two. In this example, the three approaches produce the same redescription,
namely

2.2 Queries Based on Decision Trees and Forests 37

Stage I: Growing the trees

A
:C
A
R
T
w
h
e
e
l
s

i

d

c

a

ii

f

h

g

iii

b

c

d

. . .

iv

a

b

c

v

h

f

e

B
:S
p
l
i
t
T

i

d

ii

g

iii

a

b

c

iv

h

f

e

C
:L
a
y
e
r
e
d
T

i

a

ii

h

iii

a

iv

a

b

c

v

h

vi

h

f

e

Stage II: Matching the trees and extracting the queries

D
:A

ll
3

al
go

ri
th

m
s

h

f

e

a

b

c

i

h

f

e

a

b

c

ii

h

f

e

a

b

c

iii

Fig. 2.4 The CARTwheels, SplitT, and LayeredT algorithms depicted as a sequence of steps.
Growing the trees (Stage I) is specific to each algorithm, while matching the trees (Stage II) is the
same for all three algorithms.

(a∧ c)∨ (¬a∧¬b)∼ (h∧ e)∨ (¬h∧ f) .

The sizes of its support subsets are |E11|= 9, |E10|= 2, |E01|= 3, |E00|= 5, and its
Jaccard index is therefore J = 9/14.

As in Figure 2.2, the intermediate nodes in the trees, representing the tests,
are drawn as squares. Edges corresponding to positive test outcomes (i.e. ‘yes’)
are drawn as solid lines, while negative outcomes (i.e. ‘no’) are drawn as dotted
lines. Subsets of entities are represented as rounded rectangles containing circles,
with black and white circles representing entities assigned to the positive class and

38 2 Algorithms for Redescription Mining

negative class, respectively. Note that the CARTwheels algorithm can involve more
than two classes in general, but we only represent the case of a binary target. In
the row of pictures at the top of Figure 2.4, we see how CARTwheels alternates
between the two data tables. In each iteration, a tree is induced for the given target
(step A.i), the entities are relabeled with the majority class and collected to form a
new target, which is used in the next turn to induce a tree on the other set of attributes
(step A.ii), and so on for a chosen number of iterations. The second row of pictures in
Figure 2.4 illustrates SplitT. In this algorithm, a tree of depth one is induced over
the attributes of table D1 (step B.i) and then over the attributes of table D2 (step B.ii).
Next, the target obtained from this depth-one tree is used to induce a new tree, this
time of depth two, over the attributes of table D1 (step B.iii). With the resulting
target, a new tree, also of depth two, is then induced over the attributes of table
D2 (step B.iv). The LayeredT algorithm, depicted in the third row of pictures of
Figure 2.4, similarly builds trees of increasing depths. However, instead of building
a new tree from scratch, it considers the depth-one tree obtained in the previous
round and appends a new tree of depth one to either of its branches (steps C.iii–iv
and C.v–vi).

Finally, in all tree algorithms, the trees are paired as shown in the last row of
pictures in Figure 2.4. For either tree, a query is obtained by combining the branches
that lead to the positive class and the support of the query consists of the entities in
the corresponding leaves (step D.ii). A redescription is formed by combining the two
queries, and its support is computed by matching the entities across the two trees
(step D.iii).

2.2.3 The CLUS-RM Algorithm

Mihelčić et al (2016) present yet a different tree-based method for mining redescrip-
tions. Their CLUS-RM algorithm, sketched in Algorithm 2.6, uses multi-target Pre-
dictive Clustering Trees (PCT).

A predictive clustering tree (Blockeel et al, 1998) is a type of decision tree that can
be used to predict multiple target attributes at one time. Such a decision tree provides
a succession of tests that progressively group the entities into clusters, which become
more homogeneous with respect to the target attributes as one progresses down the
tree. In this sense, one can see this structure as generating a hierarchical clustering of
the entities.

To initialize the algorithm, Mihelčić et al (2016) propose to use additional entities
that are randomized variants of the original ones. That is, the original data set is
duplicated, and the values of each attribute are shuffled among the entities in the
copy. A PCT is then induced over the extended data set that contains both the
original and the randomized entities, trying to discriminate between them (line 3 in
Algorithm 2.6). The initial target vector is, therefore, a binary vector with a positive
label for the original entities and a negative label for the randomized copies. Queries
are then extracted from the resulting tree (line 4). More precisely, for each leaf and

2.2 Queries Based on Decision Trees and Forests 39

each intermediate node corresponding to a non-empty cluster of original entities
(disregarding the randomized copies), the conditions encountered when travelling
from the root of the tree to the node are gathered to form a conjunctive query. This
procedure is applied to both data tables separately, resulting in two sets of queries
Q(0)

1 and Q(0)
2 .

For a given collection of queries Q, a multi-dimensional target τ can be generated
as a binary matrix with one row per original entity and one column per query in Q,
where τ(i, j) indicates whether entity i belongs to the support of query j. A target
generated from the queries obtained from one data table is used in the next iteration
to induce a PCT on the original data table from the opposite side, obtaining a new
collection of queries, and so on. Two such procedures are run in parallel, alternating
between the sides for a fixed number of iterations (lines 7–15).

In each iteration k and for either side s, the best queries are collected from the
induced tree T (k)

s into Q(k)
s (line 11). These queries are then paired with the queries

in Q(k−1)
t collected at the previous iteration from the opposite side t (line 12). The

queries collected from either side at the same iteration are also combined together
(line 14). These candidate redescriptions are then combined to form more complex
queries potentially involving disjunctions, long conjunctions are reduced to shorter
ones with the same support, and the final set of results is produced by pruning away
the less accurate and redundant candidates (line 16).

To improve the quality and diversity of the obtained queries, Mihelčić et al (2017)
extended the CLUS-RM algorithm to use a forest of clustering prediction trees in
addition to a single tree. Mihelčić et al (2017) proposed a refined procedure, which
they call redescription set optimization, to select the final subset of redescriptions
returned as the output of the algorithm.

Finding good starting points for the alternating tree induction process is crucial
for these tree-based algorithms to work. In CARTwheels, a one-dimensional multi-
label vector is derived from the entire set of attributes on one side. In SplitT
and LayeredT, on the other hand, the initialization target is derived from single
attributes, that is, from the simplest possible queries. CLUS-RM instead uses clusters
of the original entities that are formed using discriminating characteristics of the
original entities when compared to randomized copies. One further option, proposed
by Ramakrishnan and Zaki (2009), is to randomly partition the entities into positive
and negative examples, using one or several such partitions to initialize the search,
instead of actual queries.

For a fixed number of starting points and a limit on the number of alternations, the
complexity of such an alternating classification scheme for building redescriptions
depends primarily on the complexity of the chosen classification algorithm.

The different algorithms were presented above assuming input data in the form of
two tables. More generally, the algorithms can handle arbitrary many views: the set
of attributes used to build a new tree simply needs to exclude attributes participating
in the tree that provides the target as well as attributes belonging to the same view as
any of these attributes.

40 2 Algorithms for Redescription Mining

Alg. 2.6 Sketch of the CLUS-RM algorithm.
Input: Two data tables D1 and D2, similarity ∼, and number of iterations κ .
Output: Redescriptions R.
1: R← /0
2: for each side s ∈ {1,2} do
3: T (0)

s ← induce tree over Ds to separate original entities from randomized copies
4: Q(0)

s ← extract queries from T (0)
s

5: end for
6: append query pairs from Q(0)

1 ×Q(0)
2 to R

7: for iteration k ∈ {1, . . . ,κ} do
8: for sides (s, t) ∈ {(1,2),(2,1)} do
9: τ ← generate multi-dimensional target from queries in Q(k−1)

s

10: T (k)
t ← induce tree over Dt with target τ

11: Q(k)
t ← extract queries from T (k)

t

12: append query pairs from Q(k−1)
s ×Q(k)

t to R
13: end for
14: append query pairs from Q(k)

1 ×Q(k)
2 to R

15: end for
16: combine, reduce, and prune candidate redescriptions in R
17: return R

2.3 Growing the Queries Greedily

Finally, a third exploration strategy relies on iteratively finding the best atomic update
to the current query pair. More precisely, given a pair of queries, one applies atomic
operations on either query to improve the candidate redescription, until no further
improvement can be achieved. Conceptually, atomic operations at hand include the
addition, deletion, and editing of predicates. That is, one might add a fresh predicate
to the query, remove a predicate from the query, or alter some predicate already
occurring in the query, in particular, by modifying the range of the truth value
assignment.

For example, if our current candidate redescription is

Eurasian lynx∨Canada lynx ∼ [−24.4≤ t+3 ≤ 3.4]

by adding, deleting, and editing a predicate, we might modify it to

Eurasian lynx∨Canada lynx ∼ [−24.4≤ t+3 ≤ 3.4]∧ [5.0≤ p8] ,

Canada lynx ∼ [−24.4≤ t+3 ≤ 3.4] , or
Eurasian lynx∨Canada lynx ∼ [−24.4≤ t+3 ≤ 10.7] .

2.3 Growing the Queries Greedily 41

Alg. 2.7 Sketch of the ReReMi algorithm.
Input: Two data tables D1 and D2, similarity ∼, number of initial candidates kp, and beam width

ki.
Output: Redescriptions R.
1: R← /0
2: I←{kp best initial singleton redescriptions}
3: for S ∈ I do
4: K←{S}
5: F1(S),F2(S)← free attributes for S
6: if F1(S) 6= /0 or F2(S) 6= /0 then
7: L←{S}
8: end if
9: while L 6= /0 do

10: for each R ∈ L do
11: for side s ∈ {1,2} and operator ◦ ∈ {∨,∧} do
12: if R can be extended on side s with operator ◦ and literal l ∈ Fs(R) then
13: K←K∪{best such extension of R}
14: end if
15: end for
16: end for
17: K←{ki best redescriptions from K, with updated free attributes}
18: L←{R ∈K : F1(R) 6= /0 or F2(R) 6= /0}
19: end while
20: R←R∪K
21: end for
22: return R

2.3.1 The ReReMi Algorithm

This strategy, restricted to the addition of predicates, that is, to extending the queries,
was first introduced as the Greedy algorithm by Gallo et al (2008). Building upon
this work, Galbrun and Miettinen (2012) proposed the ReReMi algorithm, which
extends the approach to handle categorical and numerical attributes along with
Boolean ones and uses a beam search to keep the current top candidates at each
step instead of focusing on the single best improvement. A sketch of the ReReMi
algorithm is provided in Algorithm 2.7.

First, given two data tables D1 and D2, all pairs of attributes inA1×A2 are evalu-
ated, and the best matching predicates are kept as the initial singleton redescriptions
(line 2 in Algorithm 2.7). Each such initial candidate is then extended in turn, trying
to append a new predicate to either query (lines 11–15) and keeping the best candi-
dates at one step so as to be further extended in the next step (line 17). Memorization
of the explored queries is used to prevent the algorithm from repeating itself. For
a given candidate, this mechanism allows us to determine the attributes that will
not lead to an extension already encountered previously. Such attributes are called
free attributes (line 5). When no further extension is possible, either because there
are no free attributes left, because no improvement can be achieved, or because the

42 2 Algorithms for Redescription Mining

maximum number of iterations has been reached, the best extensions are added to
the set of results (line 20).

Given a candidate redescription R = (p,q) and a predicate v, there are four ways
in which to extend p with v: p∧ v, p∧¬v, p∨ v, and p∨¬v. During the extension
step (line 13), barring restrictions on the types of extensions, the algorithm needs to
compute the Jaccard index for four different types of extensions for each predicate.
In fact, a simple observation allows us to expedite the computation of the Jaccard
index for the different extensions. Indeed, to compute J(p∧ v,q), we only need to
consider the entities in supp(p). Since, other entities will never be in supp(p∧ v)
anyway. On the other hand, entities in supp(p) will be in supp(p∨v) in any case and
cannot affect the value of J(p∨v,q). In order to formalize this intuition, we overload
the notation defined in (1.8) for the support subsets Exy (see Section 1.2.3) and denote
these subsets restricted to supp(v) as Exy(v) (e.g. E10(v) = E10∩ supp(v)).

Using this notation, the Jaccard index of redescription (p,q) can be expressed as

J(p,q) =
|E11|

|E10|+ |E01|+ |E11|
, (2.1)

and formulas can be derived for the different extensions:

J(p∧ v,q) =
|E11(v)|

|E10(v)|+ |E01|+ |E11|
, (2.2)

J(p∧¬v,q) =
|E11|− |E11(v)|

|E10|− |E10(v)|+ |E01|+ |E11|
, (2.3)

J(p∨ v,q) =
|E11|+ |E01(v)|

|E10|+ |E01|+ |E11|+ |E00(v)|
, and (2.4)

J(p∨¬v,q) =
|E11|+ |E01|− |E01(v)|

|E10|+ |E01|+ |E11|+ |E00|− |E00(v)|
. (2.5)

Notice that E01, E10, and E11 can be computed once for a given candidate redescrip-
tion. Then, for each predicate we could extend it with, it is enough to perform three
intersection operations to obtain E10(v), E01(v), and E11(v) and be able to compute
the Jaccard index of all four possible extensions. Furthermore, |E00| and |E00(v)|
can be deduced from supp(v), E , and the other support subsets so that we do not
have to consider the entities for which neither p nor q hold. This observation can
significantly speed up the algorithm.

There is only one predicate that can be built with a Boolean attribute, but in the
case of categorical and numerical attributes, in addition to evaluating the extension
with either logical operator, the algorithm also needs to determine respectively the
category and interval that yields the best possible predicate for that extension. This is
done on-the-fly during the extension process.

For a categorical attribute, all the different categories are evaluated in turn, and
the one that most improves the Jaccard index is selected. Hence, the complexity
of finding the best predicate to extend a redescription with a categorical attribute
grows linearly with the number of categories available. Considering the predicate

2.3 Growing the Queries Greedily 43

x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 1
0

x 1
1

Fig. 2.5 Example of repartition of the entities for a numerical attribute. Each bin represents a value
taken by the attribute. Black circles stand for entities belonging to E11, white circles for entities
from E10.

constructed with categorical attribute a and category c, (2.2) can be written as

J(p∧ [a = c],q) =
|E11([a = c])|

|E10([a = c])|+ |E01|+ |E11|
,

and similarly for the other extensions.
For a numerical attribute, the algorithm needs to determine the lower and upper

thresholds that together yield the optimal Jaccard index. Note that the two thresholds
are set simultaneously, since setting one bound first and possibly the other later
would prevent the search from finding some of the most specific intervals. Consider
a numerical attribute a together with thresholds λ and ρ in its range such that λ ≤ ρ ,
(2.2) can be written as

J(p∧ [λ ≤ a≤ ρ],q) =
|E11([λ ≤ a≤ ρ])|

|E10([λ ≤ a≤ ρ])|+ |E01|+ |E11|
,

and similarly for the other extensions. Naively, the optimal predicate for a numerical
attribute can be found by means of an exhaustive search on the acceptable thresholds.
The complexity of this operation grows quadratically with the number of distinct
values in the range of the attribute. At this point, the observation that not all entities
can affect the support for a particular extension becomes even more useful. Indeed,
only the entities in E11 and E10 can impact the Jaccard index for conjunctions and only
those in E01 and E00 for disjunctions. Furthermore, only values separating entities
from the two subsets, called cut points, need to be considered.

To illustrate this concept of cut points, assume that we are trying to set the lower
threshold λ in a conjunctive extension p∧ [λ ≤ a ≤ ρ] . The bins in Figure 2.5
represent the values taken by attribute a, sorted in increasing order. Black circles
stand for entities belonging to E11 and white circles for entities from E10. In this
example, there is one entity in E11 with the value x4, but none in E10 with the value
x3. Therefore, x4 cannot be an optimal choice for λ since choosing x3 instead would
always increase the accuracy. Thus, x3 constitutes a cut point for the lower bound but
x4 does not, that is, we can consider setting λ = x3, but setting λ = x4 is clearly not
optimal.

In summary, the running time upper bound for the greedy extension strategy is
in the order of the product of the number of starting points, the maximal number of
iterations, the beam width and the cost of extension tests. For a Boolean attribute, the
cost of an extension test is proportional to the number of entities. It is proportional

44 2 Algorithms for Redescription Mining

to the number of entities multiplied by the number of categories for a nominal
attribute and to the squared number of entities for a numerical attribute. The data
in the example of Section 1.1 contains approximately 55000 entities, 48 numerical
attributes (climate variables), and 4700 Boolean attributes (species). For 500 initial
redescriptions, a maximum of 4 iterations, and a beam width of 4 the product above
equals

500×4×4× (48×550002 +4700×55000)≈ 1015 .

However, as we explained above and as argued by Galbrun and Miettinen (2012),
determining the optimal extension attainable with a given numerical attribute is
quadratic in the number of cut points, which is at most the number of distinct values
of the attribute and usually much smaller than the number of entities. Thus, this
strategy is feasible in practice.

As with tree-based approaches, it is crucial to find good starting points for the
greedy extension process. One technique is to consider all possible pairs of attributes
and use the kp most accurate singleton redescriptions as the starting points, with kp a
parameter set by the user. In other words, we take as starting points redescriptions
where the queries consist of a single predicate each. If at least one attribute in the
pair is Boolean or categorical, then the best associated singleton redescription can be
determined efficiently. More specifically, we apply the technique explained above to
find the best extension for an empty query. Let /0 denote an empty query, such that
supp(/0) = E and when combined with a non-empty query q, we obtain the pair (/0,q)
with support subsets E11 = supp(q), E10 = E \supp(q), E01 = /0, and E00 = /0. Finding
the best singleton redescription for a pair of attributes (a,b) where a is numerical and
b is Boolean can be seen as finding the best extension (/0∧ [λ ≤ a≤ ρ],b). Similarly,
if b is categorical, we can look for how to best extend (/0, [b = c]), considering each
category c in turn. On the other hand, if both attributes are numerical with many
distinct values, finding the best associated singleton redescription by testing all
possible combinations of thresholds for both attributes quickly becomes infeasible.
In such a case, it might be necessary to first arrange the values of the attributes into
buckets in order to reduce the number of thresholds that need to be tested.

The greedy extension approach was presented above assuming that the input
data takes the form of two tables. However, this approach can easily be adapted to
accommodate different numbers of views, by simply filtering the attributes that will
be tested in the extension step. That is, for a candidate redescription (p,q), attributes
that belong to the same view as any attribute already appearing in query q cannot be
used to extend p and thus do not need to be tested. This requirement can be enforced
by suitably maintaining the set of available attributes with which to extend either
query, that is, the free attributes F1 and F2.

2.4 A Comparative Discussion 45

2.4 A Comparative Discussion

In this chapter, we have presented the various algorithmic approaches to redescription
mining. Each approach has specificities that can become advantages or drawbacks.

To begin with, queries produced with the different approaches have fairly distinc-
tive shapes. Tree-based approaches produce queries with a specific syntax, namely,
tree-shaped queries, which can be difficult to understand. This is particularly true
when the query is produced by combining into a conjunction several branches of
a tree that share some nodes. For example, considering a tree of depth three and
combining two branches that share a test on attribute a could produce the query

(a∧b∧¬c)∨ (¬a∧d∧ e) ,

where attribute a occurs twice, once as a positive literal and once negated. In such
cases, tree diagrams, such as the one shown in Figure 2.3, clearly help understanding
and interpreting the redescription. The queries obtained with the greedy extension
approach also assume a particular shape, since they result from iteratively appending
predicates. They can also become difficult to parse, especially if the operators are
used in alternation during the extension process, producing, for example, a query of
the form (

(a∧b)∨ c
)
∧d .

With tree-based approaches, it is possible to obtain a pair of queries that both involve
disjunctions, if they both combine several tree branches. By default, greedy extension
approaches allow a rather flexible use of the disjunction operator, and nothing pre-
vents building a redescription with disjunctions appearing in both queries. However,
redescriptions involving disjunctions in both queries tend to be fairly difficult to
interpret, since it is impossible to know which conditions co-occur most often without
looking closer at the support, for instance, by visualizing the redescription as a tree
diagram (see Figure 2.3) or in a parallel coordinates plot (see Figure 1.2). A balance
needs to be found between the types of queries that the algorithms can build and
what is interpretable and interesting, depending on the context. It can be useful to
forbid conjunctions from appearing in both queries simultaneously.

Successive extensions during the greedy process tend to have diminishing returns.
In other words, the first attributes are typically responsible for the bulk of the support,
while attributes added later on often merely correct a few misclassified entities. To
circumvent the issue, one might define a minimum contribution requirement. That
is, one might set a threshold and consider the addition of an attribute to constitute
an acceptable extension only if it modifies at least that many entities in the support
of the redescription. The same issue with tree-based approaches can be addressed
similarly by setting a threshold on the minimum number of entities per leaf. However,
this solution is rather crude and has its shortcomings, starting with the choice of
the threshold value, which might be rather arbitrary. More generally, it is not easy
to find balanced disjunctions and conjunctions, that is, expressions where different
attributes contribute equivalent proportions of the support. Queries obtained with

46 2 Algorithms for Redescription Mining

tree-based approaches are somewhat less flexible than those obtained with the greedy
extension approach but also seem to be less subject to overfitting, according to the
experiment of Zinchenko et al (2015), who compared the ability of redescriptions
obtained with the SplitT, LayeredT, and ReReMi algorithms to generalize to
unseen data.

Finding good starting points is critical for the initialization of greedy extension
algorithms and tree-based algorithms, but can be difficult and computationally expen-
sive, especially with purely numerical data. In that sense, the fact that mine-and-pair
algorithms do not require starting points can be seen as an advantage of these ap-
proaches.

Distributed computing provides rather straightforward means to scale redescrip-
tion mining algorithms up, allowing them to handle significantly larger data sets than
what would otherwise be feasible. In the case of greedy extension approaches, several
initial candidates can be extended in parallel. In the case of tree-based approaches,
the alternating tree-induction process can similarly be run in parallel with different
initial targets. On the other hand, parallel pattern mining algorithms (see, for instance,
Négrevergne et al, 2014) might offer opportunities for mine-and-pair approaches to
benefit from the spread of multi-core architectures and distributed computing power.

2.5 Handling Missing Values

When the values are missing for some entries in the input data, the question arises
as to how to handle the entities for which part of the information is missing. For an
entity that contains missing entries, a given query might evaluate to true, to false, or
its status might remain undetermined.

For example, imagine that we are trying to classify an entity according to the
decision tree shown in Figure 2.2. To do so, we need to travel through the tree
according to the outcome of the successive tests, from the root down to a leaf. If the
value of attribute b is missing for the entity, we cannot choose what branch to follow
after the first test, since the outcome of the test is undetermined. But considering the
query built by combining the two middle branches of the decision tree:(

[b≤ 4]∧¬a
)
∨
(
[4 < b]∧ [c≤ 2]

)
,

we might be able to determine its status for a given entity if the value of attributes a
and c are available. Indeed, if a is false and the value of c is below 2 for the entity,
it will satisfy the query regardless of the value of b. And vice-versa, if a is true and
the value of c is strictly above 2, the entity will not satisfy the query, whatever value
b might take. On the other hand, if a is true while the value of c is below 2, if a is
false while the value of c is strictly above 2, or if the values of a or c are missing,
then we cannot determine whether or not the query is satisfied. All we can claim in
these cases is that there exists an assignment of values to the missing entries so that
the query will be satisfied.

2.5 Handling Missing Values 47

Such a claim assumes that the attributes are independent. Furthermore, it is
straightforward to determine satisfiability when attributes are required to occur at
most once in a given query. When queries are in disjunctive normal form (DNF), as is
the case of tree-shaped queries, it is sufficient that one of the conjunctions be satisfi-
able, and the satisfiability of each one can be checked separately. Hence, satisfiability
can be determined easily in this case, too. When considering an unconstrained query
language, however, determining whether there exists an assignment of values to the
missing entries such that the query holds actually reduces to the standard Boolean
satisfiability problem (SAT), an NP-complete problem (Garey and Johnson, 2002).

Having evaluated the status of the two queries p and q for all the entities, we
can define subsets of entities as in (1.8) (see Section 1.2.3), but extended with the
undetermined status. That is, we let E1? be the set of entities for which p holds true,
but the status of q cannot be determined, and similarly for E?1, E0?, E?0, and E??.

Then, one can consider different ways to compute the Jaccard index depending on
what values the missing entries are assumed to take, if any. Making no assumption at
all and simply leaving out entities with undetermined status in either of the queries,
Galbrun and Miettinen (2012) suggest to use the standard Jaccard index from (1.4),
called rejective Jaccard index (JR) in this context. Galbrun and Miettinen (2012)
also propose two additional measures that represent the lower and upper bounds
on the Jaccard index. That is, the measures evaluate the Jaccard index under the
least favorable and most favorable assignments of values to the missing entries and
are called the optimistic Jaccard index (JO) and the pessimistic Jaccard index (JP).
Mihelčić et al (2016) introduce an additional measure, which relies on the fact that
entities in E11, E10, and E1? are known to be in the support of p, while entities in
E11, E01, and E?1 are known to be in the support of q. They rewrite the formula
from (1.4), setting supp(p) = E11∪E10∪E1? and supp(q) = E11∪E01∪E?1. In fact,
this corresponds to assuming that the missing entries will take values so as to make
the queries evaluate to false for entities that contain missing information. We call this
variant the negative Jaccard index (JF). Finally, as a counterpart to this latter variant,
we obtain the positive Jaccard index (JT) by assuming that the missing entries will
take values so as to make the queries evaluate to true for entities that contain missing
information.

In summary, the options for computing the Jaccard similarity index in the presence
of missing values include the following variants:1

1 The equation for the pessimistic Jaccard index presented by Galbrun and Miettinen (2012, Equation
5.7) is erroneous, as it misses two summands from the denominator.

48 2 Algorithms for Redescription Mining

JR(p,q) =
|E11|

|E10|+ |E01|+ |E11|
, (2.6)

JP(p,q) =
|E11|

|E10|+ |E01|+ |E11|+ |E1?|+ |E?1|+ |E0?|+ |E?0|+ |E??|
, (2.7)

JO(p,q) =
|E11|+ |E1?|+ |E?1|+ |E??|

|E10|+ |E01|+ |E11|+ |E1?|+ |E?1|+ |E??|
, (2.8)

JF(p,q) =
|E11|

|E10|+ |E01|+ |E11|+ |E1?|+ |E?1|
, and (2.9)

JT (p,q) =
|E11|+ |E1?|+ |E?1|+ |E??|

|E10|+ |E01|+ |E11|+ |E1?|+ |E?1|+ |E0?|+ |E?0|+ |E??|
. (2.10)

Among the algorithms mentioned in this chapter, both ReReMi (Galbrun and
Miettinen, 2012) and CLUS-RM (Mihelčić et al, 2016) are able to handle missing
entries in the input data. CART and PCT algorithms that accept missing values in the
input need to handle them during the learning phase, especially when evaluating the
split obtained with a given attribute. Some algorithms might naively consider the test
to yield a negative outcome when encountering a missing value. Other algorithms
instead consider missing entries as taking a distinct value, and so they add a branch
for the outcome corresponding to the value missing. Yet another approach consists in
distributing the entities for which the value is missing between the different branches
at random, while following the same proportions as observed among the other entities.
In the greedy extension approach, the algorithm simply considers nine subsets of
entities instead of the standard four and substitutes one of the variants above for the
standard Jaccard index.

In summary, the choice of an algorithm for mining redescriptions must take into
account, in particular, the restrictions that might be imposed on the query language,
the type of variables involved, and the size of the data. It can be useful to try
different algorithms, but comparing the resulting sets of redescriptions is typically
not straightforward.

References

Aggarwal CC (2015) Data Mining: The Textbook. Springer, Cham, DOI 10.1007/
978-3-319-14142-8

Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases.
In: Proceedings of 20th International Conference on Very Large Data Bases (VLDB’94), pp
487–499

Blockeel H, De Raedt L, Ramon J (1998) Top-down induction of clustering trees. In: Proceedings
of the 15th International Conference on Machine Learning (ICML’98), pp 55–63

Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. CRC press,
Boca Raton, FL

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297, DOI 10.1007/
BF00994018

References 49

Galbrun E, Miettinen P (2012) From black and white to full color: Extending redescription mining
outside the Boolean world. Stat Anal Data Min 5(4):284–303, DOI 10.1002/sam.11145

Gallo A, Miettinen P, Mannila H (2008) Finding subgroups having several descriptions: Algorithms
for redescription mining. In: Proceedings of the 8th SIAM International Conference on Data
Mining (SDM’08), pp 334–345, DOI 10.1137/1.9781611972788.30

Ganter B, Wille R (1999) Formal Concept Analysis: Mathematical Foundations. Springer, Berlin,
DOI 10.1007/978-3-642-59830-2

Garey MR, Johnson DS (2002) Computers and intractability. A guide to the theory of NP-
completeness, vol 29. W. H. Freeman and Co., San Francisco, CA

Kumar D (2007) Redescription mining: Algorithms and applications in bioinformatics. PhD thesis,
Department of Computer Science, Virginia Polytechnic Institute and State University

Mannila H, Toivonen H, Verkamo AI (1994) Efficient algorithms for discovering association rules.
In: Proceedings of the 1994 AAAI Workshop on Knowledge Discovery in Databases (KDD’94),
pp 181–192

Mihelčić M, Džeroski S, Lavrač N, Šmuc T (2017) A framework for redescription set construction.
Expert Syst Appl 68:196–215, DOI 10.1016/j.eswa.2016.10.012

Mihelčić M, Džeroski S, Lavrač N, Šmuc T (2016) Redescription mining with multi-target predictive
clustering trees. In: Proceedings of the 4th International Workshop on the New Frontiers in
Mining Complex Patterns (NFMCP’15), pp 125–143, DOI 10.1007/978-3-319-39315-5 9

Mihelčić M, Džeroski S, Lavrač N, Šmuc T (2017) Redescription mining augmented with random
forest of multi-target predictive clustering trees. J of Intell Inf Syst pp 1–34, DOI 10.1007/
s10844-017-0448-5

Négrevergne B, Termier A, Rousset M, Méhaut J (2014) Para miner: A generic pattern mining
algorithm for multi-core architectures. Data Min Knowl Disc 28(3):593–633, DOI 10.1007/
s10618-013-0313-2

Quinlan J (1986) Induction of decision trees. Mach Learn 1(1):81–106, DOI 10.1023/A:
1022643204877

Ramakrishnan N, Zaki MJ (2009) Redescription mining and applications in bioinformatics. In:
Chen J, Lonardi S (eds) Biological Data Mining, Chapman and Hall/CRC, Boca Raton, FL

Ramakrishnan N, Kumar D, Mishra B, Potts M, Helm RF (2004) Turning CARTwheels: An
alternating algorithm for mining redescriptions. In: Proceedings of the 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’04), pp 266–275,
DOI 10.1145/1014052.1014083

Zaki MJ, Hsiao CJ (2005) Efficient algorithms for mining closed itemsets and their lattice structure.
IEEE Trans Knowl Data En 17(4):462–478, DOI 10.1109/TKDE.2005.60

Zaki MJ, Ramakrishnan N (2005) Reasoning about sets using redescription mining. In: Proceedings
of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’05), pp 364–373, DOI 10.1145/1081870.1081912

Zhao L, Zaki MJ, Ramakrishnan N (2006) BLOSOM: A framework for mining arbitrary Boolean
expressions. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’06), pp 827–832, DOI 10.1145/1150402.1150511

Zinchenko T, Galbrun E, Miettinen P (2015) Mining predictive redescriptions with trees. In: IEEE
International Conference on Data Mining Workshops, pp 1672–1675, DOI 10.1109/ICDMW.
2015.123

Chapter 3
Applications, Variants, and Extensions of
Redescription Mining

Abstract Redescription mining is a data analysis task that aims at finding distinct
common characterizations of the same objects. After defining the core problem and
presenting algorithmic techniques to solve this task, we look in this chapter at some
of the applications, variants, and extensions of redescription mining. We start by
outlining different applications, as examples of how the method can be used in various
domains. Next, we present two problem variants, namely, relational redescription
mining and storytelling. The former aims at finding alternative descriptions for
groups of objects in a relational data set, while the goal in the latter is to build a
sequence of related queries in order to establish a connection between two given
queries. Finally, we point out extensions of the task that constitute possible directions
for future research. In particular, we discuss how redescription mining could be
augmented with richer query languages and consider going beyond pairs of queries
to multiple descriptions.

Having formally defined the task of mining redescriptions in Chapter 1, and
having presented different algorithmic techniques to carry it out in Chapter 2, we
now look at it from different perspectives; specifically, we consider applications,
variants, and extensions of the task.

First, we outline different applications of redescription mining, as examples of
how the method can be used in various domains. Next, we present two problem
variants, namely relational redescription mining and storytelling. The former aims at
finding alternative descriptions for groups of objects in a relational data set, while
the goal in the latter is to build a sequence of related queries in order to establish a
connection between two given queries. Finally, we point out extensions of the task
that constitute possible directions for future research. In particular, we discuss how
redescription mining could be augmented with richer query languages and consider
going beyond pairs of queries to multiple descriptions.

51

52 3 Applications, Variants, and Extensions of Redescription Mining

3.1 Applications of Redescription Mining

In this section, we present some applications of redescription mining. The applica-
tions come from a diverse set of domains, highlighting the versatility of redescription
mining. Because our purpose in this section is to provide ideas as to how redescrip-
tion mining can be applied on actual use cases, we will not explain each application
in detail, instead referring the interested readers to the original publications.

3.1.1 In Biology

In the field of bioinformatics, Kumar (2007) used the CARTwheels algorithm
(Ramakrishnan et al 2004; see also Section 2.2) to perform a cross-taxonomic and
cross-genomic analysis of gene ontologies, which was also discussed by Ramakr-
ishnan and Zaki (2009). A gene ontology is a unified controlled vocabulary that
describes genes and their products. It is structured as a directed acyclic graph of
concepts. The Gene Ontology (GO)1 contains ontologies relating to biological pro-
cesses (denoted as BIO), cellular components (CEL), and molecular functions of
genes (MOL), all gathered into one database and accompanied by a set of tools to
browse this database and use it in experiments. The terms from these ontologies are
used to annotate genes, that is, they are added to the genes as a means to explain
their role, function, etc. Some of the terms in this database are used to annotate genes
of different species. The Gene Ontology is a major standardization and annotation
initiative, which is part of the more general Open Biomedical Ontologies (OBO)
classification effort in bioinformatics.

The goals of applying redescription mining include (i) the functional enrichment of
unclassified genes, (ii) the analysis of structural (in)consistencies among ontologies,
and (iii) communication on the similarities and differences across ontologies.

Kumar (2007) contributes to this third goal by considering the genome of a species
of roundworm (Caenorhabditis elegans) and mining cross-taxonomy redescriptions,
that is, identifying associations across different ontologies. For instance, he provides
an exact redescription supported by 3 genes involving terms from GO BIO and GO
CEL, on the one hand, and a term from GO MOL, on the other hand:

GO : 0006415 (BIO translational termination)∧GO : 0005737 (CEL cytoplasm)

≡ GO : 0003747 (MOL translation release factor activity) .

Another redescription he provides also has a Jaccard similarity of 1 and involves
terms from all three ontologies:

1 http://www.geneontology.org/. Accessed 25 Oct 2017.

http://www.geneontology.org/

3.1 Applications of Redescription Mining 53

GO : 0003924 (MOL GT Pase activity)

∧ GO : 0015630 (CEL microtubule cytoskeleton)

≡ GO : 0046785 (BIO microtubule polymerization) .

This redescription is supported by 45 genes of the human genome, 30 genes of the
mouse genome, and 16 genes of the worm genome and is, therefore, cross-taxonomic
and cross-genomic at the same time.

The question of relating the genotype and the phenotype of organisms is of ma-
jor importance in bioinformatics and intuitively lends itself to an analysis through
redescription mining. This kind of question arises, for instance, when considering
budding yeast (Saccharomyces cerevisiae) and looking for associations between the
gene expression levels measured in different stress experiments, such as desiccation
and heat shock, and the GO terms with which the genes are annotated (Ramakr-
ishnan et al, 2004; Kumar, 2007; Ramakrishnan and Zaki, 2009). Such a study
can help understand stress response mechanisms and relate the reaction to stress—
a behavioural characteristic which is part of this organism’s phenotype—and the
organism’s genotype.

In a laboratory experiment reported by Singh et al (2005), yeast colonies were
left to dry for 42h, then rehydrated. Samples were taken at timestamps T0 = 0h,
T1 = 18h, and T2 = 42h during the desiccation as well as T3 = 15min, T4 = 45min,
T5 = 90min, and T6 = 6h during the rehydration, and gene expression levels (EL)
were measured for these various samples using microarray tests. The expression levels
from this desiccation/rehydration experiment were supplemented with expression
levels obtained in related experiments and reported in the literature (such as a heat
shock experiment) as well as with terms from the Gene Ontology.

The two redescriptions below, reported by Kumar (2007, Chapter 4), are examples
of the results obtained in this study, using the CARTwheels algorithm. The first
redescription is an exact redescription (J = 1) supported by a single gene (SIP18). It
relates terms from the GO CEL ontology to expression changes during desiccation:

GO : 0005625 (CEL soluble fraction) ∧ GO : 0005634 (CEL nucleus)

≡ [6≤ EL@T4 vs. EL@T0 desiccation]∧ [EL@T4 vs. EL@T2 desiccation≤ 1] .

The second redescription relates a particular expression level during a heat shock to
a change in expression during desiccation:

[EL@30min heat shock≤ 1]∼ [−5≤ EL@T1 vs. EL@T0 desiccation <−1]

It has a Jaccard similarity of 0.71 and is supported by 32 genes.
To better understand the phenomenon highlighted by the second redescription

above and uncovering the corresponding pathway, Ramakrishnan and Zaki (2009)
consider the genes in its support that do not encode for ribosomal activity and
look closer into the relationships that exist between the remaining genes, based on
their expression profiles and on knowledge from the literature. This way, they can

54 3 Applications, Variants, and Extensions of Redescription Mining

reconstruct a network of gene interactions related to methyl group transfer and sulfur
metabolism.

As part of a study of the links between the genotypes and phenotypes of various
strains of Staphylococcus aureus bacteria, Gaidar (2015) applied redescription mining
to relate gene expression and cell binding data for this bacteria. More precisely, she
considered a collection of 29 methicillin resistant and 29 methicillin sensitive strains
of Staphylococcus aureus collected from nasal colonisation of incoming hospital
patients. Gene expression data collected through micro-array experiments for these
58 strains constituted one data table. The other data table contained the results of a
whole-blood experiment, bringing the different strains in contact with fresh human
blood and measuring the time needed for the bacteria to attach to particular white
cell populations (granulocytes, monocytes, and lymphocytes). Thus, the attributes
from the first data table characterise the genotype of the bacteria strains while those
from the second data table relate to their phenotype.

Redescriptions were mined from this pair of data tables using the ReReMi algo-
rithm (Galbrun and Miettinen 2012; see also Section 2.3). For instance, the most
accurate redescription reported by Gaidar (2015) states that strains showing activation
for genes specific to capsule type 5 production (capH5) are roughly the same strains
for which the Mean Fluorescent Intensity (MFI) over granulocytes at the 5 minutes
time point was lower than 886.73 arbitrary units of fluorescent intensity:2

capH5∼ [Granulocytes MFI @5min≤ 886.73] .

This redescription has a support of 32 strains and a Jaccard similarity of 0.889.
The obtained redescriptions highlight associations between the genotypical profile

of the strains and a particular aspect of their phenotypical profile, namely their
reaction in a whole-blood experiment. These results generally agree with previous
experimental findings (e.g. Watts et al, 2005) and accepted knowledge in the scientific
community.

Along a different line of work, Mihelčić et al (2017) used redescription mining to
relate clinical and biological characteristics of cognitively impaired patients, with
the aim of improving the early diagnosis of Alzheimer’s disease. They applied the
CLUS-RM algorithm (Mihelčić et al 2016; see also Section 2.2) on data provided
by the Alzheimer’s disease Neuroimaging Initiative (ADNI).3 In this study, one
data table consists of biological attributes derived from neuroimaging, from blood
tests, and from genetic markers, for instance, while the other data table contains
clinical attributes that record patients’ answers to several questionnaires, records
of observations by physicians, and results of cognition tests. The results obtained
largely confirmed the findings of previous studies. In addition, they highlighted some
additional biological factors whose relationships with the disease require further

2 Units of fluorescent intensity depend on the measuring device and the procedure used, hence they
are called arbitrary units.
3 http://www.adni-info.org/. Accessed 25 Oct 2017.

http://www.adni-info.org/

3.1 Applications of Redescription Mining 55

investigation, such as the pregnancy-associated plasma protein-A (PAPP-A), which
they found to be highly associated with cognitive impairment in Alzheimer’s disease.

3.1.2 In Ecology

One application of redescription mining in the field of ecology is in finding biocli-
matic niches. A bioclimatic niche4 (or bioclimatic envelope) explains the distribution
of species based on bioclimatic properties, in contrast to other types of niches that
might consider other explanatory parameters such as predation and competition rela-
tionships. Bioclimatic niches can be used to predict the ability of species to survive
the effects of climate change (Pearson and Dawson, 2003). Indeed, if the climate
model predicts that the niche will disappear, the species is probably in danger of
extinction.

The idea of finding a climate that correlates with a species was proposed in
the twenties (see Pearson and Dawson, 2003). More recently, Thuiller et al (2009)
presented the BIOMOD ensemble forecasting platform, which can use different algo-
rithms for finding the niches and has become a rather popular tool for bioclimatic
niche modelling. Foremost among methods used to learn niches are those based
on the maximum entropy principle (Phillips et al, 2006). The choice of features to
consider as input attributes—whether to consider temperature and rainfall, squares
and products thereof (as variance and co-variance), land use, altitude, etc.—can have
a significant effect on the obtained niches.

Galbrun and Miettinen (2012) presented an example for the application of re-
description mining to the task of niche modelling. We can see the query over the
species and the query over the climatic attributes as defining the observed niche
and the simulated niche, respectively. Our first introductory example in Section 1.1
comes from this application domain, defining the bioclimatic niche of the Eurasian
and Canada lynxes.

Mining redescriptions over species and bio-ecological attributes can allow sci-
entists to identify niches that can involve multiple species. In addition, while the
standard methods require manually selecting the species whose niche we are inter-
ested in, when using redescriptions, the species are selected automatically during the
mining process. Besides, the obtained redescriptions are interpretable and provide
sharp limits on climate conditions instead of the weights returned by regression mod-
els or the correlations detected by statistical procedures such as PCA, for instance.

When the redescriptions are intended to be used for predictions, it is important
to test how well they generalize. Cross-validation is the most common test for this
purpose, but splitting the data into training and testing sets is not trivial in this appli-
cation. Indeed, the simplest approach is to use uniformly random samples (Phillips
et al, 2006), but this presents a risk of missing small niches completely. Instead, in
order to account for the North–South trends in the climate, Zinchenko et al (2015)

4 The term is used in its Grinnellian sense, see Soberón and Nakamura (2009).

56 3 Applications, Variants, and Extensions of Redescription Mining

proposed sampling entities, that is, geographic sites, along North–South stripes. Such
a sampling approach ensures better coverage of the various climates encountered
along different latitudes, and hence, improves the representativity of the subsets.

Instead of modelling the distributions of species directly, one might look at the
distributions of functional traits of species. Depending on the aim of the study, the
traits of interest vary, including physiological, morphological, or anatomical features
such as the body size, weight and shape, the diet type, the growth rate, and so
on. This might allow the analyst to find associations that generalize better across
space (to similar species on different continents) and across time (to extinct and
fossil species that share similar traits). Galbrun et al (2017) consider dental traits
of large plant eating mammals and bioclimatic variables (derived from temperature
and precipitation records) from around the globe, looking for associations between
teeth features and climate. Indeed, the teeth of plant-eating mammals constitute an
interface between the animal and the plant food available in its environment. Hence,
teeth are expected to match the types of plant food present in the environment, and
dental traits are thus expected to carry a signal of environmental conditions. In this
study, three global zones are identified, namely a boreal-temperate moist zone, a
tropical moist zone, and a tropical-subtropical dry zone, each associated to particular
teeth characteristics and a specific climate.

For instance, the following redescription characterizes sites near the equator in
Africa, South America, and Asia—sites that correspond to the tropical moist zone—
in terms of the distribution of dental traits among the species that inhabit those sites,
on the one hand, and of climatic variables, on the other hand.

([0.846≤ Hyp1]∧ [OL≤ 0.4])∨ [0.033≤ OT≤ 0.138]∧ [Hyp3≤ 0.348]

∼ [67≤ T Iso]∧ [17.7≤ T+WarmM≤ 35.8] .

The first query involves traits related to the durability of the teeth through their
shape (Hyp1 and Hyp3) as well as related to the presence of cutting structures (OL)
and to occlusion properties (OT). The second query selects sites with a hot climate
(T+WarmM) and low temperature seasonality (T Iso).

3.1.3 In Social and Political Sciences and in Economics

Van Leeuwen and Galbrun (2015) and Galbrun and Miettinen (2016) applied re-
description mining to political opinion poll data. In particular, they both used voting
advice application data from Finnish parliamentary elections. An online voting ad-
vice application (VAA for short) is an online platform that aims to help the voters
choose which party or candidate to vote for. They can do this by presenting a set of
questions to the candidates and recording their answers. The same questions are then
asked from the voter using the application, and finally, the application shows how
well the voter’s answers match with various candidates’ answers. The questions are
different in every election and might vary from one voting district to the next, as the

3.1 Applications of Redescription Mining 57

developers of the VAA try to devise questions that are important to the voters in the
election at hand and are divisive enough to allow for meaningful recommendations.

The experiments by van Leeuwen and Galbrun (2015) and Galbrun and Miettinen
(2016) used the answers of the candidates together with their socio-economical
background information (e.g. age, education level, party membership), which was
released as open data by the makers of the VAAs. They both used data from the 2011
Finnish parliamentary elections, and Galbrun and Miettinen (2016) also used data
from the 2015 parliamentary elections.

This kind of VAA data presents a natural setting for redescription mining: we
have one data table that contains the socio-economical background and another one
that contains the answers. This allows us to analyse whether the socio-economical
background explains the candidates’ opinions on certain topics; for example, Galbrun
and Miettinen (2016) found the following redescription from the 2011 election data,
describing the candidates who were against more nuclear power as being of a certain
age, having a high level of education, or not being a member of the parliament at the
time:

[51≤ Age≤ 58]∨ [7≤ EduLvl]∨¬MP∼ ¬Q3.NuclearPow .

The above redescription has Jaccard similarity of 0.66 with support of 366 (out of
675 candidates in the data).

Visualization: 2D Embeddings

Embedding high-dimensional data in two or three dimensions for visualization is
a common and well-studied problem. There are many different methods for the
embedding, usually aiming to preserve different features of the original data. No-
table methods include principal component analysis, multidimensional scaling, self-
organizing maps (Kohonen, 1989), Isomap embedding (Tenenbaum et al, 2000),
and locally-linear embeddings (Roweis and Saul, 2000), to name but a few. These
and other embeddings can also be used to visualize the entities and their relation
to the support of a redescription. Figure 3.1 shows an Isomap embedding of the
candidates in the 2011 Finnish parliamentary election. The colours in Figure 3.1
are based on the above redescription: the light red squares correspond to candidates
whose socio-economical background match the description but who do support more
nuclear power, the medium purple squares correspond to candidates to whom both of
the descriptions apply (i.e. they are in the support of the redescription), the dark blue
squares correspond to candidates who do not support more nuclear power but whose
socio-economical background are not as described, and the very light grey squares
correspond to the candidates to whom neither of the descriptions apply.

Different embeddings will reveal different structures from the data and can be
useful when analysing different redescriptions. The Isomap embedding in Figure 3.1,
for example, embeds most of the light red markers to the right and most of the

58 3 Applications, Variants, and Extensions of Redescription Mining

Fig. 3.1 The data for the redescription about age, education level, political experience, and opinions
towards nuclear power projected to 2D using Isomap embedding on the Boolean and categorical
attributes. Light red corresponds to candidates with correct traits but who support nuclear power,
medium purple represents candidates to whom both descriptions apply, dark blue is for candidates
who do not support nuclear power, but whose socio-economical traits are different from the described,
and very light grey is the candidates to whom neither of the descriptions apply. Candidates with
missing answers are not shown.

medium purple markers to the left part of the plot. The few dark blue markers are
mixed among the medium purple markers; this indicates that the socio-economical
background does not really affect the embedding. However, the candidates who do
support building more nuclear power are generally on the right, while the candidates
who are against it are more on the left side of the plot. No clear division can be
seen, though, indicating that this redescription captures some local pattern that is not
observable at the scale of the entire data set.

Another natural question for this kind of data is how the answers in one year relate
to the answers in another year. Galbrun and Miettinen (2016) compared the answers
of the candidates who ran for a seat in both 2011 and 2015 elections. The following
redescription is an interesting example of their findings:

3.1 Applications of Redescription Mining 59

[Q17:NATO 6= YesNotSoon]∧¬Q31:GvtPrt:RKP
∧ [Q27:MunOutsource 6= IncButChoose]

∼ [Q137.NATO.is.good≤−1] .

This redescription indicates that the candidates who in 2011 did not choose the option
‘yes, but not too soon’ to the question ‘Should Finland apply for a membership in
NATO?’, did not want the Swedish People’s Party in the government, and did not
want to increase the outsourcing of municipal services are approximately the same
candidates who in 2015 disagreed with the claim ‘Joining NATO would improve
Finland’s national security.’ The redescription has a Jaccard similarity of 0.78 and a
support of 368 (out of 675 candidates in the data). While the support of Finland’s
NATO membership does not strictly follow party lines, the redescription indicates
that resistance towards membership is stronger among the politicians who share
traditional left-wing opinions.

Many natural applications of redescription mining involve socio-economical data.
For another example, Mihelčić et al (2017) studied the import and export data of
countries together with general data from those countries (e.g. demographical data,
health-related data) as published by the World Bank. An example of a redescription
obtained by Mihelčić et al (2017) is below:

[13.2≤ POP14 ≤ 15.2]∧ [3.1≤MORT≤ 5.0]∧ [0.0≤ POP GROWTH≤ 0.5]
∼ [13.2≤ E/I MiScManArt≤ 15.2]∧ [28.0≤ E MedSTechInMan≤ 40.0] .

This redescription describes seven countries (out of 199)—namely, Austria, Czech
Republic, Germany, Italy, Poland, Slovenia, and Spain. On the one hand, these
countries have a population consisting of between 13.2 % and 15.2 % of under 14
year olds, a mortality rate for under 5 year olds between 3.1 and 5.0 per 1000, and a
slow population growth of 0.0 % to 0.5 %. On the other hand, these countries have an
export–import ratio of miscellaneous manufactured articles between 13.2 and 15.2,
and medium-skill technology-intensive manufactured goods make up between 28 %
and 40 % of their export.

3.1.4 In Engineering

So far, our examples have used redescription mining as an exploratory data analysis
method—which it of course is. But it can also be used for other purposes. Goel et al
(2010) used exact redescriptions over binary data to speed up sequential equivalence
checking. Testing the equivalence of two logical circuits is a common problem in
electrical engineering, where one typically first designs a circuit based on the logical
requirements and then tries to optimize it, for example, by merging logical paths in
order to reduce the number of transistors or surface area in the final circuit. Naturally,
the optimized circuit must be equivalent to the original for the optimization to be
valid.

60 3 Applications, Variants, and Extensions of Redescription Mining

a1 a2 · · · an b1 b2 · · · bm

.

PI’s

Original circuit Optimized circuit

Fig. 3.2 Example of a sequential circuit (left) and its optimized version (right). The primary
inputs (PI’s) provide the initial input, after which the output of every round is stored in flip-flops
a1,a2, . . . ,an (original circuit) or b1,b2, . . . ,bn (optimized circuit), from where it is fed as the input
for the next round.

A sequential circuit is a logical circuit that stores its output in flip-flops, from
where it is fed as the input for the same circuit. An example of a sequential circuit
and its optimized version are presented in Figure 3.2. Testing the equivalence of
sequential circuits presents a hard problem: in a naive approach, each round of
feeding the output as input would be modelled by copy-pasting the circuit after itself,
making the circuit grow very large very quickly. On the other hand, the sequential
structure of the circuit can create certain constraints on the possible inputs for the
circuit, making certain input configurations impossible. A set of these configurations
is called a don’t-care set, and the equivalence checking can use the don’t-care set to
reduce the space of potential configurations it needs to validate.

Goel et al (2010) use redescription mining to find candidate configurations to be
included in the don’t-care set. They run both the original and the optimized circuit
for one round with a number of random inputs, storing the values of the flip-flops
in an inputs-by-flip-flops binary table. They then use the BLOSOM algorithm (Zhao
et al 2006; see also Section 2.1.2) to mine the exact redescriptions from this matrix.
These redescriptions provide candidates for illegal configurations; for instance, if
BLOSOM finds a redescription f1 ∧ f2 ≡ ¬ f3, all configurations where flip-flop f3
is true but either f1 or f2 is false are potentially illegal, as are those where all three
flip-flops are true. To make sure that the candidate constraints are valid, Goel et al
(2010) validate them using a SAT solver. Valid constraints can be added to the model
to make the final equivalence checking easier.

3.2 Relational Redescription Mining 61

3.2 Relational Redescription Mining

Up to this point, our descriptions have characterized single objects, whether they
were geographic locations, genes, medical patients, or political candidates. Next, we
look at a redescription mining task where, instead of characterizing single objects in
different ways, the goal is to find alternative descriptions of small groups of objects
in terms of their individual properties and the relations that link them. In other words,
we present in this section the relational variant of the redescription mining problem.

This problem variant could be useful in the exploration of knowledge bases and
ontologies. It could help identify associations between the different relations that
coexist in the data and possibly originate from different sources, going beyond the
one-to-one mappings considered by most schema-matching approaches (Shvaiko and
Euzenat, 2005).

Relational redescription mining was introduced by Galbrun and Kimmig (2014).
We begin with an example based on a data set from that work.

3.2.1 An Example of Relational Redescriptions

The data set used by Galbrun and Kimmig (2014) was extracted from the Alyawarra
Ethnographic Database5 and provides information about kinship terminology and
family relationships within an Australian indigenous community. It can be seen as a
pair of labelled graphs, sharing the same set of nodes. Nodes represent individuals
from the community. One graph contains personal details and genealogic information.
More precisely, the age and sex of the individuals are represented by node attributes,
while parental and spousal relations between pairs of individuals are represented by
edges, directed and undirected respectively, labelled with the type of the relation. The
other graph contains information about the kinship terms individuals use for their
relationships to other persons. This information is represented by directed edges,
going from the speaker to the person referred to and labelled with the corresponding
kinship term used. The entire data set contains almost 400 nodes and slightly over
24000 edges in total for the two graphs.

Here, we only look at a small subset of that data set, which consists of 10 nodes
and the relations between them from either of the two graphs. Figures 3.3 and 3.4
show the genealogic and kinship graphs that we will use in our example. The edges
in the genealogic graph (see Figure 3.3) are labelled with attribute gen which can
take the value of either parent or spouse and is represented by an arrow and
by a double line, respectively. The nodes are labelled with the attributes sex and
age. The node attribute sex takes a value of either M, for male, or F, for female.
The node attribute age takes a numerical value indicated by the position of the
node, with nodes at the bottom representing younger individuals. This attribute value
is also indicated by the shade of the node, with darker nodes representing older

5 http://www.culturalsciences.info/AlyaWeb/. Accessed 25 Oct 2017.

http://www.culturalsciences.info/AlyaWeb/

62 3 Applications, Variants, and Extensions of Redescription Mining

o6
o5 o7

o3

o4o1

o2

o10

o9

o8

gen=spouse

gen=parent

sex=H
sex=F sex=F

sex=H

sex=F
sex=H

sex=F

sex=F

sex=H

sex=F

Fig. 3.3 Genealogic graph from the Alyawarra data set as an example of a heterogeneous network
used to mine relational redescriptions. Nodes represent individuals from the indigenous community,
and edges represent parental and spousal relationships.

individuals and black nodes o2 and o3 representing deceased individuals. The edges
in the kinship graph (see Figure 3.4) are labelled with the attribute kin, whose values
represent the different kinship terms, each represented by arrows in a different colour.
Kinship terms are not available for deceased individuals.

In this context, our goal is to find pairs of graph queries, such as the one shown in
Figure 3.5, that characterize roughly the same pairs of nodes in order to automatically
discover definitions for the kinship terms. The nodes in graph queries are represented
by circles to differentiate them from data nodes, represented by squares. The graph
on the right-hand side of Figure 3.5 represents a simple query that selects the pairs
of individuals (#A,#Z) such that #A refers to #Z using the term aleriya. The graph
on the left-hand side of Figure 3.5 represents a more complex query that selects the
pairs of individuals (#A,#Z) such that #A is male and older than #Z, and there exists
a third individual, denoted as #1, who is female, the spouse of #A, and the parent
of #Z. These two subgraphs form a relational redescription in the sense that the set
of pairs of individuals that satisfy the first query largely matches the set of pairs of
individuals that satisfy the second one. According to the glossary provided with the
data, the term aleriya is used by male speakers to refer to a son or a daughter and by
female speakers to refer to a son or a daughter of a brother. The pair of subgraphs
shown in Figure 3.5 encodes the first meaning of the term, that is, when used by male
speakers. Hence, this redescription correctly recovers part of the definition of the
term aleriya.

3.2 Relational Redescription Mining 63

o6
o5 o7

o3

o4o1

o2

o10

o9

o8

kin=aweniya

kin=agngiya

kin=umbaidya

kin=aleriya

kin=anguriya

kin=adardiya

kin=abamarliya

kin=anowadya

Fig. 3.4 Kinship graph from the Alyawarra data set as an example of a heterogeneous network used
to mine relational redescriptions. Nodes represent individuals from the indigenous community, and
edges represent the kinship terms they use for one another.

#A #Z
kin=aleriya

#A #1

#Z

gen=spouse

gen=parent

sex=Fsex=M

age <

Fig. 3.5 Genealogic and kinship graph queries over the Alyawarra data set.

3.2.2 Formal Definition

Let us now formalize the definition of relational redescription mining. We use a
formalism similar to the one introduced by Galbrun and Kimmig (2014) and Galbrun
(2013). For a more in-depth discussion of the problem variant, the interested reader
should refer to the original works.

Relational redescription mining takes relational data sets as input. In other words,
the data sets considered contain relations between objects in addition to properties of
individual objects, such as can be represented by hypergraphs. However, Galbrun and
Kimmig (2014) restricted the problem to binary relations, considering only relations
that involve two objects. Such a data set can be represented by a normal graph. The
graph might contain both directed and undirected edges, and both nodes and edges
are labelled with various attributes. As in the basic setup, the set of attributes is

64 3 Applications, Variants, and Extensions of Redescription Mining

Node predicate Edge predicate Comparison predicate

νfemalesex (#1) εparentgen (#Z,#1) φ<
age(#Z,#A)

#1
sex=F #Z #1

gen=parent
#A#Z

age <

Fig. 3.6 Examples for the three types of predicates in relational redescription mining. For each type
of predicate, an example from the Alyawarra data set is provided with the mathematical notation
indicated on top and the equivalent graphical depiction underneath.

divided into several views, and one can see the data set as consisting of a single graph
with the attributes of all the different views or as consisting of several graphs, one
for each view. In our example, the attributes are divided into two views. One view
contains the personal information and genealogic relations, that is, it consists of node
attributes sex and age as well as edge attribute gen. The other view contains the
kinship information and consists only of attribute kin.

As in Section 1.2.2, we consider predicates over the attributes. Relational predi-
cates are divided into three types: node predicates, edge predicates, and comparison
predicates. In Figure 3.6, we provide for each type of predicate an example from the
Alyawarra data set, each denoted using the mathematical notation (top) and depicted
graphically (bottom).

Node predicates test the value of an object attribute. Node predicates are, thus, the
counterpart of the predicates defined in Section 1.2.2. The example node predicate
in Figure 3.6 (left) holds true for nodes for which the attribute sex takes the value
female. In other words, this predicate selects as node #1 all nodes that represent
female individuals.

Edge predicates test the value of an edge attribute. The example edge predicate in
Figure 3.6 (center) holds true for pairs of nodes that are linked by an edge for which
the attribute gen takes the value parent. In other words, this predicate selects as
nodes #Z and #1 all node pairs such that the individual represented by the second
node is the parent of the individual represented by the first node.

Finally, comparison predicates compare the value of an attribute between two
objects. The example comparison predicate in Figure 3.6 (right) holds true for pairs
of nodes such that the attribute age takes a smaller value for the first node than for
the second node. Hence, this predicate selects as nodes #Z and #A all node pairs
such that the individual represented by the first node is younger than the individual
represented by the second node.

Note that for a given node or node pair relational predicates need to check that the
attribute is defined before evaluating its value since it cannot be presumed, unlike in
the table data model. For instance, the edge predicate εparentgen (#Z,#1) first needs to
check that there exists an edge linking the two nodes and that it is labelled with the
gen attribute before checking what value the attribute takes.

Graph queries are then obtained by taking a conjunction of predicates and marking
some nodes as the query variables. In other words, a graph query is a definite clause
of the form

3.2 Relational Redescription Mining 65

q(#A, . . . ,#Z) = b1∧ . . .∧bn ,

where the body elements b1, . . . ,bn are node, edge, and comparison predicates, and
the head variables #A, . . . ,#Z are the query variables. The query variables represent
the objects of interest in the query, the objects that it describes. For reasons of
interpretability, we require the graph formed by edge predicates to connect the query
variables. To differentiate between the query variables and the other nodes in the body
of the query, we identify them, respectively, with letters and numbers. In graphics,
we represent query variables with filled markers and use empty markers for other
variables.

For instance, the genealogic graph query in Figure 3.5 (right) consists of five
predicates and can be denoted as

q(#A,#Z) = νmalesex (#A) ∧ εspousegen (#A,#1)

∧ νfemalesex (#1) ∧ εparentgen (#Z,#1) ∧ φ<
age(#A,#Z) .

For a given query, one can look for matches between the nodes in the body of the
query and the data nodes, such that each node in the body of the query is matched to
a different data node while respecting the predicates. Such a match, where node Yj
in the query maps to node oi j in the data is called a substitution and is denoted as
θ = {Y1/oi1 , . . . ,Yn/oin}. It can be seen as a subgraph isomorphism when thinking
in terms of graphs, and it is known as a θOI-subsumption in inductive logic pro-
gramming. An answer substitution is a substitution θ reduced to the query variables
and the support of query q, denoted as supp(q), is the set of all its distinct answer
substitutions on the given data graph. Notice that in relational redescription mining,
supp(q) consist of object tuples and not just objects, as in standard redescription
mining.

Going back to the above example, {#A/o3,#1/o4,#Z/o6} is a substitution of
q(#A,#Z), and (o3,o6) is the corresponding answer substitution. The support of this
query in our example data set is

supp(q) = {(o1,o5),(o3,o6),(o6,o8),(o6,o9),(o6,o10)} ,

The simple kinship graph query in Figure 3.5 (left) can be denoted as

p(#A,#Z) = εaleriyakin (#A,#Z) ,

and its support in our example data set is

supp(p) = {(o1,o5),(o1,o7),(o6,o8),(o6,o9),(o6,o10)} .

As in the basic setup (1.6), we can use the Jaccard similarity together with some
user-specified constant to define a similarity ∼ between graph queries. The Jaccard
similarity between the support of the two graph queries p and q is

J(p,q) =
4
6
.

66 3 Applications, Variants, and Extensions of Redescription Mining

Heterogeneous networks and graph queries provide a new type of data D and
a new query language Q, resulting in the relational redescription mining problem
variant when plugged into Definition 9.

Definition 10 (Relational Redescription Mining). Given data D consisting of het-
erogeneous networks, language Q of graph queries, similarity ∼, and other potential
constraints, the goal of relational redescription mining is to find all valid redescrip-
tions (pi,qi) that also satisfy the other potential constraints.

In the relational redescription mining problem, as in the basic redescription
mining problem (see Section 1.2.4), the other constraints might include restrictions
on the support size, both from above and from below, as well as restrictions on
the complexity of the graph query, limiting for instance the number of nodes, of
edges, or of attributes that a query might involve. Also, to eliminate overly generic
queries, it can be interesting to limit the number of distinct data nodes that a query
node might map to. In this relational setting, evaluating the statistical significance of
redescriptions is a rather complex issue and requires further investigation.

Galbrun and Kimmig (2014) presented an algorithm for mining relational re-
descriptions where the graph queries are limited to two query variables. They pro-
posed a method to construct a graph query, given a list of target node pairs. It works
by first finding simple labelled paths that appear frequently between the target pairs,
that is, short paths that link as many node pairs as possible among the target pairs.
Then, those simple paths are filtered and combined into more complex graph queries,
based on their occurrences in the data set. This relational query miner forms the basis
of an alternating scheme that uses the support of the query found at one step as the
target for building a new query in the following step.

3.3 Storytelling

Storytelling is an extension of redescription mining that was initially proposed by
Ramakrishnan et al (2004). Current storytelling algorithms all follow the same
framework based on the A* heuristic. Nonetheless, this framework has proven to be
a versatile approach, applicable to different domains.

3.3.1 Definition and Algorithms

The goal of storytelling is to build a story between two queries.

Definition 11 (Stories and Storytelling). Given data D, query language Q, similar-
ity ∼, and two queries qs and qt from Q, a story between qs and qt is a sequence
qs = q1,q2,q3, . . . ,qk,qk+1 = qt , of queries from Q such that for all i = 1,2, . . . ,k
the pair (qi,qi+1) is a valid redescription, except that their views do not have to

3.3 Storytelling 67

be disjoint (i.e. qi ∼ qi+1, but it is possible that views(qi)∩views(qi+1) 6= /0). The
length of the story is k. The goal of storytelling is to find the shortest story between
given queries qs and qt .

The following example is by Kumar et al (2008).

Example 6. Consider the game of morphing words by changing a few letters from
one word to obtain another word. The goal is to reach the target word through
a succession of morphs between valid words. This game can be modelled as a
storytelling task. The attributes are English words—in this case, all words with five
letters—and the entities are (letter,position) pairs. In our query language, we only
allow singleton queries. For example, the query q = ‘booth’ would have supp(q) =
{(b,1),(o,2),(o,3),(t,4),(h,5)}. The amount of letters that each morph is allowed
to change is controlled by the threshold on the Jaccard similarity. For example,
looking for a story from qs = ‘booth’ to qt = ‘flash’ and setting the threshold so that
2 letters can be changed, Kumar et al (2008) obtained the following:

booth∼ boats∼ beams∼ deads∼ grads∼ grade∼ craze∼ crash∼ flash .

The requirement for disjoint views is dropped for the redescriptions in a story.
Indeed, there is no risk of tautological queries as the subsequent redescriptions aim
to be more similar with qt . Besides, requiring that the subsequent views are disjoint
would mean that the second to last query cannot share attributes with qt .

Kumar et al (2008) propose a framework for storytelling. The framework is based
on the A* heuristic and redescription mining and is presented in Algorithm 3.1.
The framework operates in steps. At every step, it considers a query q. If this query
is sufficiently similar to the target, we have found the story and return it (line 5).
Otherwise, b new redescriptions q ∼ q′ are mined (lines 7–11). For each of the
candidate queries q′, we calculate how many steps, at minimum, it will take to reach
query qt (line 9). This is used to sort the candidates in the priority queue: the queries
q′ are entered to the priority queue with a key that is the sum of the current number of
steps taken and the minimum number of steps still needed. Together with the query,
we also store the number of steps taken so far and the current partial story (line 10).

If the priority queue becomes empty without finding any story, the framework
returns an empty set (line 13). This can happen even if a story between qs and qt
exists: if the user-supplied parameter b is too small, the A* heuristic cannot search
the neighbourhoods of the queries properly and can miss a valid story.

Kumar et al (2008) use the CARTwheels algorithm (Ramakrishnan et al 2004;
see also Section 2.2) for finding the queries and they only consider binary data. In
principle, any other query-finding algorithm could be used, not restricted to binary
data. This would, however, require one to find a way to estimate the minimum number
of steps that are still needed, as this estimator is the key to the A* heuristic and very
dependent on the chosen algorithm (and query language).

Another method, as used by Hossain et al (2012b) (see also Section 3.3.2) is to
use as the proxy for quality not the number of steps but rather the distance between
the current query and the target query. For this, the distance function has to admit the
triangle inequality.

68 3 Applications, Variants, and Extensions of Redescription Mining

Alg. 3.1 Framework for storytelling
Input: Data D, query language Q, similarity ∼, starting query qs ∈Q, target query qt ∈Q, and

branching parameter b.
Output: A story (qs,q2,q3, . . . ,qk,qt) or /0.
1: Q← PriorityQueue(); Q.put(0,qs,0, /0)
2: while Q is not empty do
3: (e,q,k,h)← Q.pop()
4: if q∼ qt then
5: return h∼ q∼ qt
6: end if
7: for i = 1, . . . ,b do
8: find a query q′ ∈Q such that q∼ q′

9: m← the minimum number of steps from q′ to qt
10: Q.put(k+m,q′,k+1,h∼ q′)
11: end for
12: end while
13: return /0

Example 7. To see how the algorithm works, consider the following example, adapted
from Kumar et al (2008). The data are stored in a single Boolean data table

D =



α β γ δ ε ζ
e1 1 1 0 0 0 0
e2 0 1 1 0 0 0
e3 0 1 0 1 0 0
e4 0 0 1 0 0 0
e5 0 0 0 1 1 0
e6 0 0 0 0 0 1

 ,

with the source and target queries being qs = α and qt = ε , respectively. We define
the similarity threshold so that p∼ q if J(p,q)≥ 1/2. The source query has support
supp(qs) = {e1}, and the target query has support supp(qt) = {e5}, and so the first
induced query needs to have e1 and one other entity in its support. Let that query
be q2 = β ∧¬γ with support {e1,e3}. This query does not yet have any overlap in
support with qt , but the next query q3 = ¬γ does have e5 in its support supp(q3) =
{e1,e3,e5,e6}. Unfortunately, q3 6∼ qt , as J(q3,qt) = 1/4. So the algorithm continues,
inducing query q4 = δ with support {e3,e5}. This query has a Jaccard similarity of
1/2 to qt , completing our storytelling chain of queries as

qs = α ∼ β ∧¬γ ∼ ¬γ ∼ δ ∼ ε = qt .

The queries are visualized using the tree diagrams in Figure 3.7. For the colours in
the visualizations, the odd-numbered queries are always considered as the left-hand
queries and the even-numbered queries as the right-hand queries. They are shown
in the top and bottom half of the figure, respectively. In each diagram, we draw the
entities as filled or empty circles, depending on whether they carry a positive or a
negative label, that is, depending on whether or not they belong to the support of the

3.3 Storytelling 69

α

1 2 3 4 5 6

γ

2 4 1 3 5 6

ε

5 1 2 3 4 6

β
γ

2 13 4 5 6

δ

3 5 1 2 4 6

Fig. 3.7 Tree diagrams depicting the queries from Example 7. Odd-numbered and even-numbered
queries are shown in the top and bottom half, respectively. In each diagram, we draw the entities
as filled or empty circles depending on whether they carry a positive or a negative label, that is,
depending on whether or not they belong to the support of the previous query, respectively. Entities
in the support of the current query are enclosed in coloured bins.

previous query. Entities in the support of the current query are enclosed in coloured
bins.

3.3.2 Applications

Hossain et al (2012b) use storytelling to connect PubMed articles, and more gen-
erally, to connect molecules using stories between PubMed articles that mention
the molecules in their abstracts. In their framework, articles in the PubMed pub-
lication repository6 are the entities, and the terms appearing in their abstracts are
the attributes. The attribute values indicate the weight of the term in the document
and are calculated based on a variant of the standard tf–idf (term frequency–inverse
document frequency) score.

The first step in the analysis pipeline of Hossain et al (2012b) is that the user
has to choose a set of input molecules and a set of output molecules based on her
interests. Next, PubMed documents that mention these molecules are crawled, and
the (qs,qt) query pairs are formed so that each query selects exactly one article that
mentions exactly one of the input or output molecules. In addition, the abstract of the
article selected by qs should have no common terms with the abstract of the article
selected by qt .

The storytelling algorithm (Algorithm 3.1) is now run with all of the (qs,qt) pairs.
The query language is restricted so that each query can select only one document.
The distance between two documents a and b is calculated using the Soergel distance,

6 https://www.ncbi.nlm.nih.gov/pubmed/. Accessed 25 Oct 2017.

https://www.ncbi.nlm.nih.gov/pubmed/

70 3 Applications, Variants, and Extensions of Redescription Mining

Table 3.1 Example story from pyruvate kinase to glutamine (Hossain et al, 2012b).

PubMed ID Molecule Article title

16511150 pyruvate kinase Crystallization and preliminary X-ray analysis of pyruvate
kinase from Bacillus stearothermophilus

3688482 adenosine diphosphate Metabolism of round spermatids: kinetic properties of pyru-
vate kinase

9441794 adenosine triphosphate Phosphoenolpyruvate prevents the decline in hepatic ATP
and energy charge after ischemia and reperfusion injury in
rats

16552804 glutamine Alanyl-glutamine dipeptide inhibits hepatic ischemia-
reperfusion injury in rats

d(a,b) =
∑t |wt,a−wt,b|

∑t max{wt,a,wt,b}
,

where the sums run over all terms t in the data and wt,i is the weight for term t in
document i. Two documents are considered similar (enough) if their Soergel distance
is below the user-supplied distance threshold τ .

In addition to the distance threshold τ , Hossain et al (2012b) add another con-
straint, which they call the clique size. If we consider a graph where the nodes are
the documents, and there is an edge between nodes a and b if d(a,b) ≤ τ for the
distance threshold τ , setting the clique size to k means that any selected document
must be part of a clique of size at least k in this graph. Hence, any two consecutive
documents in the story are in the same clique.

To find the queries, Hossain et al (2012b) first consider the binary matrix ([wt,i >
0])t,i, that is, the matrix that indicates whether term t is present in document i.
They run the CHARM-L algorithm (Algorithm 2.2) on this matrix in order to find
the concept lattice of documents. From this, they select the actual documents (i.e.
queries) to be added to the priority queue. The goal of Hossain et al (2012b) is not to
find the shortest stories, but to find some stories, and the A* heuristic is used to find
documents that are close to the target document. The lower-bound on the distance
is calculated as the Soergel distance between the current document and the target
document, since the Soergel distance admits the triangle inequality.

Running the storytelling algorithm for each (qs,qt) pair results in many stories.
Hossain et al (2012b) filter this initial set of stories based on the p-value of the stories,
their coherency, and the context overlap between the articles. An example of a story
found by Hossain et al (2012b) is depicted in Table 3.1.7

Hossain et al (2012a) use an approach similar to the above one to analyse entity
networks for intelligence purposes. Later, Wu et al (2014) presented another approach
based on storytelling for that task. In this data intelligence task, they consider case
studies developed at the Joint Military Intelligence College (USA). Each case study
contains a collection of fictional intelligence reports. Binary relations are extracted

7 Story adapted from https://bioinformatics.cs.vt.edu/connectingthedots/
stories.html, case study 3 (accessed 25 Oct 2017).

https://bioinformatics.cs.vt.edu/connectingthedots/stories.html
https://bioinformatics.cs.vt.edu/connectingthedots/stories.html

3.3 Storytelling 71

2 Dec.
2001

18 April
2001

Clar
k &

Co.
FBI

Office
Supplie

s Co.

Empire
Stat

e Ven
ding Serv

ice
s

New
York

Stock
Exch

an
ge

City
Computer

Serv
ice

s Corp.

City
Computer

Serv
ice

Corp.

Empire
Stat

e Ven
ding Serv

ice
s

Clar
k &

Co
FBI
New

York
Stock

Exch
an

ge

Office
Supplie

s Co.

Stev
e Clar

k
Shiel

a Wats
on

Mark
Davis

Han
i al

Hall
ak

Bag
wan

t Dhali
wal

Queen
s

Myrtle
Ave.

New
York

City

North
Berg

en

20 April
2003

25 April
2003

Myrtle
AveQueen

s
Man

hatt
an

New
York

City
Web

ste
r AveBronx

718-352-8479

732-455-6392

corporations-by-dates

addresses-by-dates

addresses-by-corporations

persons-by-corporations

persons-by-addresses

phone numbers-by-addresses

phone numbers-by-dates

Fig. 3.8 Example data for uncovering the plot. Figure adapted from Wu et al (2014).

from these documents and turned into multi-relational binary data. This can be
modelled as a chain of binary matrices B1, B2, . . . , so that two consecutive matrices,
Bi and Bi+1, correspond to the same attributes or the same entities in one dimension.
For example, in Figure 3.8, we can see how the phone numbers-by-dates matrix can be
connected to the phone numbers-by-addresses matrix, which can be connected to the
persons-by-addresses matrix, which can be connected to the persons-by-corporations
matrix, and so on.

72 3 Applications, Variants, and Extensions of Redescription Mining

Notice how this approach allows us to transpose the data for making the connection
and the story. If q1 is a query over the phone numbers-by-dates matrix, with dates
as attributes, then q2 could be a query over the phone numbers-by-addresses matrix,
with addresses as attributes. For both queries, the support would consist of a set of
phone numbers. But for the next query, q3, over the persons-by-addresses matrix,
the attributes would be the persons, and the addresses would be the entities. To
compare the supports of queries q2 and q3, we transpose query q2, turning its support
into a new query. The support of the transposed query will be dscr

(
supp(q2)

)
, a set

of addresses (see Section 2.1). Such transposition is possible as we only consider
monotone conjunctive queries over binary data.

The goal of Wu et al (2014) is to ‘uncover a plot’, that is, to find a surprising
connection between the entries in such binary matrices. The connections, or plots, are
modelled as chains of biclusters, that is, stories where the query language comprises
monotone conjunctive queries over binary attributes. The surprisingness of the stories
is measured with respect to a constrained maximum entropy distribution, where the
constraints, as in Section 1.2.6, encode what is already known about the data. Wu
et al (2014) use a simple greedy heuristic for building the stories, similar to the A*
heuristic of Algorithm 3.1.

An example plot uncovered by Wu et al (2014) is shown in Figure 3.9. The story
goes from the locations-by-persons matrix to the months-by-locations matrix with
successive biclusters shown in different colours. Wu et al (2014) present the actual
plot as follows:

Fahd al Badawi, Boris Bugarov, Adnan Hijazi, Jose Escalante, and Saeed Hasham
coordinate with each other to recruit Al Qaeda field agents to transport biological agents to
USA via Holland Orange Shipping Lines.

The entities in the uncovered plot that are part of the true plot are set in boldface font
in Figure 3.9.

As can be seen from Figure 3.9, the biclusters contain many more entities than the
plot, and the Holland Orange Shipping Lines appear twice under two different names.
Having false positives (entities unrelated to the actual plot) is probably preferred
over false negatives in this application domain, provided that there are not too many
of them.

3.4 Future Work: Richer Query Languages

In this closing section, we discuss directions for future work, focusing on the devel-
opment of richer query languages. By allowing us to take into account time or graph
structures, for instance, richer query languages facilitate the application of redescrip-
tion mining to data sets—such as in the fields of finance or chemistry—where the
additional properties are important.

3.4 Future Work: Richer Query Languages 73

. . .

. . .

. . .

. . .

Morocca
n San

ds Hotel

Morocca
n Oasi

s Hotel

Al Qaeda

Holla
nd Orange

Hol. Or. Shipping Lines

Faro
oq
Abu

Adil

Saeed
Hasham

Ram
undo Ortiz

Adnan Hija
zi

Hydera
bad

Nidal
Awad

Jose
Esca

lante

Boris
Bugarov

Fahd al Badawi

Abdel
Noufal

Ali Tali
b

Pak
ist

an

Pesh
aw

ar

Casa
blan

ca

May

June

Octo
ber

Sep
tem

ber

San
to

Domingo

Dominica
n Rep

.

Kara
ch

i

Morocco

Casa
blan

ca

Pesh
aw

ar

Pak
ist

an

Havana

Cuba

locations-by-persons

locations-by-organisations

months-by-organisations

months-by-locations

Fig. 3.9 Example uncovered plot. Entities in boldface font are part of the actual plot (see text).
Figure adapted from Wu et al (2014).

3.4.1 Time-Series Redescriptions

In some cases, the temporal dimension of the data is important. In finance, for
instance, if one follows the value of selected stocks over the course of some days or
months, the data will take the form of a time series, that is, a collection of data points
indexed in time. Similarly, in order to analyse and optimize production processes
in an industrial setting, the reading of various sensors on the machinery might be
recorded regularly, resulting in time-series data.

Depending on the application and the goal of the analysis, one might consider
each time point as constituting one entity, while each stock or sensor is represented
by one attribute; vice versa, one might take the time points as the attributes, while
stocks and sensors constitute the set of entities.

When each time point constitutes one entity, we can use conditional redescriptions
to create redescriptions that only hold (accurately) within some (contiguous) span of
time. If t is a (pseudo-)attribute that encodes the time, conditional redescriptions such
as p∼ q | [a≤ t ≤ b] would restrict the redescription to being evaluated only between
time a and time b. To require that the redescriptions hold only within that time span,
we could further enforce that the redescription must have a very low similarity when
evaluated in the complement of the condition. This would allow us to find temporally
autocorrelated redescriptions, that is, if they start holding true at time point a, they
(mostly) hold true until time point b, after which they do not hold true.

74 3 Applications, Variants, and Extensions of Redescription Mining

Another approach, to find recurrent events, would be to have attributes corre-
sponding to the time in one view and the original attributes in another view. The
time attributes could encode information such as the hour, the day of the week, the
day and the month, or the year of the time point. This way, the redescriptions would
characterize the entities using the original attributes and the time when the entities
happened, for example,

[alcohol sales≥ $10.000]∼ [day ∈ {Fri,Sat}]∨ [date ∈ {31 April,31 Dec}] ,

indicating that in a (hypothetical) shop, the alcohol sales peak on Fridays and Sat-
urdays and in the eves of May Day and New Year, irrespective of which day of the
week these holidays fall on.

When looking at time series where the attributes represent time points, one might
be less interested in the actual value at some given point in time than in the variation
of the value over some time span. Of course, one could compute the differences in
value between chosen time points, add them as new attributes, and mine this extended
data.

A first drawback of this approach, however, is that it can lead to an explosion in
the number of attributes. To avoid adding attributes needlessly, it might be interesting
to let the algorithm generate attributes on-the-fly when it needs them, rather than
have to extend the data as a preprocessing step.

This might be useful not only for time series but also for other types of data, more
generally. For instance, to find bioclimatic niches, it might be interesting to consider
trait distributions rather than species presence (see Section 3.1.2). In addition to a
collection of raw variables, the user could specify as the input to the algorithm some
operators (e.g. difference, average, minimum, etc.) that, when applied on subsets
of the raw variables, allow us to obtain meaningful composite variables. Of course,
such an automated feature engineering approach would result in a much expanded
search space. Hence, efficient exploration and pruning strategies need to be devised
in order for such an approach to be practical.

A second drawback of adding composite attributes is that it does not allow us to
take into account the dependencies between the created attributes in a straightforward
manner. For instance, if one extends a time-series data set by generating a collection
of attributes {vi j}, where vi j represents the variation in value between time points ti
and t j, it is hardly of any interest to find a redescription of the form

[a≤ vi j ≤ a′]∧ [b≤ v jk ≤ b′]∼ [a+b≤ vik ≤ a′+b′] .

To avoid generating such tautological and uninteresting redescriptions, the dependen-
cies between the attributes need to be encoded in the data and taken into account by
the algorithm during the mining process.

Again, this could be useful beyond time-series data. If there exist known depen-
dencies between some attributes or if the categories of some attribute are organized in
a hierarchy, for instance, it would be beneficial to take such information into account,
to improve both the efficiency of the mining process as well as the quality of the
obtained redescriptions.

3.4 Future Work: Richer Query Languages 75

3.4.2 Subgraph Redescriptions

In sequences, where the data consist of successive occurrences of various events,
event occurrences might be associated to individual timestamps or be ordered only
with respect to one another. In the first case, the temporal dimension is of importance,
but in the latter, it is secondary to the order relationship, if not entirely absent. For
instance, one might consider the different activities undertaken by an individual
during the course of a few weeks or a month as a sequence of events, each one
associated to the time when the corresponding activity started. Snippets of text and
DNA sequences are other examples of sequential data, ones without a temporal
dimension.

Similarly to the model with a single data table (see Definition 7), one could
consider a data set where each entity is associated to a sequence. The goal of
redescription mining, in this case, would be to identify pairs of subsequences such
that the two subsequences occur in almost the same set of entities. For instance, one
could consider individuals, each one represented by one entity, associated to the
corresponding sequence of activities. A redescription would then identify a pair of
activity routines that provide two different characterizations of individuals sharing a
similar lifestyle.

At yet a higher level of complexity, we could consider graph data sets, where each
entity is associated with one or several small graphs instead of with a sequence.

For instance, in chemistry, one might consider the structure of molecules, as
represented in the form of graphs. One might then be interested in looking for
associations between the presence of some substructures and some properties of the
molecule, such as being toxic or mutagenic, reacting to a particular protein, etc. This
problem could be formulated as a redescription mining task, with a graph data set
on the one hand and a data table on the other hand. More specifically, each entity
would stand for a molecule, associated with a graph representing its structure, on
the one hand, and with values for various attributes collected as a row in a table, on
the other hand. This yields a setting similar to the model with two data tables (see
Definition 7), one of which is substituted with a collection of graphs. One description
would require the occurrence of a particular subgraph, selecting as its support those
molecules that contain the specific fragment, while the other description would be
a query over the attributes, selecting as its support those molecules that have the
specified properties.

In order to extend redescription mining to handle sequences and graphs, the
procedure for building the descriptions, or in other words, for mining sub-sequences
or sub-graphs, can draw inspiration from existing techniques such as gSpan by Yan
and Han (2002) or the Gaston tool by Nijssen and Kok (2005). In particular, existing
algorithms could be used to mine patterns, which would then be paired based on
support, following a mine-and-pair approach (see Section 2.1). However, this is
probably not feasible in practice for any but the smallest data sets, due to the large
amount of patterns that might be generated. A careful adaptation will be needed to
build efficient algorithms for mining redescriptions involving complex structures

76 3 Applications, Variants, and Extensions of Redescription Mining

such as sequences and graphs, when the non-tabular data set is considered alone as
well as combined with a tabular data set.

3.4.3 Multi-Query and Multimodal Redescriptions

Similar to storytelling (Section 3.3), we can also consider extending redescription
mining to more than two queries, that is, to multi-query redescription mining.8 Unlike
storytelling, multi-query redescriptions have no user-defined source or target queries,
but the number of queries should be pre-determined. For example, if the attributes
are divided into three views V1, V2, and V3, we can try to find triples of queries
(q1,q2,q3) such that views(qi) = {Vi} for all i. Naturally, this approach extends to
arbitrary many queries and views.

Being able to connect more than two views could be beneficial in some applica-
tions. Consider the ecological niche application in Chapter 1, for example. Instead
of species and bioclimatic variables as the two views, we could have carnivores,
herbivores, and bioclimatic variables as three views. This would allow us to find
connections, not just between species and climate, but also between carnivorous and
herbivorous species, in relation to climate.

Perhaps the biggest problem with multi-query redescription mining is the defi-
nition of the distance between the queries. The problem here is not that there does
not exist meaningful distance measures; rather, the problem is that there exist many
meaningful ways to extend the measures, but none of them are clearly better than the
others. To illustrate this, let us consider the case of three queries and different ways
to define the three-way distance measure d(q1,q2,q3).

To begin, we can consider the pairwise distances

d1,2 = d(q1,q2), d1,3 = d(q1,q3), and d2,3 = d(q2,q3) .

We can base the three-way distance measure on any function over these pairwise
distances. For example, if we want to have all of the pairwise distances small, we
can define

d(q1,q2,q3) = max{d1,2,d1,3,d2,3} . (3.1)

Alternatively, if our pairwise distance admits the triangle inequality, we can just
bound the total distance and define

d(q1,q2,q3) = d1,2 +d2,3 , (3.2)

since d1,3 ≤ d1,2 + d2,3. Naturally, choosing any other pair of the distances would
work, as well.

Especially if the distance is not a metric, we can consider the average pairwise
distance

8 The result should perhaps be called ‘tridescription’ or ‘multi-description’, though.

3.4 Future Work: Richer Query Languages 77

d(q1,q2,q3) =
d1,2 +d1,3 +d2,3

3
, (3.3)

which would allow one larger distance, as long as the other two are small enough. For
metric distances this might not be that useful a definition, as the triangle inequality
prevents large variations in the distances. If there are more than three queries, though,
the average could be useful even for metric distances.

Instead of working with the pairwise distances, we can define the three-way
distance directly using the supports. For example, we can define the three-way
Jaccard similarity coefficient as

J(q1,q2,q3) =
|supp(q1)∩ supp(q2)∩ supp(q3)|
|supp(q1)∪ supp(q2)∪ supp(q3)|

. (3.4)

None of these distance measures are inherently better than the other, and the choice
between them must, to an extent, be based on the use case. In addition, one must
also consider whether it is possible to design an algorithm that finds multi-query
redescriptions under the chosen distance measure.

Instead of multiple independent views, we can also consider multimodal data and
redescriptions. Instead of having a binary relation between entities and attributes, we
can have ternary or multi-ary relations. For example, continuing with the bioclimatic
niche finding example, the data could contain the species’ habitats and bioclimatic
variables at different points of time. The redescriptions would then link certain
species to certain bioclimatic variables at certain points of time.

To formalize this concept, consider the table-based data model. In the standard
niche finding example, we have two tables (or matrices), D1 (locations-by-species)
and D2 (locations-by-bioclimatic variables). If we add the time dimension, we instead
have two tensors, T 1 (locations-by-species-by-time) and T 2 (locations-by-bioclimatic
variables-by-time). The predicates for these queries could fix two of the modes and
the support would be a set of entities where the queries hold. An example redescrip-
tion could be

polar bear@[year≤ 1970]∼ [−7.07≤ t5 ≤−3.38]@[year≤ 1970] ,

stating that the connection between the polar bear and temperature must hold for all
years prior to, and including 1970.

Including time as the third mode highlights the connection to time-series re-
description mining (see Section 3.4.1). However, the third mode does not have to be
time. Knowledge bases, such as YAGO (Suchanek et al, 2007), store vast amounts of
knowledge in the Resource Description Framework (RDF)9 format. An RDF data set
consists of subject–predicate–object (or (s, p,o)) triples, and it is often treated as a
directed labelled graph, where subjects and objects are the vertices, and predicates are
encoded as directed labelled edges between them, similarly to the data in relational
redescription mining (see Section 3.2). Instead of as a graph, we can also treat an
RDF data set as a three-way binary tensor (Metzler and Miettinen, 2015a,b), with one

9 http://www.w3.org/TR/rdf-syntax-grammar. Accessed 25 Oct 2017.

http://www.w3.org/TR/rdf-syntax-grammar

78 3 Applications, Variants, and Extensions of Redescription Mining

mode for subjects, one for objects, and one for predicates. This tensor can be used as
a data set for multimodal redescription mining; the redescriptions could, for example,
be used to find (almost) synonymous relations. A redescription

studiedIn∼ graduatedFrom

would indicate that (almost) all pairs (x,y) such that x studied in y are also such that
x graduated from y (and vice versa).

This example also illustrates one complication of multimodal redescriptions: what
are the entities and what are the attributes? In the first example, the entities were
the locations, and the attributes were the species–time and bioclimatic variable–time
pairs. In the current example, though, the attributes are the relations (or predicates),
and the entities are the subject–object pairs. We might also want to allow for more
complex queries, such as

[?x graduatedFrom ∗]∼ [?x hasDegree ∗] ,

which would mean that those who graduated (from anywhere) hold some degree.
Indeed, for queries over RDF data, we might want to use (a subset of) the SPARQL
query language,10 but for data with more than three modes, even more complex query
languages might be needed.

References

Gaidar D (2015) Mining redescriptors in Staphylococcus aureus data. Master’s thesis, Universität
des Saarlandes, Saarbrücken

Galbrun E (2013) Methods for redescription mining. PhD thesis, Department of Computer Science,
University of Helsinki

Galbrun E, Kimmig A (2014) Finding relational redescriptions. Mach Learn 96(3):225–248, DOI
10.1007/s10994-013-5402-3

Galbrun E, Miettinen P (2012) From black and white to full color: Extending redescription mining
outside the Boolean world. Stat Anal Data Min 5(4):284–303, DOI 10.1002/sam.11145

Galbrun E, Miettinen P (2016) Analysing political opinions using redescription mining. In: IEEE
International Conference on Data Mining Workshops, pp 422–427, DOI 10.1109/ICDMW.2016.
0066

Galbrun E, Tang H, Fortelius M, Žliobaitė I (2017) Computational biomes: The ecometrics of large
mammal teeth. Palaeontol Electron Submitted

Goel N, Hsiao MS, Ramakrishnan N, Zaki MJ (2010) Mining complex Boolean expressions for
sequential equivalence checking. In: Proceedings of the 19th IEEE Asian Test Symposium
(ATS’10), pp 442–447, DOI 10.1109/ATS.2010.81

Hossain MS, Butler P, Boedihardjo AP, Ramakrishnan N (2012a) Storytelling in entity networks
to support intelligence analysts. In: Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’12), pp 1375–1383, DOI 10.1145/
2339530.2339742

Hossain MS, Gresock J, Edmonds Y, Helm RF, Potts M, Ramakrishnan N (2012b) Connecting the
dots between PubMed abstracts. PLoS ONE 7(1):1–23, DOI 10.1371/journal.pone.0029509

10 http://www.w3.org/TR/rdf-sparql-query. Accessed 25 Oct 2017.

http://www.w3.org/TR/rdf-sparql-query

References 79

Kohonen T (1989) Self-organization and associative memory. Springer, New York
Kumar D (2007) Redescription mining: Algorithms and applications in bioinformatics. PhD thesis,

Department of Computer Science, Virginia Polytechnic Institute and State University
Kumar D, Ramakrishnan N, Helm RF, Potts M (2008) Algorithms for storytelling. IEEE Trans

Knowl Data En 20(6):736–751, DOI 10.1109/TKDE.2008.32
van Leeuwen M, Galbrun E (2015) Association discovery in two-view data. IEEE Trans Knowl

Data Eng 27(12):3190–3202, DOI 10.1109/TKDE.2015.2453159
Metzler S, Miettinen P (2015a) Join size estimation on Boolean tensors of RDF data. In: Proceedings

of the 24th International Conference on the World Wide Web (WWW’15), pp 77–78, DOI
10.1145/2740908.2742738

Metzler S, Miettinen P (2015b) On defining SPARQL with Boolean tensor algebra. DOI 10.1145/
2740908.2742738, arXiv:1503.00301

Mihelčić M, Džeroski S, Lavrač N, Šmuc T (2017) A framework for redescription set construction.
Expert Syst Appl 68:196–215, DOI 10.1016/j.eswa.2016.10.012

Mihelčić M, Šimić G, Babić-Leko M, Lavrač N, Džeroski S, Šmuc T (2017) Using redescription
mining to relate clinical and biological characteristics of cognitively impaired and Alzheimer’s
disease patients. arXiv:1702.06831

Mihelčić M, Džeroski S, Lavrač N, Šmuc T (2016) Redescription mining with multi-target predictive
clustering trees. In: Proceedings of the 4th International Workshop on the New Frontiers in
Mining Complex Patterns (NFMCP’15), pp 125–143, DOI 10.1007/978-3-319-39315-5 9

Nijssen S, Kok JN (2005) The Gaston tool for frequent subgraph mining. Proceedings of the
International Workshop on Graph-Based Tools (GraBaTs 2004) 127(1):77–87, DOI 10.1016/j.
entcs.2004.12.039

Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution
of species: Are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371, DOI
10.1046/j.1466-822X.2003.00042.x

Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic
distributions. Ecol model 190(3):231–259, DOI 10.1016/j.ecolmodel.2005.03.026

Ramakrishnan N, Zaki MJ (2009) Redescription mining and applications in bioinformatics. In:
Chen J, Lonardi S (eds) Biological Data Mining, Chapman and Hall/CRC, Boca Raton, FL

Ramakrishnan N, Kumar D, Mishra B, Potts M, Helm RF (2004) Turning CARTwheels: An
alternating algorithm for mining redescriptions. In: Proceedings of the 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’04), pp 266–275,
DOI 10.1145/1014052.1014083

Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding.
Science 290(5500):2323–2326, DOI 10.1126/science.290.5500.2323

Shvaiko P, Euzenat J (2005) A survey of schema-based matching approaches. J Data Semantics IV
3730:146–171, DOI 10.1007/11603412 5

Singh J, Kumar D, Ramakrishnan N, Singhal V, Jervis J, Garst JF, Slaughter SM, DeSantis AM, Potts
M, Helm RF (2005) Transcriptional response of Saccharomyces cerevisiae to desiccation and
rehydration. Appl Environ Microbiol 71(12):8752–8763, DOI 10.1128/AEM.71.12.8752-8763.
2005

Soberón J, Nakamura M (2009) Niches and distributional areas: Concepts, methods, and assumptions.
Proc Natl Acad Sci USA 106(Supplement 2):19,644–19,650, DOI 10.1073/pnas.0901637106

Suchanek FM, Kasneci G, Weikum G (2007) YAGO: A core of semantic knowledge. In: Proceedings
of the 16th International Conference on World Wide Web (WWW’07), pp 697–706, DOI
10.1145/1242572.1242667

Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear
dimensionality reduction. Science 290(5500):2319–2323, DOI 10.1126/science.290.5500.2319

Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD – A platform for ensemble
forecasting of species distributions. Ecography 32(3):369–373, DOI 10.1111/j.1600-0587.2008.
05742.x

arXiv:1503.00301
arXiv:1702.06831

80 3 Applications, Variants, and Extensions of Redescription Mining

Watts A, Ke D, Wang Q, Pillay A, Nicholson-Weller A, Lee JC (2005) Staphylococcus aureus
strains that express serotype 5 or serotype 8 capsular polysaccharides differ in virulence. Infect
Immun 73(6), DOI 10.1128/IAI.73.6.3502-3511.2005

Wu H, Vreeken J, Tatti N, Ramakrishnan N (2014) Uncovering the plot: Detecting surprising
coalitions of entities in multi-relational schemas. Data Min Knowl Disc 28(5-6):1398–1428,
DOI 10.1007/s10618-014-0370-1

Yan X, Han J (2002) gSpan: Graph-based substructure pattern mining. In: Proceedings of the 2002
IEEE International Conference on Data Mining (ICDM’02), pp 721–724, DOI 10.1109/ICDM.
2002.1184038

Zhao L, Zaki MJ, Ramakrishnan N (2006) BLOSOM: A framework for mining arbitrary Boolean
expressions. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’06), pp 827–832, DOI 10.1145/1150402.1150511

Zinchenko T, Galbrun E, Miettinen P (2015) Mining predictive redescriptions with trees. In: IEEE
International Conference on Data Mining Workshops, pp 1672–1675, DOI 10.1109/ICDMW.
2015.123

	What is Redescription Mining
	First Examples of Redescriptions
	Formal Definitions
	The Data
	The Descriptions
	The Redescriptions
	Other Constraints
	Distance Functions: Why Jaccard?
	Sets of Redescriptions

	Related Data Mining Problems
	A Short History
	References

	Algorithms for Redescription Mining
	Finding Queries Using Itemset Mining
	The MID Algorithm
	Mining Redescriptions with the CHARM-L Algorithm

	Queries Based on Decision Trees and Forests
	The CARTwheels Algorithm
	The SplitT and LayeredT Algorithms
	The CLUS-RM Algorithm

	Growing the Queries Greedily
	The ReReMi Algorithm

	A Comparative Discussion
	Handling Missing Values
	References

	Applications, Variants, and Extensions of Redescription Mining
	Applications of Redescription Mining
	In Biology
	In Ecology
	In Social and Political Sciences and in Economics
	In Engineering

	Relational Redescription Mining
	An Example of Relational Redescriptions
	Formal Definition

	Storytelling
	Definition and Algorithms
	Applications

	Future Work: Richer Query Languages
	Time-Series Redescriptions
	Subgraph Redescriptions
	Multi-Query and Multimodal Redescriptions

	References

