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Abstract. Given a universe U of n elements and a weighted collection S of m subsets of U , the
universal set cover problem is to a-priori map each element u ∈ U to a set S(u) ∈ S containing u,
such that any set X ⊆ U is covered by S(X) = ∪u∈XS(u). The aim is to find a mapping such that
the cost of S(X) is as close as possible to the optimal set-cover cost for X. (Such problems are also
called oblivious or a-priori optimization problems.) Unfortunately, for every universal mapping, the
cost of S(X) can be Ω(

√
n) times larger than optimal if the set X is adversarially chosen.

In this paper we study the performance on average, when X is a set of randomly chosen elements
from the universe: we show how to efficiently find a universal map whose expected cost is O(logmn)
times the expected optimal cost. In fact, we give a slightly improved analysis and show that this
is the best possible. We generalize these ideas to weighted set cover and show similar guarantees
to (non-metric) facility location, where we have to balance the facility opening cost with the cost
of connecting clients to the facilities. We show applications of our results to universal multi-cut
and disc-covering problems, and show how all these universal mappings give us algorithms for the
stochastic online variants of the problems with the same competitive factors.

Key words. approximation algorithms, universal algorithms, online algorithms, set cover,
facility location

AMS subject classifications. 68W05, 68W25, 68W27, 68W40

1. Introduction. In the classical set cover problem we are given a set X , taken
from a universe U of n elements, and a collection S ⊆ 2U of m subsets of U , with a
cost function c : S → R≥0. (The pair (U,S ) is sometimes called a set system). The
aim is to compute a sub-collection S ′ ⊆ S which covers X , i.e., X ⊆ ∪S∈S ′S,
with minimum cost c(S ′) :=

∑

S∈S ′ c(S). For our purposes it is more conve-
nient to interpret each feasible solution as a mapping S : U → S which defines,
for each u ∈ X , a subset S(u) which covers u (breaking ties in an arbitrary way).
In particular, S(X) := ∪u∈XS(u) provides the desired sub-collection S

′, of cost
c(S(X)) :=

∑

S∈S(X) c(S). In the cardinality (or unweighted) version of the problem,

all the set costs are 1, and the goal is to minimize the number |S(X)| of subsets used
to cover X .
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In their seminal work, Jia et al. [33] define, among other problems, a universal
variant of the set cover problem. Here the mapping S has to be provided a-priori, i.e.,
without knowing the actual value of X ⊆ U . The problem now is to find a mapping
which minimizes the worst-case ratio maxX⊆U{c(S(X))/c(opt(X))} between the cost
of the set cover given by S (which is computed without knowing X), and the cost
of the optimal “offline” solution opt(X) (which is based on the knowledge of X). A
universal algorithm is α-competitive if the ratio above is at most α.

Universal algorithms are useful for applications in distributed environments, where
decisions have to be taken locally, with little communication overhead. Similarly,
in critical or real-time applications we might not have enough time to run any ap-
proximation algorithm once the actual instance of the problem shows up. Hence we
need to perform most of the computation beforehand, even if this might imply worse
competitive factors and higher preprocessing time. Indeed, we might also think of
applications where the solution computed a-priori is wired on a circuit. Eventually,
universal problems have strong implications to online problems (where the instance
is revealed gradually, and the solution is computed step-by-step). In particular, any
universal algorithm provides an online algorithm with the same competitive ratio.

The standard competitive analysis for universal (and online) algorithms assumes
that the input is chosen adversarially. This is often too pessimistic: indeed, for
universal set cover, Jia et al. [33] gave Θ̃(

√
n) bounds. (The Θ̃ notation suppresses

poly-logarithmic factors). In many situations it is reasonable to assume that the
input is sampled according to some probability distribution. In other words, what if
we are competing against nature and the lack of information about the future, and
not against a malicious adversary out to get us? Can we give algorithms with a better
performance in that case?

1.1. Our Results and Techniques. We formalize the questions above by
defining a stochastic variant of the universal set cover problem. Here the input X
is obtained by sampling k times a given probability distribution π : U → Q≥0,
∑

u∈U π(u) = 1. Let ω ∈ Uk be the random sequence of elements obtained, pos-
sibly with repetitions. Sometimes we consider ω as a multi-set. In that case, |ω|
denotes the cardinality of ω (in particular, |ω| = k). We use a similar notation for
any subsequence of ω. The aim is minimizing the ratio Eω[c(S(ω))]/Eω[c(opt(ω))] be-
tween the expected cost of the solution computed w.r.t. S and the expected optimal
cost. We sometimes omit ω when the meaning will be clear from the context. We call
an algorithm for the universal stochastic set cover problem (and related problems)
length-aware if it is given the length k of the sequence in input, and length-oblivious
otherwise. As we will see, this distinction is crucial.

As a warm up for the reader, we present a lower bound on the quality of the map-
ping obtained by running on the set system (U,S ) the standard greedy algorithm,
which selects in each step the subset with the best ratio of cost to number of uncov-
ered elements. This algorithm defines an order on the selected sets: let each element
be mapped to the first set in the order covering it. Consider a set Sall = U covering
the whole universe, of cost c(Sall) =

√
n, and singleton sets Su = {u} for each u ∈ U ,

each of unit cost c(Su) = 1. The greedy set cover algorithm maps all the elements into
Sall. For a uniform distribution π and k = 1, the cost of this mapping is

√
n, while

the optimal mapping (assigning each u ∈ U to the corresponding singleton set Su)
has always cost one. Note that, for k ≃ n, the situation changes drastically: now the
greedy algorithm produces the optimal mapping with high probability. Indeed, essen-
tially the same example shows that any length-oblivious universal algorithm for the
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(weighted) stochastic set cover problem must be Ω(
√
n)-competitive (see Section 3).

Motivated by the example above, we developed an algorithm based on the inter-
leaving of standard greedy with a second, even more myopic, greedy algorithm that
selects the min-cost set which covers at least one uncovered element (disregarding
the actual number of covered elements). In each selection step we trust the min-ratio
greedy algorithm if a subset with a sufficiently small ratio exists, and the min-cost
one otherwise. The threshold ratio is derived from the length k of the sequence. The
main result of this paper can be stated as follows (see Section 3):

Theorem 1.1. There exists a polynomial-time length-aware algorithm that re-
turns a universal mapping S to the (weighted) universal stochastic set cover problem
with E[c(S)] = O(logmn)E[c(opt)].

Above, and elsewhere in this paper, log denotes logarithm of base 2. When
m is polynomial in n, this is asymptotically the best possible due to the o(logn)-
inapproximability of set cover (which extends to the universal stochastic case by
choosing k ≫ n). For values of m ≫ n, the competitive factor can be improved to
O
(

logm
log logm−log log n

)

, and this bound is tight (see Section 4).

The crux of our analysis is bounding the cost of the min-cost sets selected by the
algorithm when it cannot find a good min-ratio set. Here we use a counting argument
to show that the number of sampled elements among the still-uncovered elements is
sufficiently small compared to the number of sets used by the optimal solution to
cover those elements. We then translate this into a convenient lower bound on the
cost paid by the optimum solution to cover the mentioned elements.

In the unweighted case we can do better: here the standard greedy algorithm pro-
vides a length-oblivious universal algorithm with the same competitive ratio. However,
its analysis requires some new ideas.

Theorem 1.2. There exists a polynomial-time length-oblivious algorithm that
returns a universal mapping S to the unweighted universal stochastic set cover problem
with E[|S|] = O(logmn)E[|opt|].

Based on the proof of Theorem 1.2, we also show that the dependence on n
in the competitive factor can be removed if exponential time is allowed, and can
possibly be reduced when the set system has a small VC-dimension. The latter
result is especially suited for applications where m ≪ n, one of which we highlight
in Section 9.2. Additionally, it should be noted that, due to concentration bounds,
our length-aware mappings can be used to construct solutions for the independent
activation model introduced in [31,35] as well. This is shortly discussed in Section 8.

Our results naturally extend to the stochastic version of the online set cover
problem. Here the random sequence ω of elements is presented to the algorithm
one element at a time, and, each time a new element u is given, the algorithm is
forced to define a set S(u) ∋ u. In other words, the mapping S is constructed in
an online fashion. We remark that, once the value S(u) is chosen, it cannot be
modified in the following steps. Moreover, the length k of the sequence is not given
to the algorithm. Similarly to the universal stochastic case, the aim is to minimize
Eω[c(S(ω))]/Eω[c(opt(ω))].

A length-oblivious universal algorithm would immediately imply an online al-
gorithm with the same competitive factor. However, as there is no such algorithm
(for the weighted case), we achieve the same task by combining a family of universal
mappings, computed via our (length-aware) universal algorithm for carefully-chosen
sequence lengths (see Section 5):

Theorem 1.3. There exists a polynomial-time O(logmn)-competitive algorithm
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for the online (weighted) stochastic set cover problem.
Our techniques are fairly flexible, and can be applied to other covering-like prob-

lems. In Sections 6 and 9 we describe universal algorithms for the stochastic versions
of (non-metric) facility location, multi-cut, and disc covering in the plane.

In the next sections, we implicitly assume that π is a uniform distribution; this
assumption is without loss of generality using the standard reduction described in
Section 7.

1.2. Related Work.

Universal, Oblivious and A-Priori Problems. These are problems where a single
solution is constructed which is evaluated given multiple inputs—and either the worst-
case or the average-case performance is considered. For instance, the universal TSP
problem, where one computes a permutation that is used for all possible inputs, has
been studied both in the worst-case scenario for the Euclidean plane [6,42] and general
metrics [22, 25, 33], as well as in the average-case [7, 20, 32, 46, 48]. (For the related
problem of universal Steiner tree, see [20, 22, 33, 35].) For universal set cover and
facility location, the previous results are in the worst-case: Jia et al. [33] introduced the
problems, show that the adversary is very powerful in such models, and give nearly-
matching Ω(

√
n) and O(

√
n logn) bounds on the competitive factor. For oblivious

routing [8, 28, 43] (see, e.g., [50, 51] for special cases), a tight logarithmic competitive
result as well as a polynomial-time algorithm to compute the best routing is known in
the worst case for undirected graphs [5, 44]. For oblivious routing on directed graphs
the situation is similar to our problem: in the worst case the lower bound of Ω(

√
n) [5]

nearly matches upper bounds [26] but for the average case, [23] give an O(log2 n)-
competitive oblivious routing algorithm when demands are chosen randomly from a
known demand-distribution; they also use “demand-dependent” routings and show
that these are necessary.

Online Problems. Online problems have a long history (see, e.g., [9,17]), and there
have been many attempts to relax the strict worst-case notion of competitive analysis:
see, e.g., [1,13,20] and the references therein. Online problems with stochastic inputs
(either i.i.d. draws from some distribution, or inputs arriving in random order) have
been studied, e.g., in the context of optimization problems [4, 20, 39, 40], secretary
problems [19], mechanism design [24], and matching problems in Ad-auctions [38].

Alon et al. [2] gave the first online algorithm for set cover with a competitive
ratio of O(logm logn); they used an elegant primal-dual-style approach that has sub-
sequently found many applications (e.g., [3,11]). This ratio is the best possible under
complexity-theoretic assumptions [15]; even unconditionally, no deterministic online
algorithm can do much better than this [2]. Online versions of metric facility location
are studied in both the worst case [18, 39], the average case [20], as well as in the
stronger random permutation model [39], where the adversary chooses a set of clients
unknown to the algorithm, and the clients are presented to us in a random order. It
is easy to show that for our problems, the random permutation model (and hence any
model where elements are drawn from an unknown distribution) are as hard as the
worst case.

Offline Problems: Set Cover and (Non-Metric) Facility Location. The set cover
problem is one of the foster-children for approximation algorithms: a Θ(logn)-approximation
has been long known for it [34,37], and this is the best possible [14,45]. For the special
case of set systems with small VC-dimension, a better algorithm is given in [10]. Other
objective functions have also been used, e.g., min-latency [16] and min-entropy [12,27].
The O(log n) approximation for non-metric facility location is due to Hochbaum [29].
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Stochastic Optimization. Research in (offline) stochastic optimization gives re-
sults for k-stage stochastic set cover; however, the approximation in most papers [31,
47] is dependent on the number of stages k. Srinivasan [49] shows how to round an
LP-relaxation of the k-stage set cover problem with only an O(log n) loss, indepen-
dent of k; this can be used to obtain an O(log n) approximation to the expected cost
of the best online algorithm for stochastic set cover in poly(mn) time. In contrast to
this, our results get within O(log nm) of the best expected offline cost.

2. The Unweighted Set Cover Problem. In this section, we present aO(logmn)-
competitive algorithm for the universal stochastic set cover problem in the unweighted
case (i.e., c(S) = 1 for all sets S ∈ S ). Moreover, the proof will introduce ideas and
arguments which we will extend upon for the case of weighted set cover in the following
section.

Our algorithm is the natural adaptation of the standard greedy algorithm for the
set cover problem (see Algorithm 1). However, its analysis is different from the one
for the classical offline greedy algorithm. We remark that our algorithm is length-
oblivious, i.e., the mapping S computed by the algorithm works for any sequence
length k.

Algorithm 1: Mapping for unweighted set cover.

Data: Set system (U,S ).
while U 6= ∅ do

let S ← set in S maximizing |S ∩ U |;
S(v)← S for each v ∈ S ∩ U ;
U ← U \ S ;

For the analysis, fix some sequence length k and let µ = Eω∈Uk [|opt(ω)|] be the
expected optimal cost. We first show that there are 2µ sets which cover all but δn
elements from U , where δ = µ 3 ln 2m

k .
Lemma 2.1 (Existence of Small Almost-Cover). Let (U,S ) be any set system

with n elements and m sets. There exist 2µ sets in S which cover all but δn elements
from U , for δ = µ 3 ln 2m

k .
Proof. Let d denote the median of opt, i.e., in at least half of the scenarios from

Uk, the optimal solution uses at most d sets to cover all the k elements occurring in
that scenario. By Markov’s inequality, d ≤ 2µ.

There are at most p :=
∑d

j=0

(

m
j

)

≤
(

m
d

)

2d ≤ (2m)d collections of at most d sets
from S : let these collections be C1,C2, . . . ,Cp. In order to lighten the notation, we
use ∪Ci to denote the union ∪S∈Ci

S of the sets in Ci. In particular, ∪Ci is not a
collection of sets. We now show that |∪Ci| ≥ n(1− δ) for some i.

Suppose by contradiction that |∪Ci| < n(1− δ) ≤ ne−δ for each 1 ≤ i ≤ p. Since
half of the nk scenarios have a cover with at most d sets, the k elements for any such
scenario can be picked from some collection Ci. Hence,

p
∑

i=1

|∪Ci|k ≥
1

2
nk.

Plugging in p ≤ (2m)d = ed ln 2m ≤ e2µ ln 2m and |∪Ci| < ne−δ, we get

p(ne−δ)k >
1

2
nk =⇒ e(2µ ln 2m)−kδ >

1

2
=⇒ e−µ ln 2m >

1

2
.
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Since m ≥ 1 and µ ≥ 1, we also get e−µ ln 2m ≤ 1
2 , which gives the desired contradic-

tion.
The greedy algorithm is a O(log n)-approximation [36, Thm 5.15] for the partial

coverage problem (pick the fewest sets to cover some (1− δ) fraction of the elements).
This implies the following corollary.

Corollary 2.2. Algorithm 1 covers at least n(1 − δ) elements using the first
O(µ log n) sets.

Finally, we can complete the analysis of Algorithm 1. (A slightly improved result
will be described in Section 4.)

Proof. (Theorem 1.2) The first O(µ log n) sets picked by the greedy algorithm
cover all except δn elements of U , by Corollary 2.2. We count all these sets as
contributing to E[|S|]; note that this is fairly pessimistic.

From the remaining elements, we expect to see at most k
n ·δn = 3µ ln 2m elements

in a random sequence of length k. Whenever one of those elements appears, we use
at most one new set to cover it. Hence, in expectation, we use at most 3µ ln 2m sets
for covering the elements which show up from the δn remaining elements, making the
total expected number of sets O(µ(log n+ logm)) as claimed.

2.1. An Exponential-Time Variant. Surprisingly, we can trade off the O(log n)
factor in the approximation for a worse running time; this is quite unusual for com-
petitive analysis where the lack of information rather than lack of computational
resources is typically the deciding factor. Instead of running the greedy algorithm to
find the first O(µ log n) sets which cover (1−δ)n elements, we can run an exponential-
time algorithm which finds 2µ sets which cover (1− δ)n elements (whose existence is
shown in Lemma 2.1). Thus we obtain an exponential-time universal algorithm whose
expected competitive factor is O(logm).

In Section 9.2 we give improved algorithms when the set system admits small
“ǫ-nets” (e.g., when it has small VC-dimension), and also describe an application of
this result to the disc-cover problem.

3. The Weighted Set Cover Problem. We now consider the general (weighted)
version of the universal stochastic set cover problem. As mentioned in the introduc-
tion, and in contrast to the unweighted case where we could get a length-oblivious uni-
versal mapping S, in the weighted case there is no mapping S that is good for all
sequence lengths k.

Theorem 3.1. Any length-oblivious algorithm for the (weighted) universal stochas-
tic set cover problem has a competitive ratio of Ω(

√
n).

Proof. Consider a set Sall = U covering the whole universe, of cost c(Sall) =
√
n,

and singleton sets Su = {u} for each u ∈ U , each of unit cost c(Su) = 1. Take any
length-oblivious algorithm. If this algorithm maps more than half the elements to Sall

then the adversary can choose k = 1 and the algorithm pays in expectation Ω(
√
n)

while the optimum is 1. Otherwise, the algorithm maps less than half the elements to
Sall and the adversary chooses k = n. In this case the algorithm pays, in expectation,
Ω(n) while the optimum is at most

√
n.

Hence, we do the next best thing: we give a O(logmn)-competitive universal
algorithm, which is aware of the input length k. We first present an algorithm for
computing a universal mapping S when given the value of E[c(opt)]. This assumption
will be relaxed later, by showing that indeed the value of k is sufficient.

Consider Algorithm 2 in the figure. In each iteration of the algorithm, we either
choose a set with the best ratio of cost to number of uncovered elements (Type I
sets), or simply take the cheapest set which covers at least one uncovered element
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Algorithm 2: Mapping for weighted set cover.

Data: Set system (U,S ), c : S → R≥0, E[c(opt)].
while U 6= ∅ do

let S ← set in S minimizing c(S)
|S∩U| ;

if c(S)
|S∩U| >

64E[c(opt)]
|U| then let S ← set in S minimizing c(S);

S(u)← S for each u ∈ S ∩ U ;
U ← U \S and S ← all sets covering at least one element remaining in U ;

(Type II sets). We remark that since the set U is updated at each step, we may
alternate between picking sets of Type I and II in an arbitrary way. We also observe
that both types of sets are needed in general, as the proof of Theorem 3.1 shows. As
already mentioned in the introduction, and if not differently specified, E[c(opt)] =
Eω∈Uk [c(opt)] and E[|opt|] = Eω∈Uk [|opt|].

We bound the cost of sets of Type I and II separately. The following lemma shows
that the total cost of Type I sets is small, even in the fairly pessimistic assumption
that we use all such sets to cover the random sequence ω. Since Type I sets are
min-ratio sets, their cost can be bounded using the standard greedy analysis of set
cover.

Lemma 3.2 (Type I Set Cost). The cost of Type I sets selected by Algorithm 2
is O(log n) ·E[c(opt)].

Proof. Let R1, . . . , Rh be the Type I sets picked by the algorithm in this order.
Moreover, let Ui denote the set of uncovered elements just before Ri was picked. Since

the algorithm picked a Type I set, c(Ri) ≤ |Ri ∩ Ui| 64 E[c(opt)]
|Ui| . Hence, the total cost

of the sets Ri can be bounded by

h
∑

i=1

c(Ri) ≤
h
∑

i=1

64|Ri ∩ Ui| ×E[c(opt)]

|Ui|
≤ 64E[c(opt)]

n
∑

t=1

1

t
≤ 64E[c(opt)] lnn.

It remains to bound the expected cost of the Type II sets, which is also the techni-
cal heart of our argument. Let S1, . . . , Sℓ be the Type II sets selected by Algorithm 2
in this order. Observe that, since Type II sets are picked on the basis of their cost
alone, c(Si) ≤ c(Si+1) for each 1 ≤ i ≤ ℓ − 1. Let Ui denote the set of uncovered
elements just before Si was picked. Define ni = |Ui| and let ki = ni

k
n be the ex-

pected number of elements sampled from Ui (with repetitions). Denote by ωi the
subsequence (or multi-set) of the input sequence ω obtained by taking only elements
belonging to Ui, and let opt|ωi

be the subcover obtained by taking for each u ∈ ωi

the set in opt = opt(ω) covering u. (Note that this is not necessarily the optimal
set cover for ωi.) With the usual notation, c(opt|ωi

) and |opt|ωi
| denote the cost and

number of the sets in opt|ωi
, respectively. For any positive integer q, let Ωq

i be the set
of scenarios ωi such that |ωi| = q.

The bound on the expected cost of the Type II sets is given in Lemma 3.6. The
basic idea behind our proof is as follows. It is easy to prove a O(log n · E[c(opt)])
bound on the expected cost incurred by using sets Si with ki = Ω(log n). For the
remaining sets S1, . . . , Sj , kj = O(log n), we can naturally express the expected cost
incurred by the algorithm as a function of c(Si)’s and ki’s. Lemma 3.5 provides a
bound on each ki in terms of E[|opt|ωi

|] (in its proof, we exploit the technical Lemma
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3.3). The resulting bound on the total cost in terms of c(Si) and E[|opt|ωi
|] is then

converted into a bound in terms of E[c(opt|ωi
)] by means of Lemma 3.4. We next

proceed with the proof of the mentioned claims.

Lemma 3.3. For every i ∈ {1, . . . , ℓ}, if ki ≥ 8 log 2n then there exists q ≥ ki

2
such that

Pr
[

c(opt) ≤ 8E[c(opt)] and |opt| ≤ 8E[|opt|] | ω ∈ Ωq
i

]

≥ 1

2
.

Proof. We restrict our attention to scenarios in Ω
≥ ki

2

i := ⊎
p≥ ki

2

Ωp
i , i.e., scenarios

where the sampled k elements contain at least ki

2 elements from Ui. Chernoff’s bound

implies Pr[|ωi| < ki

2 ] ≤ exp
(

− (1/2)2 8 log 2n
2

)

≤ 1
2n , and hence

Pr[ω ∈ Ω
≥ ki

2

i ] ≥ 1− 1

2n
≥ 1

2
. (3.1)

Observe that

E[|opt|] ≥ Pr

[

ω ∈ Ω
≥ ki

2

i

]

· E
[

|opt| | ω ∈ Ω
≥ ki

2

i

]

(3.1)

≥ 1

2
E

[

|opt| | ω ∈ Ω
≥ ki

2

i

]

. (3.2)

Let di be the upper quartile of |opt| = |opt(ω)| restricted to ω ∈ Ω
≥ki

2

i . In other

terms, in three-quarters of the scenarios in Ω
≥ ki

2

i , the optimal solution opt = opt(ω)
uses at most di sets to cover the elements in the scenario. By Markov’s inequality
and the definition of di,

1

di
E

[

|opt| | ω ∈ Ω
≥ ki

2

i

]

≥ Pr[|opt| ≥ di | ω ∈ Ω
≥ ki

2

i ] ≥ 1

4
. (3.3)

Altogether,

di
(3.3)

≤ 4E

[

|opt| | ω ∈ Ω
≥ ki

2

i

]

(3.2)

≤ 8E [|opt|] .

In words, in at least three quarters of the scenarios with ω ∈ Ω
≥ ki

2

i the cardinality
of the optimum solution is at most 8 times the expected cardinality of the optimum
solution (with no restriction on ω).

Essentially the same argument shows that the cost c(opt) is at most 8E[c(opt)]

with probability at least 3/4 given that ω ∈ Ω
≥ ki

2

i . Hence, by the union bound,

Pr
[

c(opt) ≤ 8E[c(opt)] and |opt| ≤ 8E[|opt|] | ω ∈ Ω
≥ ki

2

i

]

≥ 1

2
.

Since Ω
≥ ki

2

i = ⊎
p≥ ki

2

Ωp
i , an averaging argument implies that some q ≥ ki

2 satisfies the

claim of the lemma.

Lemma 3.4. For all 1 ≤ i ≤ ℓ,
(a) c(Si)E

[

|opt|ωi+1
|
]

≤ E
[

c(opt|ωi+1
)
]

;

(b) c(Si)
(

E[|opt|ωi
|]−E

[

|opt|ωi+1
|
])

≤ E[c(opt|ωi
)]−E

[

c(opt|ωi+1
)
]

.
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Proof. The set Si+1 is the cheapest set covering any element of Ui+1, and hence
c(Si+1) is a lower bound on the cost of the sets in opt|ωi+1

. Since by construction
c(Si) ≤ c(Si+1),

c(Si)|opt|ωi+1
| ≤ c(Si+1)|opt|ωi+1

| ≤ c(opt|ωi+1
).

Analogously, the number of sets that opt uses to cover the elements Ui \Ui+1 covered
by Si is |opt|ωi

| − |opt|ωi+1
|, and for each such set opt pays at least c(Si). Thus,

c(Si)(|opt|ωi
| − |opt|ωi+1

|) ≤ c(opt|ωi
)− c(opt|ωi+1

).

Taking expectations on the inequalities gives the lemma.
The next lemma proves that, if ki is large enough, the optimal solution uses many

sets to cover the remaining elements. The observation here is similar to Lemma 2.1,
but now the number of sets in the set cover is not equal to its cost. This is why we
needed a careful restriction of the optimal solution to subproblems given by opt|ωi

.

We recall that we are focusing on iterations where the condition c(S)
|S∩Ui| ≤

64E[c(opt)]
|Ui| is

not satisfied by any set S, where Ui is the set of uncovered elements at the beginning
of the iteration.

Lemma 3.5. For every i ∈ {1, . . . , ℓ}, if ki ≥ 8 log 2n then ki ≤ 16E[|opt|ωi
|] logm.

Proof. For a contradiction, assume that ki > 16E[|opt|ωi
|] logm, and use

Lemma 3.3 to define q. There are exactly nq
i equally likely different sequences ωi

corresponding to sequences in Ωq
i . In at least one half of these scenarios, opt (and

hence opt|ωi
) uses at most 8E[|opt|] sets of cost at most 8E[c(opt)].

Let Si be the multi-set of sets {S ∩ Ui | S ∈ S }, and denote by C1,C2, . . . ,Cp

the collections of at most 8E[|opt|] sets from Si with total cost at most 8E[c(opt)];
there are at most (2m)8E[|opt|] of these collections. As previously, let ∪Cj denote the
union of the sets from Cj . Analogously to the proof of Lemma 2.1,

p
∑

j=1

|∪Cj |q ≥
1

2
nq
i .

Hence there is a collection Cj with

|∪Cj | ≥
ni

21/qp1/q
≥ ni

2(2m)8E[|opt|]/q ≥
ni

2(2m)1/logm
≥ ni

8
,

where we use the assumption q ≥ ki/2 > 8E[|opt|ωi
|] logm. Since the total cost of

sets in Cj is at most 8E[c(opt)] and they cover ni/8 elements from Ui, there is a set
S ∈ Cj with

min
S∈Cj

c(S)

|S ∩ Ui|
≤

∑

S∈Cj
c(S)

∑

S∈Cj
|S ∩ Ui|

≤ 8E[ c(opt)]

ni/8
=

64E[c(opt)]

ni
.

However, the Type II set Si was picked by the algorithm because there were no set

for which c(S)
|S∩Ui| <

64E[c(opt)]
|Ui| , so we get a contradiction and the lemma follows.

Finally, we can bound the expected cost of Type II sets: recall that we incur the
cost of some set Si only if one of the corresponding elements Si ∩ Ui is sampled.

Lemma 3.6 (Type II Set Cost). The expected cost of Type II sets selected by
Algorithm 2 is O(logmn)E[c(opt)].
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Proof. Recall that the Type II sets were S1, S2, . . . , Sℓ. Set kℓ+1 = 0 and c(S0) = 0
for notational convenience. Moreover, let j be such that kj ≥ 8 log 2n but kj+1 <
8 log 2n. Hence, in expectation we see at most 8 log 2n elements from Uj+1, and
since each of these elements is covered by a set that does not cost more than the
one covering it in opt, the cost incurred by using the sets Sj+1, . . . , Sℓ is bounded by
8 log 2nE[c(opt)].

By Lemmas 3.4 and 3.5, the expected cost incurred by using the remaining sets
S1, . . . , Sj satisfies

j
∑

i=1

c(Si)Pr[ω ∩ (Si ∩ Ui) 6= ∅]

≤
j
∑

i=1

c(Si)E[|ω ∩ (Si ∩ Ui)|]
Ui+1⊆Ui\Si

≤
j
∑

i=1

c(Si)E[|ω ∩ (Ui \ Ui+1)|]

≤
j
∑

i=1

c(Si) (ki − ki+1)
c(S0)=0

≤
j
∑

i=1

ki (c(Si)− c(Si−1))

Lem. 3.5
≤

j
∑

i=1

16E[|opt|ωi
|] logm · (c(Si)− c(Si−1))

= 16 logm ·
(

c(Sj)E
[

|opt|ωj+1
|
]

+

j
∑

i=1

c(Si)
(

E[|opt|ωi
|]−E

[

|opt|ωi+1
|
]))

Lem. 3.4
≤ 16 logm ·

(

E
[

c(opt|ωj+1
)
]

+

j
∑

i=1

(

E[c(opt|ωi
)]−E

[

c(opt|ωi+1
)
]))

= 16 logm · E[c(opt|ω1
)] ≤ 16 logm ·E[c(opt)].

This concludes the proof of the lemma.
We have all the ingredients to prove the main result of this section.
Proof. (Theorem 1.1) Lemmas 3.2 and 3.6 together imply that Algorithm 2 is

O(logmn)-competitive. We now show how to adapt the result to the case when we
are given as input the sequence length k, instead of E[c(opt)].

Algorithm 2 uses the value of E[c(opt)] only in comparison with c(S)·|U|
|S∩U| for differ-

ent sets S. This fraction can take at mostmn2 different values, and thus the algorithm

can generate at most mn2 + 1 different mappings {Si}mn2+1
i=1 . For any such map S,

computing the expected cost E[c(S)] is easy: indeed, if S−1(S) is the pre-image of
S ∈ S , then

E[c(S)] =
∑

S∈S

c(S) · Pr[ω ∩ S
−1(S) 6= ∅].

The value of k is sufficient (and necessary) to compute the probabilities above. Hence,
we can select the mapping Si with the minimum expected cost for the considered value
of k; this cost is at most the cost of the mapping generated with the knowledge of
E[c(opt)].

4. Matching Bounds. In this section we present slightly refined upper bounds
and matching lower bounds for universal stochastic set cover.

If we stay within polynomial time, and if m = poly(n), then the resulting
O(logmn) = O(log n) competitive factor is asymptotically the best possible given
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suitable complexity-theoretic assumptions. However, for the cases when m ≫ n, we
can show a better dependence on the parameters.

Theorem 4.1. For m > n, there exists a polynomial-time length-aware (resp.

length-oblivious) O
(

logm
log logm−log logn

)

-competitive algorithm for the weighted (resp.

unweighted) universal stochastic set cover problem.
Proof. Let us slightly modify the universal algorithm for weighted set cover as

follows: fixing a value 0 < x ≤ logm, we increase the threshold value for c(S)/|S ∩U |
to 2x · 64E[c(opt)]/|U |. Let us adapt the analysis. The same argument as in Lemma
3.2 shows that the cost of Type I sets is bounded by O(2x logn)E[c(opt)]. Lemmas
3.3 and 3.4 hold unchanged. Lemma 3.5 holds with 16 replaced by 16/x. As a
consequence, the expected cost of Type II sets becomes O(log n + logm

x )E[c(opt)].
Choosing x = log logm− log logn gives the claim for the weighted case.

A similar result can be shown for Algorithm 1, in the unweighted (length-oblivious)
case.

The following theorem (which extends directly to online stochastic set cover)
shows that the bounds above are tight.

Theorem 4.2. There are values of m and n such that any mapping S for the
(unweighted) universal stochastic set cover problem satisfies

E[|S|] = Ω

(

logm

log logm− log logn

)

E[|opt|].

Proof. Consider an n element universe U = {1, . . . , n} with the uniform distri-
bution over the elements, and S consisting of all m =

(

n√
n

)

subsets of U of size
√
n;

hence logm = Θ(
√
n logn) and log logm− log logn = Θ(logn). The sequence length

is k =
√
n/2.

Let Si be the collection of sets in S which are associated to the first i elements
in the input sequence ω = (ω1, . . . , ωk). Since the sets in Si, |Si| ≤ i, cover at most
i
√
n ≤ n/2 elements altogether, with probability at least 1/2 one has S(ωi+1) /∈ Si,

and consequently |Si+1| = |Si|+1. Hence, E[|Sk|] ≥ k
2 =

√
n
4 , i.e. S uses at least

√
n
4

sets in expectation. In contrast, the optimum solution uses one set deterministically.
The claim follows.

5. Online Stochastic Set Cover. The length-oblivious universal algorithm for
unweighted stochastic set cover immediately gives an online algorithm with the same
competitive factor: it is sufficient to compute the universal mapping S beforehand,
and use S(v) to cover each new element v which arrives as input.

The same approach does not work in the weighted case, since our universal al-
gorithm is length-aware in that case (for online algorithms the final sequence length
is typically unspecified, and the competitive ratio must hold at any point of time).
However, we are still able to design an online algorithm for weighted stochastic set
cover with the same O(logmn) competitive ratio. The basic idea is using the universal
mapping from Section 3 to cover each new element, and update the mapping from
time to time. The main difficulty is choosing the update points properly: indeed,
the standard approach of updating the mapping each time the number of elements
doubles does not work here.

Let ωi denote a random sequence of i elements, and let Si be the mapping pro-
duced by the universal algorithm from Section 3 for a sequence of length k = i. We
recall that the number of distinct mappings Si is polynomially bounded. Our algo-
rithm works as follows. Let k be the current number of samplings performed. The
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algorithm maintains a variable k′, initially set to 1, which is larger than k at any
time. For a given value of k′, the mapping used by the online algorithm is the univer-
sal mapping Sk′ . When k = k′, we proceed as follows. We compute a value k′′ such
that E[c(Sk′′ (ωk′′

))] > 2E[c(Sk′ (ωk′

))] and E[c(Sk′′−1(ω
k′′−1))] ≤ 2E[c(Sk′(ωk′

))].

Then we choose k̃ ∈ {k′′ − 1, k′′} randomly, so that E[c(Sk̃(ω
k̃))] = 2E[c(Sk′(ωk′

))].

We set k̃ = ∞ if there is no value of k′′ satisfying this property: this happens when
E[c(Sk′(ωk′

))] is at least one half of the minimum over the (polynomially-many) map-
pings Si of the cost of Si given that all elements are sampled. Eventually, we set
k′ = max{k̃, k′+1}, and modify the mapping consequently. We remark that the algo-
rithm above takes polynomial time per sample, and does not assume any knowledge
of the final number of samplings.

Proof. (Theorem 1.3) Consider the algorithm above. Let k ≥ 1 be any sequence
length, and S be the corresponding mapping computed by the algorithm. Let more-
over 1 = k1, k2, . . . , kh > k be the sequence of different values of k′ computed by the al-
gorithm. The analysis is trivial for h = 1, so assume h ≥ 2 and hence kh ≥ 2. Trivially,
for any mapping Si, increasing the sequence length can only increase the expected
cost. Furthermore, for i ≤ h − 2, one has E

[

c(Ski
(ωki))

]

≤ 1
2E
[

c(Ski+1
(ωki+1))

]

.
Combining these two observations, one obtains that the expected cost of the solution
is bounded by

E
[

c(S(ωk))
]

= E
[

c(Sk1
(ωk1))

]

+E
[

c(Sk2
(ωk2−k1))

]

+ . . .+E
[

c(Skh
(ωk−kh−1 ))

]

≤ E
[

c(Sk1
(ωk1))

]

+E
[

c(Sk2
(ωk2))

]

+ . . .+E
[

c(Skh
(ωkh))

]

≤ 2E
[

c(Skh−1
(ωkh−1))

]

+E
[

c(Skh
(ωkh))

]

.

Observe that, if kh =∞, by constructionE
[

c(Skh
(ωkh))

]

≤ 2·E
[

c(Skh−1
(ωkh−1))

]

.
Similarly, if kh < ∞, and the associated value of k′′ satisfies k′′ − 1 > kh−1, then
E
[

c(Skh
(ωkh))

]

= 2 ·E
[

c(Skh−1
(ωkh−1))

]

. Hence, in the two mentioned cases

E
[

c(S(ωk))
]

≤ 4 ·E
[

c(Skh−1
(ωkh−1 ))

]

≤ O(logmn) · E
[

c(opt(ωkh−1 ))
]

≤ O(logmn) ·E
[

c(opt(ωk))
]

.

It remains to consider the case kh < ∞ and k′′ − 1 = kh−1. Observe that it
must hold that kh = kh−1 + 1 = k + 1. By subadditivity of the optimum solution,
E
[

c(opt(ωkh))
]

= E
[

c(opt(ωk+1))
]

≤ k+1
k E

[

c(opt(ωk))
]

= O(E
[

c(opt(ωk))
]

). Thus

E
[

c(Skh
(ωkh))

]

= O(logmn) · E
[

c(opt(ωkh))
]

= O(logmn) ·E
[

c(opt(ωk))
]

.

Also in this case, we can conclude that E
[

c(S(ωk))
]

= O(logmn) ·E
[

c(opt(ωk))
]

.

6. Universal Stochastic Facility Location. In this section we consider the
universal stochastic version of (non-metric) facility location, a generalization of univer-
sal stochastic set cover. For this problem, we provide a O(log n)-competitive length-
aware algorithm, where n is the total number of clients and facilities.

The universal stochastic facility location problem is defined as follows. An in-
stance of the problem is a set of clients C and a set of facilities F , with a (possibly
non-metric) distance function d : C × F → R≥0. Each facility f ∈ F has an opening
cost c(f) ≥ 0. We let n = |F | + |C|. Given a mapping S : C → F of clients into
facilities, and a subset X ⊆ C, we define c(S(X)) as the total cost of opening facilities
in S(X) = ∪u∈XS(u) plus the total distance from each u ∈ X to S(u). We also de-
note by |S(X)| the number of facilities in S(X). With the usual notation, the aim is
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Algorithm 3: Algorithm for the (weighted) stochastic facility location prob-
lem.
Data: C, F , d :C×F → R≥0, c :F → R≥0, k, apx ∈ [E[c(opt)], 2E[c(opt)]].
while C 6= ∅ do

let f ∈ F and S ⊆ C minimize avg :=
c(f)+

(

1−(1− 1
n)

k
)

·
∑

v∈S d(v,f)

|S| ;

if avg > 1280e·apx
|C| then let f ∈ F and S = {v} ⊆ C minimize c(f)+ d(v, f);

S(u)← S for each u ∈ S ;
C ← C \ S ;

finding a mapping which minimizes Eω[c(S(ω))]/Eω[c(opt(ω))], where ω is a random
sequence of k clients. As for weighted set cover, we first assume that the algorithm
is given as input E[c(opt)]. More precisely, it is sufficient to know a 2 approximation
apx of E[c(opt)]. We later show how to remove this assumption1.

Algorithm 3 in the Figure is an extension of the algorithm from Section 3, where
the new challenge is to handle the connection costs for clients. In each iteration, we
select a facility and map a subset of clients to it. We first look for a facility f and a
subset S of clients such that the average expected cost of opening f and connecting
sampled clients in S to f is less than some threshold2. If no such set can be found,
then the algorithm chooses a facility f and a client v for which the cost of opening
f plus the cost of connecting v to f is minimized. Observe that if the connection
cost for each client-facility pair is zero then the algorithm reduces (essentially) to
Algorithm 2.

We remark that the first step in the while loop can be implemented in polynomial
time even if the number of candidate sets S is exponential. In fact, it suffices to
consider, for each facility f , the closest i clients still in C, for every i = 1, . . . , |C|.

Analogously to Section 3, we partition the pairs (f, S) computed by the algorithm
in two subsets: The pairs computed in the first step of the while loop are of Type I,
and the remaining pairs of Type II. The cost paid by the solution for a pair (f, S) is
zero if no element in S is sampled, and otherwise is c(f) plus the sum of the distances
from the sampled elements in S to f . We next bound the cost of the pairs of Type I.

Lemma 6.1. The expected total cost of Type I pairs is O(log n)E[c(opt)].
Proof. Let (fi, Si) be the i-th pair of Type I selected by the algorithm, i = 1, . . . , ℓ.

Moreover, let Ci denote the set C before fi was selected. The expected cost paid by
our solution for buying fi and connecting the sampled clients in Si to fi is

c(fi) Pr[Si ∩ ω 6= ∅] +
∑

v∈Si

d(v, fi) Pr[v ∈ ω] ≤ c(fi) +

(

1−
(

1− 1

n

)k
)

·
∑

v∈Si

d(v, fi).

Since, the pair (fi, Si) is selected in the considered step, the latter quantity is at most

1280e·apx |Si∩Ci|
|Ci| ≤ 2·1280e·E[c(opt)] |Si∩Ci|

|Ci| . The claim follows by the same argument

as in Lemma 3.2.
Consider now the pairs of Type II. We need some notation (analogous to the set

cover case). We denote by (fi, Si) = (fi, {vi}) the i-th pair of Type II selected by

1We remark that the algorithm and analysis in the set cover case can be analogously modified
in order to exploit a constant approximation of the optimum.

2The constant e in the algorithm can be replaced by a larger constant, so that the algorithm has
to deal with polynomially bounded rational numbers only.
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the algorithm, i = 1, . . . , ℓ, and let ci := c(fi) + d(vi, fi). We let Ci denote the set C
before fi was selected, ni = |Ci|, and ki = ni

k
n . We also let ωi be the subsequence (or

multi-set) obtained from the random sequence ω by taking only elements belonging
to Ci. By opt|ωi

we denote the set of facilities in opt which serve clients in ωi. In
particular, |opt|ωi

| is the number of such facilities. We let c(opt|ωi
) be the cost of

opening facilities in opt|ωi
plus connecting each client in ωi to the closest facility in

opt|ωi
. (In the connection cost, elements of ωi are considered without repetitions).

Of course, c(opt|ωℓ
) ≤ c(opt|ωℓ−1

) ≤ . . . ≤ c(opt|ω1
) ≤ c(opt(ω)). Additionally, for

each client v ∈ C, let Dv denote the expected connection cost paid by opt for v given

that v appears in the random sequence ω, and let D :=
(

1−
(

1− 1
n

)k
)

·∑v∈C Dv.

Observe that D is the total expected connection cost payed by opt. In particular,
D ≤ E[c(opt)]. We let Ωq

i and Ω≥q
i be the set of ω’s such that |ωi| = q and |ωi| ≥ q,

respectively.

The following lemma is analogous to Lemma 3.3 and is proved in the same way.

Lemma 6.2. For every i ∈ {1, . . . , ℓ}, if ki ≥ 8 log 2n then there exists q ≥ ki

2
such that

Pr

[

c(opt) ≤ 8E[c(opt)] and |opt| ≤ 8E[|opt|] | ω ∈ Ωq
i

]

≥ 1

2
.

Proof. The proof is the same as for Lemma 3.3, where elements are replaced by
clients and Ui by Ci.

Next lemma extends Lemma 3.5. Let us remark that we are considering itera-

tions where there does not exist a pair (f, S) such that
c(f)+

(

1−(1− 1
n )

k
)

·
∑

v∈S d(v,f)

|S| ≤
1280e·apx

|C| , where C is the set of clients at the beginning of the iteration.

Lemma 6.3. For every i ∈ {1, . . . , ℓ}, if ki ≥ 8 log 2n then ki ≤ 64E[|opt|ωi
|] logn.

Proof. Suppose the lemma does not hold, i.e., ki > 64E[|opt|ωi
|] logn. Apply

Lemma 6.2 in order to define q. In particular, in at least one half of the scenarios Ωq
i

the cost and cardinality (i.e., number of facilities) of the optimal solution are at most
8 times the corresponding expected values over all scenarios. We show a contradiction
by providing a pair (f, S) which violates the condition in the second step of the while
loop of Algorithm 3.

Consider the nq
i different outcomes for a sequence of q clients in Ci with repeti-

tions. In the optimal solution, disconnect v from its closest facility in any scenario
where Dv ≥ 4E[Dv | ω ∈ Ωq

i ]. We next show that in at least two thirds of the sce-
narios the reduced optimum solution still connects at least q

4 clients from Ci (count-
ing repetitions). To see that, define a 0-1 matrix, which has a row for each pair
(v, i) ∈ Ci × {1, . . . , q} and a column for each scenario ω ∈ Ωq

i . Entry ((v, i), ω) is
initially set to one if and only if v appears at least i times in ω. Hence, there are
qnq

i ones altogether. Now zero the entries ((v, i), ω) where v is disconnected in sce-
nario ω. By Markov’s inequality, we zero at most one fourth of the ones of each row
(v, i). Hence the number of ones becomes at least 3

4qn
q
i . Let x denote the number of

columns with less than q
4 ones, i.e., the number of scenarios where less that q

4 clients
are connected (counting repetitions). One has

3

4
qnq

i ≤
q

4
· x+ q · (nq

i − x) ⇒ x ≤ nq
i

3
.
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It follows from the union bound and Lemma 6.2 that at least a fraction 1− 1
2− 1

3 =
1
6 of the scenarios will satisfy the conditions of Lemma 6.2 and additionally connect
at least q

4 elements in the reduced optimum solution.
For each facility f , let Sf denote the set of clients v within distance at most

4E[Dv | ω ∈ Ωq
i ] from f . Consider the collections of at most d = 8E[|opt|] facilities

with total weight of opening all the d facilities less than or equal to 8E[c(opt)]. Let
Fj , 1 ≤ j ≤ p ≤ (2n)d, be the j-th such collection, and let ∪Fj := ∪f∈Fj

Sf be the
union of the Sf over the facilities of the collection. We must have:

p
∑

j=1

(

q
q
4

)

|∪Fj |
q
4n

3q
4

i ≥
1

6
nq
i .

Using
(

q
q
4

)

≤
(

eq
q
4

)
q
4

= (4e)
q
4 and the assumption that q ≥ ki

2 > 32E[|opt|ωi
|] logn ≥

4d logn, there must be one Fj such that:

|∪Fj | ≥
ni

(

(

q
q/4

)

6p
)4/q

≥ ni

4e · 6 4
q (2n)

4d
q

≥ ni

4e · 6 1
8 log n 2

1
log nn

1
log n

≥ ni

32e
.

The cost of opening all the facilities Fj is at most 8E[c(opt)]. Furthermore, for the
considered scenarios we have

∑

f∈Fj

∑

v∈Sf

(

1−
(

1− 1

n

)k
)

· d(v, f) ≤
∑

f∈Fj

∑

v∈Sf

(

1−
(

1− 1

n

)k
)

· 4E[Dv | ω ∈ Ωq
i ]

≤ 4E[D | ω ∈ Ωq
i ]

≤ 4E[c(opt) | ω ∈ Ωq
i ] ≤ 32E[c(opt)].

Hence, by an averaging argument, there must exist a facility f such that

c(f) +
∑

v∈Sf

(

1−
(

1− 1
n

)k
)

· d(v, f)
|Sf |

≤ 8E[c(opt)] + 32E[c(opt)]

ni/32e

=
1280eE[c(opt)]

ni
≤ 1280e · apx

ni
.

This contradicts the fact that a pair of Type II is selected in the iteration considered.

The following lemma is analogous to Lemma 3.4
Lemma 6.4. For each 1 ≤ i ≤ ℓ,
(a) ciE

[

|opt|ωi+1
|
]

≤ E
[

c(opt|ωi+1
)
]

;

(b) ci(E[|opt|ωi
|]−E

[

|opt|ωi+1
|
]

) ≤ E[c(opt|ωi
)]−E

[

c(opt|ωi+1
)
]

.
Proof. By construction, ci ≤ ci+1. Furthermore, for any facility f ∈ opt|ωi+1

and any client v ∈ ωi+1 served by f (there must be at least one such client), one has
ci+1 ≤ c(f) + d(v, f). Consequently, ci+1 · |opt|ωi+1

| is a lower bound on c(opt|ωi+1
).

Altogether:

ci|opt|ωi+1
| ≤ ci+1|opt|ωi+1

| ≤ c(opt|ωi+1
).

By applying the same argument to the facilities in opt|ωi
\ opt|ωi+1

:

ci(|opt|ωi
| − |opt|ωi+1

|) ≤ c(opt|ωi
)− c(opt|ωi+1

).
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The claim follows by taking expectations.
We now bound the cost of the Type II pairs in the solution constructed by the

algorithm.
Lemma 6.5. The expected cost of Type II pairs selected by Algorithm 3 is O(log n)·

E[c(opt)].
Proof. For notational convenience, we set kℓ+1 = 0 and c0 = 0. Moreover, let j be

such that kj ≥ 8 log 2n and kj+1 < 8 log 2n. Note that in expectation we see at most
8 log 2n elements in Cj+1. Each of these elements are connected in opt to a facility f
for which c(f) + d(vi, f) is not smaller than ci. Hence, the cost of connecting vi’s to
fi’s for j < i ≤ ℓ is bounded by 8 log 2nE[c(opt)].

By Lemma 6.3 and Lemma 6.4, the cost of the pairs (f1, S1), . . . , (fj , Sj) is upper
bounded by

j
∑

i=1

ci Pr[vi ∈ ω] =

j
∑

i=1

ci(ki − ki+1) ≤
j
∑

i=1

ki(ci − ci−1)

Lem. 6.3
≤

j
∑

i=1

64E[|opt|ωi
|] logn(ci − ci−1)

= 64 logn

(

cjE
[

|opt|ωj+1
|
]

+

j
∑

i=1

ci(E[|opt|ωi
|]−E

[

|opt|ωi+1
|
]

)

)

Lem. 6.4
≤ 64 logn

(

E
[

c(opt|ωj+1
)
]

+

j
∑

i=1

(

E[c(opt|ωi
)]−E

[

c(opt|ωi+1
)
])

)

= 64 log(n)E[c(opt|ω1
)] ≤ 64 log(n)E[c(opt)].

The claim follows.
The following lemma follows immediately from Lemmas 6.1 and 6.5.
Lemma 6.6. Algorithm 3 returns a universal mapping S to the universal stochas-

tic facility location problem with E[c(S)] = O(log n)E[c(opt)].
Using the above lemma it is easy to prove the main theorem.

Theorem 6.7. There exists a polynomial-time length-aware algorithm that re-
turns a universal mapping S to the universal stochastic facility location problem with
E[c(S)] = O(log n)E[c(opt)].

Proof. First, note that the value of Eω∈C1 [c(opt(ω))] can be easily computed, by
finding for each v ∈ C the facility f minimizing c(f)+d(c, f). Trivially, for 1 ≤ k ≤ n,

Eω∈C1 [c(opt(ω))] ≤ Eω∈Ck [c(opt(ω))] ≤ Eω∈Cn [c(opt(ω))].

Moreover, by subadditivity, Eω∈Cn [c(opt(ω))] ≤ nEω∈C1[c(opt(ω))]. Hence one of
the values xi := 2iEω∈C1 [c(opt(ω))] for 0 ≤ i ≤ logn is a 2-approximation for
Eω∈Ck [c(opt(ω))] = E[c(opt)]. Therefore, it is sufficient to run Algorithm 3 with
apx = xi, for all the logn values xi. This way one obtains logn different mappings.
Afterwards, we choose the one with the smallest expected cost, which is guaranteed
to be O(log n) approximate. The expected costs above can be computed analogously
to the set cover case.

The same reduction as in Section 5 leads to an O(log n)-competitive algorithm
for the online version of the problem.

Theorem 6.8. There is an O(log n)-competitive algorithm for the online stochas-
tic facility location problem.
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Proof. Consider the same algorithm as in the set cover case, where now each
mapping Sk′ is computed with the universal facility location algorithm of this section.
The proof of the lemma follows along the same line as in Theorem 1.3, with the
difference that now the competitive factor of each mapping is O(log n) rather than
O(logmn).

7. Non-Uniform Probability Distributions. In this section we show how
to handle the case of non-uniform probability distributions, given our results for the
uniform case. For the sake of simplicity, we focus on the set cover case: The same
argument works for facility location.

Consider the following reduction to the uniform case. Let (U,S , ~π) be the input,

where (U,S ) is the set system and ~π ∈ Q
|U|
≥0 is the probability distribution (i.e.,

πu is the probability of sampling element u and
∑

u∈U πu = 1). We multiply all
the probabilities (which are rational numbers) by a proper integer N , so that nu :=
πu · N is integral. (Without loss of generality, N ≫ 1). Now we replace u with ni

copies u1, u2, . . . , uni
. Let (U ′,S ′) be the resulting set system, where sets S′ ∈ S ′

correspond to sets S ∈ S and |U ′| = N . We run our universal algorithm for the
uniform case on (U ′,S ′). It is easy to see that all the copies ui will be mapped to
the same set S′

u (if we break ties consistently): we return the solution which maps
each u into Su.

Observe that Pr[u is sampled] = πu and Pr[at least one ui is sampled] = 1− (1−
1/N)nu ≃ 1 − e−πu . In particular, the two probabilities differ at most by a constant
factor. It follows by subadditivity that the expected optimal cost of the modified
instance is within a constant factor from the original expected optimal cost. Hence
the solution produced is O(logmn) approximate.

Of course, the reduction above is not polynomial. However, we can consider
an implicit representation of (U ′,S ′), where we associate a multiplicity nu to each
element u. It is not hard to adapt our algorithms to make them run in polynomial
time with this implicit representation. In particular, in Algorithms 1 and 2 one can
compute |S ∩U | for a given set S in time polynomial in |U | and in the number of bits
needed to represent the probability distribution. Furthermore, all the comparisons in
the mentioned algorithms involve rational numbers which can be represented with a
polynomial number of bits in the input size.

8. The Independent Activation Model. In the independent activation model
each element (client) u is independently sampled with a given probability πu. In
particular, the number K of sampled elements (clients) is a random variable in
{0, 1, . . . , n}. Due to concentration bounds, our algorithms can be adapted to work
in this case as well.

Let k̃ := E[K] =
∑

u∈U πu be the expected number of sampled elements (clients).

Simple greedy algorithms ensure aK-approximation, and hence an expected k̃-approximation.
In more detail, it is sufficient to map each element u in the cheapest set S containing
it, in the set cover case. For facility location, we map each client u into the facility f
which minimizes c(f) + d(u, f). It is easy to see that the resulting mapping costs at
most K · opt.

Hence, without loss of generality, we can assume k̃ ≥ c logn for a sufficiently large
constant c > 0. In this case we run our algorithms with k = 2k̃. For any given β > 0
and c large enough, Chernoff’s bound guarantees that Pr[K > k] ≤ n−β . Hence it
is sufficient to show that our algorithms are nβ approximate in the worst case, for a
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proper constant β > 0. We next show that this is the case.
Lemma 8.1. Any universal mapping for the unweighted set cover problem is

n-approximate in the worst case.
Proof. The optimal solution needs at least one set whereas the mapping returns

at most n sets. The claim follows.
Lemma 8.2. The universal mapping S generated by Algorithm 2 is n2-approximate

in the worst case for the set cover problem.
Proof. Consider any sequence ω of k elements, and let ω be the corresponding

set. Let cheap(v) be the minimum cost of a set covering v. Observe that opt(ω) ≥
1
n

∑

v∈ω cheap(v). For any element v ∈ ω covered by a Type I set, it holds that
c(S(v)) ≤ n · cheap(v). For the remaining elements v ∈ ω, c(S(v)) = cheap(v). As a
consequence the cost of the solution returned by the algorithm is at most

∑

v∈ω n ·
cheap(v). The claim follows.

Lemma 8.3. The universal mapping S generated by Algorithm 3 is n3-approximate
in the worst case for the facility location problem.

Proof. Consider any sequence ω of k clients, and let ω be the corresponding
set. For any v ∈ ω, let cheap(v) = minf∈F {c(f) + d(v, f)}. Observe that opt(ω) ≥
1
n

∑

v∈ω cheap(v). The cost paid by S for any v ∈ ω covered by a facility of Type II
is at most cheap(v). Consider now any v ∈ ω covered by a facility f = S(v) of Type
I. Let S = S

−1(f). S pays for v at most

c(f) + d(v, f) ≤ c(f) +
∑

v∈S

d(v, f) ≤ n ·
(

c(f) +

(

1−
(

1− 1

n

)k
)

∑

v∈S

d(v, f)

)

≤ n2 ·





c(f) +
(

1−
(

1− 1
n

)k
)

∑

v∈S d(v, f)

|S ∩ C|



 ≤ n2 · cheap(v).

Altogether, the cost of the solution returned by the algorithm is at most n2
∑

v∈ω cheap(v).
The claim follows.

9. Other Applications. Our techniques can be applied to other covering-like
problems. In this section we sketch two such applications.

9.1. Universal Stochastic Multi-Cut. In an instance of the universal multi-
cut problem we are given a graph G = (V,E) with edge costs c : E → R≥0, and a set of
demand pairs D = {(si, ti) : 1 ≤ i ≤ m}. The task is to return a mapping S : D → 2E

so that S((si, ti)) ⊆ E disconnects si from ti. The cost of the solution for a sequence
ω ∈ Dk, i.e., the total cost of the edges in S(ω) = ∪(si,ti)∈ωS((si, ti)), is denoted by
c(S(ω)). The universal and online stochastic versions are defined analogously, and
again the goal is to minimize the ratio Eω[c(S(ω))]/Eω[c(opt(ω))].

Notice first that the multi-cut problem on trees (i.e., when the graph G is a tree)
is a special case of weighted set cover: each demand pair (si, ti) is an element in U ,
each edge e corresponds to a set Se, and an element (si, ti) is contained in a set Se

if the edge e lies on the unique path from si to ti. Hence, we can use the algorithm
from Section 3 to obtain a O(log n)-competitive algorithm for stochastic universal
multi-cut on trees.

Now, using the congestion-preserving hierarchical decompositions of Räcke [44],
we can generalize this result to arbitrary graphs obtaining a O(log2 n)-competitive
algorithm. The randomized reduction from multi-cut in general graphs to multi-
cut in trees is detailed in [44, Section 3], and shows that an O(α)-approximation
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to the multi-cut problem on trees gives an O(α logn)-approximation to multi-cut on
general graphs. Using our result for multi-cut on trees immediately gives the following
theorem.

Theorem 9.1. There exists an O(log2 n)-competitive polynomial-time algorithm
for the online stochastic multi-cut problem, and a polynomial-time algorithm that,
given the length of the input sequence, is O(log2 n)-competitive for the universal
stochastic multi-cut problem.

9.2. Constant VC-Dimension. In this section we present better algorithms
for universal stochastic (unweighted) set cover for the case when the set system has
constant VC-dimension. (For formal definitions of VC-dimension and related con-
cepts, see, e.g., [10]).

Before presenting our improved algorithm, let us describe an application where
it is potentially useful. Consider a region U ⊆ R2 of the 2-dimensional plane, and a
set of m “base-stations” vi ∈ R2, each with a coverage radius ri. In other words, vi
covers the disk B(vi, ri) of radius ri centered at vi. We assume that U ⊆ ∪iB(vi, ri),
i.e., the discs cover the entire region. Given a set X ⊆ U , the goal is to find a
small set cover, i.e., to map each point x ∈ X to a base-station covering it so that
not too many base-stations are in use. This problem was studied by Hochbaum and
Maas [30], and by Brönnimann and Goodrich [10], among others. However, one might
want to hard-wire this mapping from locations in the plane to base-stations, so that
we do not have to solve a set-cover problem each time a device wants to access a base-
station; i.e., we want a universal mapping. For ease of exposition, let us discretize
the plane into n points by placing a fine-enough mesh on the plane. Assume that
the locations to be covered are chosen randomly from some known distribution from
the plane (or more precisely, from this mesh). In this case, we can show that there
exists a universal mapping whose expected set-cover cost is at most O(logm) times
the expected optimum, and this mapping can be computed in randomized polynomial-
time.

By the discussion in Section 2 (and with the same notation), the main challenge
is to find the 2µ sets which cover all but δn elements. When the set system has
VC-dimension d, we give a polynomial-time algorithm in Lemma 9.2 which finds
O(d2d µ logµ) sets which cover all but 2δn elements; for the special case of discs in
the plane, our algorithm improves and returns just O(µ) sets. Combining this result
with the argument in Theorem 1.2 implies a polynomial-time O(logm)-competitive
algorithm for the case of discs in the plane, and an O(2d logµ + logm)-competitive
algorithm in general.

Let us state our result more generally: the (unweighted) partial hitting set prob-
lem takes as input a set system (U,S ) and an integer threshold τ ≤ m = |S |. A
feasible solution to this problem is subset U ′ ⊆ U of elements such that all but τ sets
from S contain at least one element from U ′. The goal is to find a feasible solution
with smallest cardinality. We give the following bi-criteria approximation algorithm
for this problem. Our algorithm and analysis for partial hitting set builds on results
for hitting set for bounded VC-dimension set systems [10].

To state our theorem formally, we introduce some notation: any weight function
w : U → R≥0 on the elements induces a weight function on the sets, where the weight
of a set S ⊆ U is

∑

e∈S w(e)—we denote the weight of S by w(S). Given element
weights and a parameter ǫ > 0, an ǫ-net A ⊆ U is a set of elements which hits all sets
in S with weight at least ǫ w(U). We use s(ǫ) to denote an upper bound on the size
of ǫ-nets for a set system. For any set system with VC-dimension d, it is known that
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s(ǫ) = O((d/ǫ) log(d/ǫ)), and that such a net can be found in polynomial time (see,
e.g., [10]. For the special case of disks in the plane, s(ǫ) = O(d/ǫ) [41].

Lemma 9.2. There is a polynomial-time algorithm that, given an instance of
partial hitting set where the optimal solution contains k elements and hits all but τ
sets, outputs a subset with s(4k) elements that hits all but 2τ elements, where d is the
VC-dimension of the set system and s(ǫ) is an upper bound of the size of ǫ-nets in the
set system.

Proof. We assume we know k, the size of the optimal partial hitting set—this
assumption can be discharged by running over all possible values of k. The algorithm
proceeds in iterations. Initially, we give unit weight to each element, set ǫ = 1

4k ,
and find an ǫ-net A. If the net A hits all but 2τ sets, we stop and return A. Else,
we pick a set R that is not hit uniformly at random, double the weight of all the
elements in R, and go to the next iteration. By construction, the hitting set returned
by the algorithm is of size s(4k), so it suffices to show that the algorithm terminates
in polynomial time.

We claim that the algorithm terminates in O(k log n
k ) iterations. Let At be the

ǫ-net computed at iteration t. Let also wt(U) be the weight of U at the end of the
same iteration (w0(U) = n is the initial weight). Any set R which is not hit by At

must have weight at most ǫ wt−1(U), since At is an ǫ-net. As a consequence, the
total weight grows at most by a factor (1 + ǫ) at each iteration. We can conclude by
induction that

wt(U) ≤ n(1 + ǫ)t ≤ neǫt. (9.1)

Let H∗ denote the set of size k which hits all but τ sets. For each h ∈ H∗, let Zt
h

be the random variable denoting the number of iterations i ≤ t where the weight of
the element h is doubled. For any iteration i ≤ t, at least 2τ sets are not hit by Ai, and
hence at least half of the sets not hit by Ai are hit by H∗. Thus, at any iteration, we
double the weight of some element in H∗ with probability at least 1

2 . We can conclude

that
∑

h∈H∗ E[Zt
h] ≥ t

2 . Observe that wt(H∗) =
∑

h∈H∗ 2Z
t
h . Now using the fact that

E
[

2Y
]

≥ 2E[Y ] for any random variable Y , we get that E[w(H∗)] ≥ ∑h∈H∗ 2E[Zh].
Since

∑

h∈H∗ E[Zh] ≥ t
2 , we can use the convexity of the exponential function to

claim that
∑

h∈H∗ 2E[Zh] is minimized when all terms E[Zh] are equal—this gives us

E
[

wt(U)
]

≥ E
[

wt(H∗)
]

≥ k · 2t/2k. (9.2)

Combining equations (9.1) and (9.2) and using the fact that ǫ = 1/4k, we get that
k · 2t/2k ≤ net/4k, from which we obtain that t ≤ 8k log(n/k). Hence, the algorithm
terminates after O(k log(n/k)) iterations, as claimed. This completes the proof of the
lemma.

Corollary 9.3. Given a set system (U,S ) such that some 2µ sets from S

cover all but δn elements from U , there is a polynomial time algorithm that outputs
O(2d+2µ log(2d+2µ)) sets that cover all but 2δn elements, where d is the VC-dimension
of the set system. For the special case where sets are discs in the plane, the number
of sets is O(2dµ).

Proof. Given the set system (U,S ), construct the dual set system (U∗,S ∗)
where U∗ = S and S ∗ = U , such that a set x ∈ S ∗ contains an element S ∈ U∗ if
S contained x in the original set system. Consequently, the partial set cover problem
on the set system (U,S ) (“pick the fewest sets from S that cover all elements from
U but at most τ elements”) is identical to the partial hitting set problem in the dual
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set system (U∗,S ∗) (“pick the fewest elements from U∗ that hit all sets from S ∗ but
at most τ sets”). Moreover, if the VC-dimension of the original set system is d, then
the VC-dimension of the dual set system is at most 2d+1 [10].

Finally, since there are at most 2µ dual elements in U∗ that hit all but δn dual sets
in S ∗, and the VC-dimension d∗ of the dual set system is at most 2d+1, Lemma 9.2 and
the fact that s(ǫ) = O(d∗/ǫ log d∗/ǫ) immediately implies that we can find O(2d+1 ·
2µ log(2d+1 log 2µ)) elements in the dual set system that hit the same number of
sets. Considering the sets in the original set system corresponding to these dual
elements completes the proof. For the second part of the proof, we use the fact that
s(ǫ) = O(d∗/ǫ) for discs in the plane in this argument to get the bound of O(2dµ).

The following theorem summarizes the discussion above.

Theorem 9.4. There exists a randomized polynomial-time length-oblivious algo-
rithm that returns a universal mapping S to the universal stochastic unweighted set
cover problem on set systems of VC-dimension d, with E[|S|] = O(2d logE[|opt|] +
logm)E[|opt|]. For the special case of discs in the plane, we get an algorithm for
universal stochastic unweighted set cover with E[|S|] = O(logm)E[|opt|]
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[22] A. Gupta, M. T. Hajiaghayi, and H. Räcke. Oblivious Network Design. In Proceedings of the

17th Annual ACM-SIAM Symposium on Discrete Algorithm, pages 970–979, 2006.
[23] M. T. Hajiaghayi, J. H. Kim, T. Leighton, and H. Räcke. Oblivious Routing in Directed Graphs
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[43] H. Räcke. Minimizing Congestion in General Networks. In Proceedings of the 43rd Annual

Symposium on Foundations of Computer Science, pages 43–52, 2002.
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