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BOOLEAN FACTORIZATIONS

* Input:a O/1 (1.e. Boolean) n-by-m matrix A and integer k (l.e.
the rank)

* Output: O/ n-by-k matrix B and O/ k-by-m matrix €
* Goal: minimize Y;|A; — (BoC)j|
* Boolean matrix multiplication: (BoC);j = V,BipCy,

* | Ike normal, but addition defined as |+ | =]
|




SOME EXITING PROPERTIES

* Easy to interpret
» Generalizes many data mining technigues
* Boolean rank can be exponentially smaller than normal rank

* Boolean factorizations can have less error than SVD

» Computations become combinatorial




SOME BAD NEWS

» Computations become combinatorial
* Finding optimal Boolean factorizations is computationally hara
* Hard inapproximability results for:

» best Boolean rank-k factorization of a given matrix

» Boolean rank of a given matrix

* As hard as finding graph’s minimum chromatic number
——




GOOD NEWS

* Sparsity helps!




SPARSE FACTORIZATIONS

» |deally, sparse matrices have sparse factors
* Not true with many factorization methods

» Sparse Boolean matrices have sparse decompositions




SPARSE FACTORIZATIONS

» |deally, sparse matrices have sparse factors
* Not true with many factorization methods

» Sparse Boolean matrices have sparse decompositions

Theorem |. For any n-by-m O/ matrix A of Boo
k, there exist n-by-k and k-by-m 0/ matrices B anc

that A=BoC and
B|+|C|<2|A|.
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APPROXIMATING THE
BOOLEAN RANK

* Sparsity Is not enough; we need some structure In It

* An n-by-m O/ matrix A is f(n)-uniformly sparse, it all of its
columns have at most f(n) Is

Theorem 2. [he
matrix can be app

Boolean rank of log(n)-uniform

roximated to within O(log(m)) |

O(m?n).

Yy sparse
n time




NON-UNIFORMLY SPARSE
MATRICES

» Uniform sparsity Is very restricted; what can we do

* [rade non-uniformity with approximation accuracy




NON-UNIFORMLY SPARSE
MATRICES

» Uniform sparsity Is very restricted; what can we do

* [rade non-uniformity with approximation accuracy

Theorem 3. |f there are at most log(m) columns with

more than log(n) Is,t
rank In polyno

nen we can approximate the Boolean

mial time to within O(log?(m)).




APPROXIMATING
DOMINATED COVERS

Theorem 4. |f n-by-m 0/ matrix A i1s O(log n)-uniformly
sparse, we can approximate the best dominated k-cover of A
by e/(e-1) In polynomial time.

* Dominated k-cover: The rank is k and if (BoQ); = |,
then A = |
* Has applications e.g. Iin role mining




7

o
9

L

D

[
-

©

| -

-
S

5
225
2

@)

| -

Q.

O

QV]

—k
O

I

14 18 22 26 30

—
-

APPROXIMATING THE RANK
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CONCLUSIONS

» Sparse Boolean matrices have sparse decompositions
* Not true with “normal’” decompositions

» Sparsity helps with computational complexity
* Requires some regularity in sparsity

- Inrtial work; better results to be expected.
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