
Under consideration for publication in Knowledge and Information
Systems

From Sets of Good Redescriptions to
Good Sets of Redescriptions

Janis Kalofolias1, Esther Galbrun2 and Pauli Miettinen1

1Max Planck Institute for Informatics, Saarland Informatics Campus, Germany;
2Inria Nancy – Grand Est, Nancy, France

Abstract. Redescription mining aims at finding pairs of queries over data variables
that describe roughly the same set of observations. These redescriptions can be used to
obtain different views on the same set of entities. So far, redescription mining methods
have aimed at listing all redescriptions supported by the data. Such an approach can
result in many redundant redescriptions and hinder the user’s ability to understand
the overall characteristics of the data.

In this work, we present an approach to identify and remove the redundant re-
descriptions, that is, an approach to move from a set of good redescriptions to a good
set of redescriptions. We measure the redundancy of a redescription using a framework
inspired by the concept of subjective interestingness based on maximum-entropy dis-
tributions as proposed by De Bie in 2011. Redescriptions, however, generate specific
requirements on the framework, and our solution differs significantly from the existing
ones. Notably, our approach can handle disjunctions and conjunctions in the queries,
whereas the existing approaches are limited only to conjunctive queries. Our framework
can also handle data with Boolean, nominal, or real-valued data, possibly containing
missing values, making it applicable to a wide variety of data sets. Our experiments
show that our framework can efficiently reduce the redundancy even on large data sets.

Keywords: Data mining; Redescription mining; Pattern selection; Maximum-entropy;
Subjective interestingness

1. Introduction

Redescription mining is a data mining task that aims at finding alternative
characterisations of (roughly) the same objects. The motivation behind this
is simple and intuitive: if some objects can be described in alternative ways,

Received 16 Mar 2017
Revised 20 Sep 2017
Accepted 26 Nov 2017

2 J. Kalofolias et al

then they form a particularly coherent group. Furthermore, identifying such
alternative descriptions tells us something about the properties appearing in such
synonymous characterisations.

Take for instance the case of areas of the globe, for which records of observed
animal species and also climatic information are available. Areas that host
particular species and share a particular climatic profile form a coherent group,
closely related to the concept of an environmental niche in ecology. As another
example, in medicine, identifying groups of patients who share similar profiles
might help relate genetic traits, disease symptoms, and treatment outcomes. The
same idea can also be of interest in other fields, including ethnography, sociology,
and chemistry.

Like many other data mining tasks, redescription mining is subject to the
issue of pattern explosion, wherein a large number of results are returned by the
mining algorithm—many of them slight variations of one another. As a result,
we face the challenge of identifying an interesting non-redundant subset, worth
further inspection.

The problem we address in this paper is that of pattern selection. Considering
a data set that consists of a pair of matrices over the same objects, and given a
collection of redescriptions that has been mined from this data set, we want to
select a subset of redescriptions that is informative and non-redundant. Note that
we are not introducing any new pattern formalism nor any new algorithm for
mining redescriptions. Instead, we focus on the problem of ranking and filtering
redescriptions in post-processing.

One approach to evaluating the interestingness of patterns, which we adopt
here, is to use them to construct a statistical model of the data. A pattern can
be seen as an observation from the data and can be evaluated against the current
model. If the current model already accounts for the observation, that is, the
pattern does not provide any new information about the data, it is considered
redundant and can be discarded. Otherwise, the pattern is deemed interesting
and is integrated into the model, thereby increasing its quality.

We propose an iterative approach. At each step, the candidate redescriptions
are evaluated against a model that incorporates the current knowledge available
about the data, namely the information contained in the redescriptions selected
so far. Using our proposed score, we can measure the novel information each
candidate redescription contains with respect to the current state. We then rank
these redescriptions and select the most informative one to be incorporated into
the model. Next, the candidate scores are updated to reflect the new model and
we proceed with selecting the best one. This process is iterated until no additional
information can be incorporated into the model, that is, until only redundant
candidate redescriptions are left.

Our modelling techniques rely on the maximum entropy distribution and the
framework of subjective interestingness, as proposed by De Bie (2011). In brief,
we maintain a maximum entropy distribution conditioned on all of the already-
seen redescriptions to model what is already known, and consider redundant all
redescriptions that have a high likelihood under this distribution. We emphasise,
however, that our model differs from that of De Bie (2011) and subsequent work
(e.g. Kontonasios, Vreeken and De Bie, 2013) in significant ways, as the patterns

From Sets of Good Redescriptions to Good Sets of Redescriptions 3

we are studying—namely redescriptions—are more intricate than the patterns
studied in prior work.1

The approach presented here rests on two main lines of work. Redescription
mining on the one hand provides us with a rich pattern language, while on the
other hand maximum entropy modelling provides us with well-grounded selection
principles. We cover the basics of these two fields in Section 2, while general
related work is discussed in Section 6. Our main model is discussed in Section 3,
and is extended to handle missing values in Section 4. We present our algorithms
for calculating the model and ranking the redescriptions in Section 5. An empirical
evaluation is provided in Section 7.

2. Background

In this section, we give the basic definitions of redescription mining and maximum
entropy modelling. Further information on redescription mining can be found,
for instance, from the work of Galbrun and Miettinen (2018); maximum entropy
modelling, especially as applicable to data analysis, is discussed by De Bie (2011).

2.1. Redescription mining

In the formulation of redescription mining considered here, the input data consist
of entities with two sets of characterising variables, thus forming a data set with
two sides. We generally refer to these two sides as the left- and right-hand sides,
and represent them using two matrices DL and DR, respectively. The columns
of these matrices correspond to the sets of variables VL and VR. The domains
of the variables are denoted by VL and VR, respectively, and they can be either
continuous or discrete. The rows of the matrices correspond to the entities. The
set of entities characterised by the two sides is denoted by E, and so both matrices
have |E| rows. The value of D(i, j) is the value of variable vj ∈ V for entity
di ∈ E.

Truth assignments are then defined over the variables by requiring them to
take values within a subset of their domain. We denote these truth assignments
using the notation [a ≤ v ≤ b], except for Boolean variables where the truth
assignment [v = True] is denoted simply as v. These truth assignments and their
negations can be combined into logical statements using the Boolean operators ∧
(and) and ∨ (or).

The output of redescription mining consists of a collection of query pairs, the
redescriptions, of the form R = (qL, qR), where the queries qL and qR are logical
statements over the variables in DL and DR, respectively.

For instance, the following pair of queries

qL = greater white-toothed shrew ∧ Egyptian mongoose

qR =
(
[15.6 ≤ t−8 ≤ 19] ∧ [1.62 ≤ p8 ≤ 7.44] ∧ [66.2 ≤ p12 ≤ 137]

)
∨ [13.9 ≤ t∼3 ≤ 14.3]

constitutes a redescription. This redescription was extracted from the Bio data

1 The present work is an extended version of our earlier conference publication (Kalofolias,
Galbrun and Miettinen, 2016).

4 J. Kalofolias et al

set, which we use in our experiments. This data set comes from the ecological
domain and characterises geographic areas in terms of the fauna that inhabits
them and of their climatic profile. More details about this data set can be found
in Section 7. The left-hand side query is a simple conjunction of Boolean variables
and states that both the greater white-toothed shrew and the Egyptian mongoose
are present. The right-hand side query is more complex and requires the values
of the temperatures of March (t∼3) and August (t−8) as well as the precipitation
of August (p8) and December (p12) to take value within the specified ranges.

This query language, combining Boolean and numerical variables into con-
junctions and disjunctions, is at once rich enough to capture patterns that are
more expressive than purely Boolean conjunctions, but still constrained enough
that the queries remain interpretable and that we are able to devise algorithms
to find them. Since we aim to evaluate the interestingness of the patterns by
using them to build a statistical model of the data, we need to design a modelling
approach that is able to accommodate this expressive query language. In other
words, we need a flexible approach with strong modelling power.

The support of a query q is the subset of entities for which the query holds
true, that is, supp(q) = {di : q is true for di ∈ D}. The support of a redescription
R is the set of entities that satisfy both logical statements supp(R) = supp(qL)∩
supp(qR). The set of variables over which q is expressed is denoted as vars(q).

In essence, a redescription provides alternative characterisations for a set of
entities; the similarity of the support of the queries that constitute it is therefore
a core property of a redescription, which we refer to as its accuracy. Following the
established practice in the redescription mining literature (see, e.g. Ramakrishnan,
Kumar, Mishra, Potts and Helm, 2004; Parida and Ramakrishnan, 2005; Galbrun
and Miettinen, 2012a; Zinchenko, Galbrun and Miettinen, 2015; Mihelčić and
Šmuc, 2016; Galbrun and Miettinen, 2018), we measure the accuracy using the
Jaccard coefficient: given a redescription R, its accuracy is the Jaccard coefficient
of its support,

J(R) = J(qL, qR) =
|supp(qL) ∩ supp(qR)|
|supp(qL) ∪ supp(qR)| .

Using the Jaccard coefficient to measure the accuracy comes with many known
benefits (see, e.g. Galbrun and Miettinen, 2018). Accuracy, however, is a local
feature of the redescription in that it informs on the quality of an individual
redescription, but does not help in finding a good set of redescriptions. Therefore,
we need to look at the variables and values at play in the logical statements of
the redescriptions. We will use these logical statements to constrain a maximum
entropy distribution over possible data sets, allowing us to evaluate the probability
of observing a certain redescription given those we already know to be present.

Most interesting in a redescription is the association between the two queries,
and the entities that satisfy both of them. For this reason, our main objective here
is to model the conjunction of the two queries that make up a redescription and the
intersection of their supports, that is, the support of the redescription. Henceforth,
we will treat a redescription R = (qL, qR) as the logical statement s = qL ∧ qR,
with its associated support supp(s) = supp(qL)∩ supp(qR) = supp(R), evaluated
over the data set D resulting from the concatenation of DL and DR; similarly,
the variables in VL and VR are pooled together to form V . Thus, our data set
D is a matrix with N = |V | columns and M = |E| rows. At first, we assume

From Sets of Good Redescriptions to Good Sets of Redescriptions 5

that the data set is complete. We will explain how our model can be extended to
handle missing values in Section 4.

Note that our ranking procedure is applied in post-processing, given a set of
redescriptions obtained with a mining algorithm. Our procedure is thus dependent
on the ability of the mining algorithm to return a sufficiently diverse set of
redescriptions, among which our algorithm will then identify the most interesting
and non-redundant ones.

2.2. Maximum entropy modelling

Let P be a set of probability distributions over V. That is, for every p ∈ P
and every x ∈ V, p(x) ≥ 0 and

∫
V p(x) dx = 1. The distribution p ∈ P is the

maximum entropy distribution subject to the constraints {(fc, πc) : c ∈ C} if it is
the solution to the following program:

max
p∈P
−
∫
V
p(x) log p(x) dx (1)

subject to

∫
V
p(x)fc(x) dx = πc for all c ∈ C. (2)

In the framework of this paper, the constraints (fc, πc) encode our current knowl-
edge of the data, obtained from the already-seen redescriptions (see Section 3).
Before presenting our specific model, however, we will briefly discuss the general
approach of finding the maximum-entropy distribution.

The objective function of maximum entropy is strictly concave and continuous.
We can therefore use standard tools from constrained variational optimisation in
order to obtain the solution

pλ(r) =
1

Zλc
exp

(∑
c∈C

λcfc(r)

)
, (3)

where λc are the Lagrange multipliers for the constraints and Zλc is the partition
function

Zλc =

∫
V

exp

(∑
c∈C

λcfc(x)

)
dx . (4)

The role of the latter is to ensure proper normalisation of the distribution pλ.
Under the condition that the constraints of (2) are satisfiable, strong duality

holds, and we can thus compute the Lagrange multipliers λ = (λc)c∈C by solving
the convex dual of the problem in Equations (1) and (2),

min
λc≥0, c∈C

max
p∈P
−
∫
V
p(x) log p(x) dx−

∑
c∈C

λc

(∫
V
p(x)fc(x) dx− πc

)
. (5)

Solving the corresponding Euler–Lagrange equation, the dual objective can be
maximised with respect to p, which yields the new objective of the dual problem

q(λ) = logZλ −
∑
c∈C

λcπc . (6)

The objective q(λ) of the dual problem is convex, which allows for the optimal

6 J. Kalofolias et al

vector of the Lagrange multipliers λ∗ to be computed as the points where the
gradient of q vanishes.

The gradient of q is

∂q

∂λc′
=

1

Zλc

∫
V

exp

(∑
c∈C

λcfc(r)

)
fc′(r) dr − πc′ , (7)

and the points where it vanishes are the ones that satisfy the conditions

Ep [fc(r)] = πc for all c ∈ C , (8)

that is, exactly the constraints that were enforced in the original problem formu-
lation (2).

3. Theory

We now introduce our probabilistic models for the data. First we explain how
to model the values occurring within an arbitrary row while accounting for the
presence of a given set of statements, using the maximum entropy principle. Then
we explain how to represent an entire data set based on this row model, using a
mixture model that comes in two variants.

3.1. Modelling rows

In this section, our aim is to identify the maximum entropy distribution over the
values that a database row may assume while satisfying a set of constraints, each
with a given probability.

In the following, we consider a database row to be an assignment of values
to each variable of the data set. Let r ∈ V be a random vector of such value
assignments, where V = V1× · · · ×VN is the Cartesian product of the domains of
the variables. Further let S be the set of constraints, where each constraint s ∈ S
takes the form of a logical statement, which must be satisfied with a given validity
probability πs ∈ [0, 1]. These statements encode prior knowledge on the specific
row and are assumed to be satisfied by a nonempty set of distributions over V.
Among those distributions, we want to identify the one with maximum entropy
pMROW(r | S), which we will simply denote as pROW(r), when the set of constraints S
and the model M are clear from the context.

Since the constraints are logical statements, we can adapt the derivation of
Section 2.2 by substituting the constraint function of Equation (2) with

fs(r) = χs(r) , (9)

where χs(r) is the characteristic function of statement s, that is, χs(r) = 1 if s
holds true on r and χs(r) = 0 otherwise. As a result, the optimality conditions
of Equation (8) now take the form

EM [χs(r)] = πs for all s ∈ S , (10)

while the solution and partition functions of Equations (3) and (4) become,

From Sets of Good Redescriptions to Good Sets of Redescriptions 7

respectively,

pλ(r) =
1

Zλ
exp

(∑
s∈S

λsχs(r)

)
(11)

and

Zλ =

∫
V

exp

(∑
s∈S

λsχs(r)

)
dr . (12)

In practice, however, although the quantity in the exponent of (11) is trivial
to compute for a given row r, the partition function Zλc is much more complex.
Indeed, the integral of (4) runs over all the possible values that the random
row r may assume. In addition, computing the integral itself is difficult, since
the general formulation of the maximum entropy problem does not accept an
analytical solution, making numerical approximation methods necessary (cf.
Burden and Faires, 2011). Numerical methods are also necessary in computing
the Lagrange multipliers and require multiple evaluations of the value or the
derivatives of the dual objective function of Equation (6). In the rest of this
section we mitigate these issues by exploiting intrinsic properties of our models.

Factorising the distribution. In its general form, the integration in the parti-
tion function (12) runs over the entire domain V . However, each logical statement
s only involves a small subset of variables vars(s) ⊆ V .

This observation allows for a simplification of the computation by aggregating
the statements into groups, such that each group involves as few variables as
possible and can be computed independently. When the variables involved in
computing the statements of a group do not overlap with the variables involved
in another group, we can split the sums within the exponents of Equations (11)
and (12) into corresponding groups.

Formally, we define a partitioning K of the variables in V such that for all
s ∈ S there exists a K ∈ K with vars(s) ⊆ K, and denote by SK = {s ∈ S :
vars(s) ⊆ K} the subset of statements that only contain variables in K. Now the
sets SK form a partitioning of S and we can split the sums over these partitions

exp

(∑
s∈S

λsχs(r)

)
=
∏
K∈K

exp

(∑
s∈SK

λsχs(r)

)
.

The integral in the partition function can similarly be split into a product of
sub-integrals, each over the domain VK of all variables in K. Thus, we obtain

pλ(r) =
∏
K∈K

pλK (r) , (13)

which is a product of sub-probabilities defined over independent subsets of the
original variables

pλK (r) =
1

ZK(λ)
exp

(∑
s∈SK

λsχs(r)

)

ZK(λ) =

∫
VK

exp

(∑
s∈SK

λsχs(x)

)
dx ,

(14)

8 J. Kalofolias et al

vA vB vC vD vE vF

s1

s2

s3

s4

s5K1 K2 K3

vA vB vC vD vE vF

s1

s2

s3

s4

s5

s6s6

K ′
1 K ′

2

s1 = vA
s2 = vB ∧ vC
s3 = vA ∨ vB ∨ vC
s4 = [2<vE]
s5 = [20<vD]∨[2<vE]

s6 = vC ∨¬[vD<30]

vA, vB , vC ∈{0, 1}
vD ∈ [10, 50]
vE ∈ [0, 5]
vF ∈{0, 1}

Figure 1. Clustering of the six data variables vA, . . . , vF of a row model with five
logical statements s1, . . . , s5 (top) and after the addition of a sixth statement s6
(bottom).

and the normalisation can be performed per each ZK(λ) term. To maximise
computational efficiency, we aim for the finest partitioning possible.

Example 1. Consider a data set over six variables, {vA, . . . , vF }, and a collection
of five logical statements over these variables S = {s1, . . . , s5}, as shown in
Figure 1 (right). In this case, the finest partitioning of the variables, so that all
statements are completely contained within one cluster, consists of the 3 groups
K1 = {vA, vB , vC}, K2 = {vD, vE}, and K3 = {vF }, as shown in Figure 1 (top
left). Suppose that at this point the constraint s6 = vC ∨ ¬[vD<30] is added. To
fulfil the containment requirement, we now need to merge K1 and K2, resulting
in the clustering shown in Figure 1 (bottom left).

To further speed-up the computation, we can also perform a re-parametrisation
(or factorisation) of the distribution, for instance, using the Junction Tree algo-
rithm (Jensen and Jensen, 1994).

Quantising the domain. A further source of complexity in Equation (14)
results from integrating over the domain of the variable set. Since the real-valued
variables are constrained through the interval notation, we can quantise these
variables into discrete bins aligned with these intervals, in order to reduce the
integral into an equivalent summation.

We achieve this by consulting the truth table for the statements in S, to group
together the regions of the domain where the same combination of statements are
satisfied. Formally, for an arbitrary ordering s1, . . . , sσ of all statements in S, we
define a truth vector (t1, . . . , tσ) ∈ {0, 1}σ, assigning a value to the truth of each
statement. Each such vector defines a region of the variable domain over which
the truth of each statement matches the respective element of the truth vector

Tt1···tσ = {r ∈ V : χsi(r) = ti for all si ∈ S} .
All these regions together form a partitioning of the domain, denoted as T .
Note that unfeasible truth assignments correspond to empty regions and can be
safely ignored. Using a similar subscript notation, we denote the combinations of
Lagrange multipliers as ζt1···tσ (λ) = λ1 · t1 + · · ·+ λσ · tσ .

From Sets of Good Redescriptions to Good Sets of Redescriptions 9

Table 1. Domain quantisation for the statements {s1, s2, s3} over the Boolean
variables {vA, vB , vC} from K1. Statements truth table (left) and accumulated
terms (right).

vA vB vC χs1 χs2 χs3 Tt

0 0 0 0 0 0 T000
1 0 0 1 0 1 T101
0 1 0 0 0 1 T001
1 1 0 1 0 1 T101
0 0 1 0 0 1 T001
1 0 1 1 0 1 T101
0 1 1 0 1 1 T011
1 1 1 1 1 1 T111

Tt |Tt| ζt

T000 1 0
T001 2 λ3
T011 1 λ2 + λ3
T101 3 λ1 + λ3
T111 1 λ1 + λ2 + λ3

Q1

Q2

Q3

Q4

0
10

5

50

2

20

vE

vD

s4

s5

Figure 2. Regions of the domains of vD and vE .

We can now express Equations (11) and (12) as

pλ(r) =
1

Z(λ)
exp

(
ζτ (r)(λ)

)
, (15)

Z(λ) =
∑
Tt∈T

∫
Tt

exp (ζt(λ)) dx =
∑
Tt∈T

|Tt(λ)| exp (ζt(λ)) , (16)

where τ (r) = (χs1(r), . . . , χsσ (r)) is the truth vector of the statements computed
at the value assignment r.

Example 2. Going back to Example 1, consider the computation of the factor
associated to group K1 = {vA, vB , vC}, involving statements s1, s2 and s3 (see
Figure 1). The truth table of these statements is shown in Table 1 (left). The
terms can be gathered based on the satisfiability of the constraints in the just 5
different combinations of Table 1 (right). The partition function of Equation (16)
can then be written with one term per combination, as

ZK1
(λ) = 1 · eζ000 + 2 · eζ001 + 1 · eζ011 + 3 · eζ101 + 1 · eζ111 .

In this small example, the number of terms has been reduced from 23 = 8 to 5.
As the number of variables rises, this simplification can become more dramatic.

In the more general case involving non-Boolean variables, the boundaries
delimiting the regions of the domain can be easily identified from the thresholds
of the intervals.

Example 3. Consider now the computation of the factor associated to group
K2 = {vD, vE}, involving the statements s4 and s5 of Figure 1, respectively;

10 J. Kalofolias et al

Table 2. Domain quantisation for the statements {s4, s5} over the real-valued
variables {vD, vE} from K2. From statement truths to region probabilities
P (Q) :=

∫
Q
p(x)dx.

Q vD vE χs4 χs5 Tt |Tt| ζt p(x) P (Q)

Q1 [10, 20] [0, 2] 0 0 T00 10 · 2 0 1/40 0.5

Q2 [20, 50] [0, 2] 0 1 T01 30 · 2 λ5 1/(40 · 15) 0.1

Q3 [10, 20] [2, 5] 1 1
}
T11 10 · 3 + 30 · 3 λ4 + λ5 2/(40 · 15)

{
0.1

Q4 [20, 50] [2, 5] 1 1 0.3

we assume satisfiability probabilities πs4 = 0.4 and πs5 = 0.5, and use domains
vD ∈ [10, 50] and vE ∈ [0, 5].

The literals involved are [2<vE] and [20<vD], so the relevant thresholds are
(0, 2, 5) for vE and (10, 20, 50) for vD, respectively. The resulting quantisation
is depicted in Figure 2, where each of the four blocks represents one region of
the domain, denoted as Q1, . . . , Q4. For each region, the satisfiabilities of both
statements are shown in Table 2. This combination determines the partition Tt
to which the region is assigned. The measure |Tt| of a partition is simply the
sum of the areas of the regions it consists of. Using these partitions and the
corresponding combinations of Lagrange multipliers, we can write the partition
function as

ZK2(λ) =

∫
T00

eζ00(λ) dx+

∫
T01

eζ01(λ) dx+

∫
T11

eζ11(λ) dx

= |T00| e0 + |T01| eλ5 + |T11| eλ4+λ5

= 20 + 60 eλ5 + 120 eλ4+λ5 .

From the optimality conditions of Equation (8) it follows that{ (
120 eλ4+λ5

)
/ZK2 = πs4 = 0.4(

60 eλ5 + 120 eλ4+λ5
)
/ZK2

= πs5 = 0.5 ,

which can be solved analytically to obtain eλ
∗
4 = 2, eλ

∗
5 = 1/15, and ZK2

= 40,
giving the probability measure

pλ∗(r) = 1/40 · 2χs4 (r) · 1/15χs5 (r) .

The case of certain satisfiability. A special case which allows the problem
to be simplified consists of sets of statements such that all the statements are
certain (i.e. πs = 1). Indeed, we can show that the maximum entropy distribution
incorporating a set of statements S all with πs = 1 is

p(r) =

{
1/Z if r satisfies all s ∈ S
0 otherwise ,

(17)

where Z = |T1| is the measure of the subset T1, which consists of the regions
where all the statements in S are satisfied.

From Sets of Good Redescriptions to Good Sets of Redescriptions 11

3.2. Modelling a data set

Having presented our row model in Section 3.1, we now proceed to describe the
means to assemble several such row models into a model for an entire data set.
Our database models take as input an original data set D and a collection of
logical statements S mined from this data set.

We consider the data set as consisting of multiple entities, each encoded as a
database row. In the development of our models we assume that these entities
are independent, and therefore the order of the rows within the database can
be disregarded. On the other hand, we do not assume that these entities are
identically distributed and we allow for a different subset of statements to apply
as prior knowledge on different entities. In other words, we allow each entity to
follow a local distribution, that may differ from that of the other entities. Each
of these distributions corresponds to a row model constrained with a particular
subset of statements. Thus, we compute the overall probability for the data set
by combining these local distributions.

Formally, let di be the values observed in the data set D on the i-th row and
ri the corresponding random variable, both taking values over the domain of the
row values V.

We denote as κq the event that a statement q is satisfied on a data row d. One
of our goals is to make a decision about the validity of the event, a decision that

we represent by the function φ̂(q,d). At this point, knowing d deterministically
defines the outcome, which matches the characteristic function of the statement
on d, that is,

φ̂(q,d) = χq(d) . (18)

We denote as Si the subset of statements to be applied to the i-th row model
as constraints (Si ⊂ S). This subset contains those statements from S that are
satisfied on the observed row di, formally defined as

Si :=
{
s ∈ S : φ̂i(s,di) = 1

}
. (19)

Note that this formulation will later allow us to extend inference for the case of
missing values in Section 4, making the usefulness of the φ̂ function more obvious.

Using the row model introduced in the previous section, henceforth denoted
by pROW, the probability of the row values ri can now be defined as

P (ri | D,S) = P (ri | di, S) = pROW(ri | Si) . (20)

Given the row probabilities, we now aim to combine them into a probability over
all possible values of a data set.

A näıve approach that satisfies the assumption that rows follow a local
distribution would be to model the data as a bag-of-rows, resulting in a database
probability that degenerates into a product of row probabilities. However, this
imposes the very strict assumption that all rows are independent and has the
major practical drawback that the final probability depends too much on the
individual probability of each row. Consider, for instance, two queries q1 and q2
with the same validities on all but one row, on which q1 is twice as likely as q2.
Under the bag-of-rows model the data set probability of q1 is double that of q2.

Instead, our models compute the total probability as a weighted average of
the probabilities obtained from the relevant row models. We present two variants
for the overall model, which differ in the entities that are considered relevant for

12 J. Kalofolias et al

computing the overall probability. The first model variant considers all entities in
the data set. In other words, it takes into account all the row models, and we
therefore refer to it as the MEALL model. The second model variant, which we call
the MEBLK model, only considers the entities containing the query statement, that
is, it only takes into account the row models associated to entities that satisfy
the statement being evaluated.

Intuitively, evaluating the occurrence probability of a statement can be thought
of as first selecting a relevant entity, then computing the probability that the
statement occurs on that entity. The entity must be selected with a probability
that reflects its representativity in the data set, which can motivate the use of
a non-uniform entity-selecting distribution in certain cases. For instance, in a
data set where the entities correspond to different geographic areas, recording,
for example, species occurrences or voting outcomes, it might make sense to
weight entities based on the size of the region. Likewise, with entities representing
time spans of varying duration, one might want to select them with probabilities
proportional to the time they span. However, unless more information is available,
the uniform distribution over the relevant entities constitutes an obvious choice of
entity-selecting distribution for this purpose, which we adopt here. This evaluation
procedure can be statistically formalised as a mixture model, where the mixture
coefficient determines the probability of selecting a particular entity and thus
its associated row model. The graphical representation of both MEALL and MEBLK
models is presented in Figure 3 (excluding the elements in blue).

Each of the M plates represents a variable ri depending on S and di through
Si, as explained in Equation (19). The mixing coefficient ρ acts as a prior
probability over the row indices: it formally specifies which row models should be
mixed together to obtain the final distribution over the values of r, a single row
summarising the entire data set. To enforce the selection behaviour r = rρ, the
row selecting function can be expressed as

P (r | r1, . . . , rM , ρ) := δ (r − rρ) , (21)

where δ (·) is the Dirac delta function.2 The row prior ρ is the uniform distribution
over the row indices.

For a fixed row vector r, the satisfiability of a statement q can be asserted
deterministically, and we have

P (κq | q, r) = χq(r) , (22)

where κq is the event that statement q is satisfied by the value assignment r.
Now the posterior distribution of MEALL becomes

P (κq | q,D, S) =

M∑
ρ=1

P (ρ)

∫
V,V1,...,VM

P (r | r1, . . . , rM , ρ)

× P (κq | q, r)×
M∏
i=1

P (ri | D,S) dr dr1 · · · drM , (23)

2 The Dirac delta, which is the continuous equivalent of the Kronecker delta, is a generalised
function that assumes an infinite mass when its argument is zero, in our case effectively ensuring
that only the case of r = rρ is possible.

From Sets of Good Redescriptions to Good Sets of Redescriptions 13

S
(j−1)
i S

(j+1)
i

di

S
(j)
i S

ri

ρ r

κq

q φ̂i
M

Legend

q Query statement
di i-th data set row
S Model constraints
Si i-th row constraints

φ̂i i-th row query statisfiability
ri i-th row model variables
r Row selector/Final distribution
ρ Row prior
κq Query satisfiability

Random variable

Deterministic function
Known parameter
Dependencies in MEBLK only
Dependencies in case

of missing values only

Figure 3. Graphical representation of the extended models MEALL (solid lines)
and MEBLK (all lines). The elements extending the models in the case of missing
values, explained in Section 4, are depicted in blue.

which can be simplified by substituting the specific distributions to

pALL(κq | q,D, S) =
1

M

M∑
i=1

pROW(κq | q, Si) , (24)

with pROW(κq | q, Si) := E [χq(ri) | Si] being the probability that the query state-
ment q is satisfied on row ri.

The quantity in Equation (24) is essentially an average over all the probabilities
assigned by the rows. If we change the row prior distribution to be uniform over
the rows which support the query statement q exclusively,

P (ρ | d1, . . . ,dM , q) :=
φ̂i(q,dρ)∑M
i=1 φ̂i(q,di)

, (25)

we obtain the MEBLK model, represented by the additional dotted dependencies
in Figure 3.

The key difference between our two models, MEALL and MEBLK, lies in the
different subsets of entities considered when evaluating a query statement, which
manifests in the use of a different mixing coefficient ρ.

In concrete terms, MEALL evaluates the probability of the query statement
being satisfied in the data set overall, while MEBLK evaluates the probability of
the query statement being satisfied on the rows where it was observed to hold in
the original data set. As a result, MEALL possesses the potentially useful property
that the occurrence probability of a statement and that of its negation sum to
unity, pALL(κq | q, ·) = 1 − pALL(κ¬q | q, ·), which does not generally hold under
MEBLK. On the other hand, MEBLK offers a more intuitive interpretation of the
satisfiability probability, in accordance with the framework of De Bie (2011). Also,
once a statement has been incorporated into MEBLK, the query probability of that

14 J. Kalofolias et al

same statement is certain. That is, if the query statement has been previously
added to the model, under MEBLK it will be assigned an occurrence probability of
one and deemed unsurprising.

In addition, MEALL is better suited to comparing queries without penalising
support size, while MEBLK favours greater support sizes. As a simple example
illustrating this effect, consider three Boolean conjunctive statements s, q1, and q2
such that supp(q1) > supp(q2) and s is contained into both q1 and q2. Imagine that
s has been previously incorporated into the model and we now want to evaluate
q1 and q2. MEALL assigns the same occurrence probability to both statements,
whereas MEBLK favours the one with the larger support as more surprising.

Finally, MEBLK yields qualitatively better results as well as generally lower
computational complexity, as evidenced by the experiments of Section 7.

4. Handling Missing Values

Data sets are oftentimes incomplete, in the sense that the values for some entries
are indicated as missing. In this section, we explain how our models are extended
to take into account the presence of missing values in the data sets.

First, note that in the case of nominal variables, a naive way to handle missing
values is to consider them as an extra category. By adopting such an approach,
our model as presented so far can already be used to handle missing values.
An obvious downside of this approach, however, is that it cannot be applied to
real-valued variables. Another and more crucial downside is that using a distinct
but deterministic value does not capture the true interpretation of a missing value:
the absence of information. This absence has to be accounted for probabilistically,
reflecting the implied uncertainty. In this section, we explain how we extend our
model to do just that.

4.1. Inferring statement satisfiability

A key component of computing the model of Section 3.2 is the ability to evaluate
the satisfiability of a statement on a specific row of the data set. For rows
containing no missing values, the probability of this event equals the characteristic
function of the statement, as stated in Equation (22). If, however, a row in the
database contains entries with missing values, this is no longer true. Instead, a
verdict can only be made probabilistically, using the known part as observations
and inferring the missing one from the beliefs dictated by the model.

Recall that d denotes the N -dimensional vector containing the values of a
data set row. Some entries in this vector might be missing, and it is helpful
to distinguish the missing values from the known ones. Hence, we overload the
notation and let d = (dk, rµ), where dk is the vector of values for the known
variables and rµ is the random variable that corresponds to the missing values.
In other words, if we use µ ⊆ {1, . . . , N} to index the variables whose value is
missing, we have rµ = (ri)i∈µ taking values in the domain Vµ =

Ś

i∈µ Vi.
In this section, we are interested in the event that a given statement q is

satisfied on a random row r sampled according to probability pM, in the presence
of evidence from a database row d. We denote this event as κq, and write the

From Sets of Good Redescriptions to Good Sets of Redescriptions 15

associated probability as

P (κq | q,d,M) = EM [χq(r) | d] = EM [χq(rµ) | dk]

=

∫
Vµ
χq((dk, rµ)) pM((dk, rµ)) drµ ,

(26)

where from now on we omit the implied dependency on the model M.
Note that the probability is conditioned on both the model and the statement

to emphasise that we are only interested in whether or not the statement holds
true, rather than in the model prior or the choice of the statement itself.

In the case of fully known data d = (dk, ∅), as expected, this probability
simplifies into the characteristic function

P (κq | q,d) = χq(dk) . (27)

Using Equation (17), the probability density assigned to r can be written as

pM(r) =
1

Z

∏
s∈S

χs(r), (28)

where the product runs over the characteristic functions χs(r) of all constraint
statements that are embedded in the model. Then, to compute the satisfiability
probability of statement q over row d = (dk, rµ), we take the expectation over
the random part rµ. Expressing the model probability as per Equation (28) yields

P (κq | q,d) =
1

Z

∫
Vµ
χq((dk, rµ))

∏
s∈S

χs((dk, rµ)) drµ . (29)

As in Section 3.1, we can use domain quantisation to compute the integrals in
Equation (29) more efficiently. In other words, we exploit the fact that the state-
ments in S ∪ {q} partition the domain into regions within which the probabilistic
density is constant.

Given the statements in S and a row (dk, rµ), we consider the regions of the
domain V that at once contain the known values dk and satisfy the statements
in S. We denote the size of these regions by wS((dk, rµ)). Notice that wS∪{q}(·)
bounds both wS(·) and w{q}(·) from below. We can now rewrite Equation (29) as

P (κq | q,d) =
1

Z
wS∪{q}(dk) . (30)

Example 4. Consider the two real-valued variables vD and vE from our previous
examples, with domains respectively [10, 50] and [0, 5]. Assume that the current
model contains the single constraint statement s = [vD < 20]∨ [3 < vE]. Our task
is to assess the probability that the query statement q = [30 < vD] ∨ [3 < vE] is
satisfied on the data value combinations x1, x2, and x3 listed on the right-hand
side of Figure 4. Each value combination consists of a pair of values, one for
vD and one for vE , respectively, with ∅ denoting a missing value. The resulting
domain partitions are shown on Figure 4.

When computing the satisfiability probability for fully known value combina-
tions only one region per combination needs to be considered: the region where
the corresponding data point lies. Hence, for the complete data value x1 we only
need to consult region Q4. For the data value x2, the set of regions {Q1, Q2, Q3}

16 J. Kalofolias et al

vE

vD

q

s
Q1

Q2

Q3

Q4

Q5

Q6

10

20

30

50

0 3 5
x2

x1

s = [vD < 20] ∨ [3 < vE]
q = [30 < vD] ∨ [3 < vE]

x1 x2 x3

(15, 4) (∅, 1) (∅,∅)

w{s}(x) 30 30 110
w{q}(x) 20 60 140
w{s,q}(x) 20 0 80

Figure 4. Partitions of the variable domains and region sizes for three different
value combinations; s and q are the constraint and query statements respectively.

must be consulted. Since both of its entries are missing, the entire domain must
be consulted, when computing the satisfiability probability of x3.

4.2. Selecting constraining statements

The presence of missing values introduces uncertainty when evaluating whether a
statement holds on particular data row, and therefore we need to redefine the

decision function φ̂. In fact, we can no longer use the characteristic functions to
select the subset of statements that constrain the model associated to a given
data row, as in Equations (18) and (19).

Instead, for each data set row di and its associated set of constraining state-
ments Si, we decide whether statement s or its complement is satisfied on the
row depending which of these two events is more likely. Then, if the statement is
more likely to be satisfied than its complement, we embed it in the row model,
associated to a certain probability πs = 1. Essentially, selecting the model con-
straints in this way corresponds to employing the maximum likelihood criterion
in order to decide between the complementary events “s is satisfied on di” and
“¬ s is satisfied on di”.

To avoid dependency on the partition function Z, we base the decision on the
likelihood ratio between the occurrence of the statement and the occurrence of
its complement, defined as

lr(s,di, Si) :=
P (κs | s,di, Si)
P (κ¬ s | s,di, Si)

=
wSi∪{s}(di)

wS(di)− wSi∪{s}(di)
, (31)

where the last equality uses the formula for the probabilities introduced in
Equation (30), as well as the fact that P (κs | s,di, Si) = 1− P (κ¬ s | s,di, Si).

Finally, we define φ̂ to be the function that returns a hard decision based on
the likelihoods ratio between the events κs and ¬κs,

φ̂(s,di, Si) :=

{
1 if lr(s,di, Si) > 1, and

0 otherwise ,
(32)

From Sets of Good Redescriptions to Good Sets of Redescriptions 17

which we use as a replacement for the characteristic function χs(d) for selecting
the constraining statements.

Notice that the model is built by incorporating statements iteratively. Hence,
when considering whether to embed a statement s, the decision relies on the
likelihood ratio computed based on the statements previously added into the
model. To reflect this, we consider the set of constraints to be ordered, making it

effectively a sequence S = (s1, . . . , sn). Let us denote S
(j)
i the set of constraints

applied on the i-th row at stage j. It can be defined recursively as follows

S
(0)
i := ∅ ,

S
(j+1)
i :=

{
S
(j)
i ∪ {sj} if φ̂(sj ,di, S

(j)
i) = 1 and

S
(j)
i otherwise ,

because a constraint’s satisfiability probability can only increase once the con-
straint has been added to the model.

The extended models are depicted in the graphical model of Figure 3 (including
the elements in blue).

5. Algorithms

The models described in Section 3 can be used for different tasks, such as
generating synthetic data sets and ranking patterns. We focus on the latter, which
in turn involves two main operations: (i) training the model by incorporating new
information in the form of patterns and (ii) querying the model, i.e. evaluating the
satisfiability probability for a pattern. In this section, we present the algorithmic
procedures for carrying out these two main operations in practice.

Recall that the patterns considered here consist of logical statements (re-
descriptions) and their supporting rows.

5.1. Training the model

As explained in the previous section, our models are mixtures of row models.
Each of the row models is maintained in a factorised form where different factors
involve disjoint sets of variables that do not interact in any statements, so as to
allow independent computations. In addition, any given factor is shared by only
a subset of the row models.

Our models are maintained as a set of factors F . Each factor f contains a set
of statements Sf and applies to a subset of rows If . Accordingly, it is represented
as the pair f = (Sf , If). Overloading the notation, we denote by vars(f) the set
of data variables associated with f , that is, vars(f) =

⋃
s∈Sf vars(s). For any

given factor f , vars(f) and If define a tile in the data set, and

Ji = {f ∈ F : vars(f) ∩ vars(s) 6= ∅, i ∈ If} (33)

is the set of all factors which overlap with a statement s and contain row i in their
tile. Note that factor tiles do not overlap, due to the way they are constructed.
For any given statement s, vars(s) and supp(s) also define a tile in the data set.

Training the model entails incrementally incorporating new statements into
it. At each step, the task of the main training procedure is to update the model

18 J. Kalofolias et al

Algorithm 1: TrainModel
input :model F , new statement s
output : updated model F

1 J ← {Ji : i ∈ supp(s)} ; // See Equation (33)
2 foreach J ∈ J do
3 IJ ←

⋂
f∈J If ; // Collect cluster rows

4 F ← F ∪
{(
{s} ∪

⋃
f∈J Sf , IJ

)}
; // Add new factor

5 foreach f ∈ J do // Update overlapping factors
6 If ← If \ IJ ; // Update rows
7 if If 6= ∅ then
8 F ← F \ ∪{f}; // Delete

9 return F ;

f1

f2

s

vars(s)

su
p
p
(s
)

vars(f1) vars(f2)

I1

I2

N

M

f1

fm3

fm2

fm1

fn

Figure 5. From two existing factors and a new statement (left) to the updated
model containing five factors (right).

factors to incorporate the newly appended statement, while preventing factors
from overlapping, so that their independence is preserved.

The pseudo-code for this procedure, TrainModel, is presented in Algo-
rithm 1, and works as follows. When adding a new statement s to the model,
we form the collection J of the sets of existing factors that overlap with s as
per Equation (33) (line 1). Then, for each cluster J we create a new factor and
add it to the model (line 4). The new factor applies exactly to the rows of the
cluster (line 3) and contains all statements from the existing overlapping factors,
in addition to s. We also update the set of rows to which the existing overlapping
factors apply (line 6), deleting the factor altogether if it no longer applies to any
row (line 8).

In the example shown in Figure 5, the model contains two factors, f1 and f2.
A new statement s is to be added, triggering the creation of several new factors.
The factors fm1

, fm3
and fm2

are created by merging the rows where s overlaps
respectively with f1, with f2, and with both, while factor fn is created for the
rows that did not overlap with either (corresponding in Algorithm 1 to the case
of an empty row cluster J = ∅). The updated f1 remains, although it now covers
fewer rows, whereas f2 has been deleted.

Note that the type of the domain of the variables only affects TrainModel
implicitly, through the satisfiability assessment χs(·) of the newly appended
statement s over the data set rows.

From Sets of Good Redescriptions to Good Sets of Redescriptions 19

Algorithm 2: QueryModelRow
input :model F , statement s
output : probability pROW(s | D;F)

1 Fs ← {f ∈ F : vars(f) ∩ vars(s) 6= ∅};
2 (w,v)← Quantisation(s,Fs);
3 Zs ←

∑
iwi;

4 p ← (v ⊗w)/Zs ; // ⊗ is the element-wise product
5 p ←MarginaliseAndNormalise(s,Fs,p);
6 return p;

5.2. Querying the model

We now turn to the procedure that allows us to query a model. That is, given
a model that has been trained as explained above, the original data set and
a pattern extracted from the data set, the aim is to evaluate the satisfiability
probability of the pattern.

The main building block in computing this probability is the evaluation of the
satisfiability probabilities over single rows, essentially the probabilities predicted
by the row models.

Querying a row model. Each row model is parameterised by the subsets of
statements that occur on the corresponding data row. The satisfiability prob-
ability pROW(s | D;F) of a statement for a given row model is computed by
QueryModelRow as shown in Algorithm 2 and works as follows.

At first, we collect in Fs the factors of the model that share variables with
statement s. Next, the domain of the variables can be partitioned into regions over
which the value of the characteristic function of s is constant, by syntactically
parsing the statement and collecting all the involved thresholds (cf. Section 3.1).
Since, by construction, the value of the characteristic function of s is the same in
all points of a region, we can compactly represent the result of this quantisation by
a pair of vectors (w,v), where wi measures the area of region i, and vi indicates
whether s is satisfied on that region (line 2). Using this information, we are able
to compute the probabilities for the different regions satisfying the statement
(lines 3–4). Finally, the probability of each region of the domain is appropriately
re-weighted with respect to the different factors in Fs (line 5). More specifically,
the statement s together with the subset Fs form a Junction Tree (Barber, 2012),
and we may therefore employ the Message Passing steps of the Junction tree
algorithm to efficiently re-scale the initial probabilities. In this way, the effect of
each overlapping factor is taken into account, while the corresponding constraints
are respected, to finally yield the probability of statement s.

Note that the complexity of the querying procedure is dominated by the
computation of the partition function (lines 2–3) and is exponential with respect
to the number of variables involved. This computation yields vectors w and v
of size exponential with respect to the number of variables appearing in the
model F and statement s. Indeed, in the case of Boolean variables, the problem
of computing the partition function Zs (line 3) can be trivially reduced to the
#SAT problem (counting the number of satisfying assignments of a Boolean
expression) and vice-versa. Since the latter is a known #P-complete problem, so
is the former. Additionally, Boolean variables constitute a subset of the query
language that we support, so our problem is at least #P-hard. Furthermore, it

20 J. Kalofolias et al

Algorithm 3: RankPatterns
input : data set D, set of statements S with selected statement s0
output : ordered list of statements O

1 F ← TrainModel(∅, s0);
2 O ← (s0);S ← S \ {s0};
3 while S 6= ∅ do
4 s∗ ← s ∈ S, minimising QueryModel(F , D, s);
5 F ← TrainModel(F , s∗);
6 O ← (O, s∗);
7 S ← S \ {s∗};
8 return O;

can be shown that querying the maximum entropy probability of a statement is
PP-hard (Tatti, 2006), even for queries without disjunctions, so that in general,
approximations of the partition function are also intractable. Interestingly, while
an exact evaluation would still need an exponential evaluation time, the partition
function could be approximated more efficiently in the case of largely uneven
quantisations of the variable domains. Such an approximation scheme could
evaluate the validity on the domain partitions, starting from the largest ones
and progressively tightening an upper and lower bound on the partition function
value, until a sufficiently tight interval is obtained.

Putting the rows together. Now that we know how to compute the proba-
bilities for individual rows, we need to combine them together. The two models,
MEBLK and MEALL, offer two alternatives for doing so. The overall probability
returned by MEALL is simply the average of pROW(s | D;Fi) over all rows i in the
data set, while MEBLK only averages over rows that satisfy the statement under
evaluation, that is, over supp(s).

5.3. A ranking scheme

Combining the two main operations of training and evaluation explained above,
the procedure for ranking patterns is presented in Algorithm 3.

This procedure takes as input a data set and a collection of statements, with
one of them designated to initialise the model training (line 1). This method then
iteratively constructs a ranking of all the statements. In each step, the model is
queried to identify the statement with lowest predicted probability (line 4), which
is essentially the statement whose observation is most surprising at that point.
This statement is incorporated into the model (line 5), appended to the list of
results and removed from the set of candidates (lines 6 and 7). The procedure
iterates until all statements have been ranked.

6. Related Work

Redescription mining. Redescription mining was introduced by Ramakrishnan
et al. (2004) for Boolean data. Later, Zaki and Ramakrishnan (2005) and Parida
and Ramakrishnan (2005) further developed the theory of Boolean redescription
mining, Galbrun and Miettinen (2012a) extended it to real-valued data, and
Galbrun and Kimmig (2014) studied redescription mining in relational data.

From Sets of Good Redescriptions to Good Sets of Redescriptions 21

Various algorithms have been proposed for mining the redescriptions. These
can be divided into methods based on decision-tree induction (Ramakrishnan
et al., 2004; Zinchenko et al., 2015) and methods that grow the queries using a
greedy heuristic (Gallo, Miettinen and Mannila, 2008; Galbrun and Miettinen,
2012a) (see also Galbrun and Miettinen, 2018). In addition, some methods have
also been proposed to visualise and interact with the redescriptions (Galbrun
and Miettinen, 2012b; Galbrun and Miettinen, 2014; Mihelčić and Šmuc, 2016)

Redescription mining is related to rule mining techniques that aim at discov-
ering association rules (Agrawal and Srikant, 1994) or subgroups (Novak, Lavrač
and Webb, 2009), for instance, and to classification and clustering techniques
including subspace clustering (Kröger and Zimek, 2009; Agrawal, Gehrke, Gunop-
ulos and Raghavan, 1998) and multi-view clustering (Bickel and Scheffer, 2004),
among others. However, its goal of finding descriptive, interpretable patterns
across several data sets is a distinguishing feature.

Maximum entropy models. The maximum entropy principle, formalised by
Jaynes (2003) and based on his earlier work (Jaynes, 1982), states that the
distribution that has the maximum entropy, subject to given constraints, does
not add any bias beyond what is assumed in these constraints.

It is a versatile principle which has been applied from ecological modelling
(Phillips, Anderson and Schapire, 2006) to natural language processing (Berger,
Pietra and Pietra, 1996), and has been used to construct a condensed repre-
sentation of the data set to be used for query approximation (Mannila, Pavlov
and Smyth, 1999; Pavlov, Mannila and Smyth, 2003) or to compute degrees of
belief (Grove, Halpern and Koller, 1992), to name but a few examples.

De Bie (2011) proposed to use maximum entropy models to evaluate the
subjective interestingness of patterns and in the present work we follow his general
idea. In another line of work, Tatti and Vreeken (2011) proposed an approach based
on maximum entropy and Kullback–Leibler divergence for comparing sets of noisy
tiles mined from Boolean data sets and a maximum entropy model to iteratively
discover biclusters over multiple related data sets was later presented (Wu,
Vreeken, Tatti and Ramakrishnan, 2014).

Related modelling approaches include the use of Markov Random Fields (Wang
and Parthasarathy, 2006) and the minimum description length (MDL) princi-
ple (Vreeken and van Leeuwen, 2011; van Leeuwen and Galbrun, 2015), but do
not offer a similar flexibility and modelling power to accommodate an expressive
query language.

Similarly to most existing approaches (Jaroszewicz and Simovici, 2002; Tatti,
2008), we apply ranking and filtering as a post-processing, meaning that we
require as an input a collection of candidate patterns. Mampaey, Vreeken and
Tatti (2012) proposed a method for finding interesting itemsets which mines
candidates on the fly.

Pattern-based maximum entropy models. De Bie (2011) proposed a maxi-
mum entropy model to identify interesting tiles in Boolean data sets while taking
into account assumptions on the expected row and column sums, that is, with
prior information given as the parameters of the Rasch model (Rasch, 1960).
Kontonasios, Vreeken and De Bie (2011) extended this approach to real val-
ued data, with prior information taking the form of means, variances and his-
tograms for the rows and columns. An iterative ranking scheme (Kontonasios
et al., 2013), like ours, was then derived from this static model, which was also

22 J. Kalofolias et al

further extended to increasingly complex priors and pattern types (Kontonasios
and De Bie, 2012; Kontonasios and De Bie, 2015).

Concurrently, Mampaey, Tatti and Vreeken (2011) presented a maximum
entropy model, named MTV, for iteratively mining interesting itemsets from a
Boolean data set, using as prior knowledge the frequencies of individual items.

The most obvious difference between these models is on the type of prior
information and patterns that they handle. Some of these works (e.g. De Bie,
2011; Mampaey et al., 2011) are limited to binary tiles (or itemsets). These can
be represented as monotone, conjunctive Boolean queries, and comprise only a
subset of the patterns we can handle.

The method of Kontonasios et al. (2011) handles numerical data, like ours,
but it deals with tile-like blocks. That is, their patterns are defined by specifying
row and column indices, then looking at the distribution of values. Our patterns,
redescriptions, are instead defined by specifying value ranges for some variables,
then selecting the rows which satisfy these conditions. Our domain quantisation
approach shares similarities with the maintenance of tiles histograms. We start
with a coarse histogram and progressively adjust the bins based on the thresholds
appearing in the predicates of the constraining statements.

To the best of our knowledge, we are the first to deal with arbitrary logical
patterns, including disjunctions and negations, beyond the typical conjunctions.

A further distinction is between approaches which model rows of the data set
individually (Tatti, 2008; Mampaey et al., 2011; Mampaey et al., 2012) versus
those which consider the data set as a whole (De Bie, 2011). The MTV model
corresponds to a special case of our row model (see Section 3.1) for non-certain
validities. We enforce each pattern on the relevant subset of entities of the data set,
whereas in their model all patterns are applied on the same, single row. In other
words, they assume that the entities of the data set are identically distributed.
In this respect, our approach is similar to that of De Bie (2011), which assumes
that the distribution of tiles might differ from one another.

Another important difference with the MTV model is that we do not incorporate
the absence of a pattern as information into either of our models. This is one
more reason why the information contained in our models deviates from simple
pattern frequencies.

Despite the similarities between our models and the original model of De
Bie (2011), there is no straightforward way to compare them. In particular, De
Bie (2011) employs an information-content criterion that cannot be transferred
to the case of redescriptions, like other works in the literature (Kontonasios
et al., 2011; Kontonasios et al., 2013). The numerical extension of the last two
models are also further unsuitable as competitors, since they cannot handle the
requirements on value ranges specified in the predicates of redescriptions.

7. Experimental Evaluation

In this section, we present experiments to investigate the behaviour and perfor-
mance of our algorithms and compare our two models MEALL and MEBLK.

We implemented our algorithm3 using MATLAB for the high level procedures
and C++ for the core operations. All experiments were run on a cluster with 16

3 The source code is available at http://siren.mpi-inf.mpg.de/max-ent/.

http://siren.mpi-inf.mpg.de/max-ent/

From Sets of Good Redescriptions to Good Sets of Redescriptions 23

cores (at 2.4 GHz and with 48 GB of memory). The sets of redescriptions for the
real-world data were mined in advance using the ReReMi algorithm (Galbrun
and Miettinen, 2012a) in the Siren redescription mining interface4 (Galbrun and
Miettinen, 2012b; Galbrun and Miettinen, 2014).

Among existing redescription mining algorithms, we selected the ReReMi
algorithm (Galbrun and Miettinen, 2012a). This choice is motivated by several
properties of this algorithm: (i) it offers a rich query language that provides hard
instances for the maximum-entropy calculations, (ii) it can handle missing values,
(iii) it is rather susceptible to redundancy in the result set.

We proceed with a series of experiments on synthetic data sets, before moving
on to real-world data.

7.1. Evaluation on synthetic data sets

Our goal in this series of experiments with synthetic data sets is to shed light
on the different aspects that impact the complexity of the computations in a
controlled experimental setting. Our focus here is on the quantitative evaluation of
the performance of the algorithms and our primary measure in these experiments
is therefore the wall-clock time for training and querying the model.

Note, however, that our objective here is not to present a highly efficient and
fully optimised algorithm, but to demonstrate the feasibility of the approach.
The evaluation on synthetic data is therefore designed to compare empirically
the impact of the various aspects of the data and the queries on the runtimes.

We start by considering the simplest case of a model trained with a single
Boolean statement and queried with another Boolean statement. That is, we first
train the model with statement st, then query the trained model to evaluate the
occurrence probability of statement sq.

We call width of a statement the number of distinct variables it contains,
that is, width(st) = |vars(st)|, while the overlap between two statements is
simply the number of variables they have in common, that is, over(st, sq) =
|vars(st) ∩ vars(sq)|. We can fully control these parameters by using logical con-
junctions and choosing suitable sets of variables for our statements.

Our base case is as follows. We let st = vA ∧ vB ∧ vC and sq = vB ∧ vC ∧ vD,
so that width(st) = width(sq) = 3 and over(st, sq) = 2. We fix the number of
rows in our data set to M = 1000, of which 70% satisfy both st and sq while the
rest are evenly distributed over the remaining 3 truth combinations.

Starting from this base case, we can study the impact of different parameters
in turn, by repeating the training and querying of our model while varying a
chosen parameter of the problem. For each configuration, we record the total
runtimes for training and querying. The results are reported in Figure 6. The
markers and the error bars indicate respectively the mean runtimes and twice
the standard deviation for 10 repetitions of each configuration.

The first parameter we consider is the number of rows in the data set (Fig-
ure 6a), and the second parameter is the number of query evaluations, that is,
we train the model once with st, before repeatedly querying it with the same
statement sq (Figure 6b). In both cases, the behaviour of both models is linear.

Next, we study the impact of the shape of the statements by fixing the width

4 http://siren.gforge.inria.fr, accessed 13 December 2017

http://siren.gforge.inria.fr

24 J. Kalofolias et al

0 0.5 1

·104

2.6

2.8

3

·10−2

M

T
im

e
(s
)

0 5 10
0

0.1

0.2

query evaluations

5 10 15 20
10−2

10−1

100

width(sX)

dashed lines: X = t
solid lines: X = q

(a) Nb. of data set rows. (b) Multiple evaluations. (c) Width of statements.

0 5 10
0

0.1

0.2

|vars(st) ∩ vars(sq)|

T
im

e
(s
)

0 0.5 1

1

2

3

4

·10−2

J(st, sq)

MEBLK
MEALL

(d) Variables overlap. (e) Support overlap.

0 5 10

0.2

0.22

0.24

0.26

0.28

Statement constraints

T
im

e
(s
)

0 5 10
0

0.5

1

1.5

2

Statement constraints

0 5 10

10−2

100

102

Statement constraints

(f) Nb. of row clusters: (g) Nb. of row clusters: (h) Nb. of row clusters:

constant. linear growth. exponential growth.

Figure 6. Experimental results on synthetic data sets: runtimes for training and
querying averaged over 10 repetitions. The width of the error bars equals twice
the standard deviation.

of one statement to 3, while increasing that of the other, always keeping their
overlap constant. The models show the same exponential increase of time in both
cases (Figure 6c). Indeed, in both cases factors of equal sizes need to be evaluated.

Let us now study the impact of interactions between the statements, in terms
of shared variables and of shared rows. The impact of varying variable overlap,
as measured by over(st, sq), with constant widths width(st) = width(sq) = 11, is

From Sets of Good Redescriptions to Good Sets of Redescriptions 25

shown in Figure 6d. On the other hand, the impact of varying row overlap, as
measured by J(st, sq), is shown in Figure 6e. The latter shows further evidence
that the number of different value combinations matters, rather than the number
of rows in the overlap. Indeed, since the algorithm processes rows clustered
according to the combination of factors they participate in, the number of such
clusters in the data set has a major impact on the runtimes.

To further investigate the complexity arising from the structure of the data
set through the number of clusters it induces, we modify our setup as follows.
Starting with an empty model, in each iteration i we add a different statement si
and then query the updated model with the same statement sq. All statements are
defined over 10 Boolean variables. The query statement is a simple conjunction
sq = v1 ∧ . . . ∧ v10, whereas the training statement added at the i-th iteration

has the form si = vi ∧
((∨

k 6=i vk
)
∨ ¬
(∨

k 6=i vk
))
. The training statements si all

have width(si) = 10 and over(si, sq) = 10, but have all distinct truth tables.

Next, we create 3 different data sets, each with M = 1024 rows. The first one
only contains rows from {0,1}, that is, with all of their values equal, so that at
most 2 clusters will be created, regardless of the number of training statements
added to the model. The second data set contains rows from the standard basis
{ek : k = 1, . . . , 10}, so that the number of clusters increases by one with each
added training statement. Finally, the third data set contains rows with all the
possible Boolean combinations of the 10 variables, so that the number of clusters
grows exponentially, reaching 2i at the i-th iteration and thus representing the
worst case scenario.

The runtimes for each iteration on these three data sets are reported in
Figures 6f–h, respectively. We observe that the runtime for the MEALL model
closely follows the number of clusters, since they all have to be evaluated. On
the other hand, the MEBLK model only evaluates the clusters that support sq.
The small additional overhead for the MEBLK model in the last case is due to the
training phase, which still needs to track all clusters.

Finally, we look at the impact of the presence of missing values on the runtime.
As a starting point, we use a subset of the DBLP data set, a fully Boolean
data set which we present in more details in Section 7.2. We generate synthetic
variants with different densities of missing values by deleting some entries at
random. More specifically, we select a fraction α of the rows from the data set
then replace a fraction β of the values on these rows by the missing value token.
We mined redescriptions from the complete data set and let our models rank
these redescriptions with each data set variant. The runtimes for ranking 20
queries while keeping α = 1, that is, spreading the missing values over the entire
data set, but for different values of β, that is, varying the ratio of deleted values,
is shown in Figure 7 (left). Vice-versa, in Figure 7 (right) we fixed the ratio of
deleted values but vary the ratio of rows affected. Note that the cases where
α = 0 or β = 0 correspond to using the complete data set.

We observe that the presence of missing values results in longer runs with
MEALL. As the amount missing values increases, the runtime decreases, but never
reaches the runtimes on the complete data. The effect on MEBLK is similar, in the
sense that more missing values result in shorter runs, but without the initial cost
of having any missing entries at all.

26 J. Kalofolias et al

α = 1 β = 0.25

5 10 15 20

0

20

40

60

80

β = 0.01

β = 0.01

β = 0.05

β = 0.05

β = 0.1

β = 0.1

β = 0.25

β = 0.25

β = 0.5

β = 0.5

β = 0

β = 0

MEBLK

MEALL

Iteration

T
im

e
(s
)

5 10 15 20

0

20

40

60

80

α = 0.1

α = 0.1

α = 0.25

α = 0.25

α = 0.5

α = 0.5

α = 0.75

α = 0.75

α = 1

α = 1

MEBLK

MEALL α = 0

α = 0

Iteration

Figure 7. Runtimes for ranking 20 queries from a data set with various levels of
missing values.

7.2. Evaluation on real-world data sets

After this systematic investigation of the performance of our algorithms and
models on synthetic data sets, we now present results from real-world data for a
qualitative assessment.

Our goal with these experiments is to show that the approach is applicable to
real-world data and that the proposed approach provides added value, in the sense
that the rankings obtained with this advanced mechanism cannot be matched
with some straightforward ranking criterion, such as accuracy or coverage.

We first provide quantitative evidence that the obtained rankings differ from
those obtained with other methods. Then, we show top ranked redescriptions
from real-world examples; these serve as subjective evidence that the selected
redescriptions indeed provide a more nuanced representation, as well as a better
insight into the data than, for instance, simply considering the most accurate
redescriptions.

Data sets. We use four data sets, coming from four different domains and having
different properties, in terms of their sizes and of the types of variables they
involve.

First, the DBLP data set is extracted from the popular computer science
bibliography.5 The entities are researchers and one side records major conferences
where they published, while the other side records the co-authorship graph
(|E| = 2345, |VL| = 19, and |VR| = 2345; both sides are Boolean).

Our second data set, Bio, comes from the domain of ecology. The entities
represent geographic areas of Europe, the left-hand side records the presence of
various mammals species (Mitchell-Jones et al., 1999), while the right-hand side
consists of bioclimatic variables, that is, monthly average rainfall and monthly
average, minimum, and maximum temperatures (Hijmans, Cameron, Parra, Jones
and Jarvis, 2005) (|E| = 2575, |VL| = 194, and |VR| = 48; the species records are
Boolean and the climate variables real-valued).

Our third data set, Cover,6 also comes from the domain of ecology. The entities

5 http://www.informatik.uni-trier.de/~ley/db/, accessed 13 December 2017
6 https://archive.ics.uci.edu/ml/datasets/Covertype, accessed 13 December 2017

http://www.informatik.uni-trier.de/~ley/db/
https://archive.ics.uci.edu/ml/datasets/Covertype

From Sets of Good Redescriptions to Good Sets of Redescriptions 27

0 5 10 15 20 25 30 35 40
10−3

10−2

10−1

100

101

102

Iteration

T
im

e
(s
)

DBLP Bio Cover

Figure 8. Experimental results on real world data sets: mean runtime per query
for MEALL (solid lines) and MEBLK (dashed lines).

represent geographic areas of a national forest in Colorado, USA. The wilderness
area, soil type, and cover type constitute the right-hand side variables, while
other, topographic variables, such as elevation and slope, are on the left-hand
side (|E| = 581012, |VL| = 10, and |VR| = 45; all variables on the right are
Boolean except for the cover type which is nominal, and all those on the left are
real-valued).

Finally, we consider a fourth data set, which contains missing values. The
EthnoAtlas data set combines ethnographic information about the cultural norms
and practices of various societies around the world, assembled from several
sources (Murdock, 1967; Gray, 1999) and made available online,7 with the climatic
profile of the regions where they live (|E| = 1267, |VL| = 90, and |VR| = 23; all
variables on the right are real-valued except for the major habitat type which is
nominal). We use different variants of this data set, one where the ethnographic
variables are considered as real-valued variables and one where they are considered
as nominal, that is, consisting of unordered values. We obtain further variants
with different amounts of missing values by disregarding variables that contain
more than 50 (|VL| = 75) and more than 25 (|VL| = 49) percent of missing values
respectively. We use indices R and N to denote the real-valued and nominal
variants, respectively, combined, when relevant, with indices .5 and .25 for the
variants with fewer missing values.

Runtimes. The RankPatterns algorithm was run to rank sets of redescriptions
of size |S| = 100, 60, and 230, extracted from DBLP, Bio, and Cover, respectively.
For each data set, Figure 8 depicts the average time required to query the
occurrence probability for each of the remaining candidate redescriptions, during
each iteration of the ranking algorithm, ignoring the negligible time required for
training the model.

These plots show steep rises in the query times that correspond to iterations
where the last training redescription overlaps with the largest factor in the model,

7 http://intersci.ss.uci.edu/wiki/index.php/Ethnographic_Atlas#Rdata_format_
version_of_Ethnographic_Atlas, accessed 13 December 2017

http://intersci.ss.uci.edu/wiki/index.php/Ethnographic_Atlas#Rdata_format_version_of_Ethnographic_Atlas
http://intersci.ss.uci.edu/wiki/index.php/Ethnographic_Atlas#Rdata_format_version_of_Ethnographic_Atlas

28 J. Kalofolias et al

Table 3. Ranking conjunctive redescriptions from DBLP with MEALL, MEBLK, and
MTV. Step 4.

MEALL MEBLK
qL qR p(R) p(R)

COLT∧ ICML R. Schapire — —
EDBT∧PODS A. Silberschatz — —
FOCS∧ SODA N.Alon — —
ICDM∧ SDM P.Yu — —
VLDB∧ ICDT H.Garcia-Molina .1250 .1250
ICDT∧ SIGMOD S.Abiteboul .1250 .1250
UAI∧ ICML D.Koller .1259 .1484
SDM∧KDD J.Han .1261 .2083
ICDT∧PODS S.Abiteboul .1265 .1331
COLT∧ ICML M.Kearns .1277 .2500
COLT∧ ICML A.Blum .1277 .2054
SDM∧KDD P.Yu .1284 .4674
ICDM∧ SDM H.Wang .1284 .4250
PKDD∧ SDM P.Yu .1284 .3977
FOCS∧COLT Y.Mansour .1292 .1667
COLT∧ ICML R. Schapire .1313 1.

MTV
qL qR p(R)

(10−2)COLT∧ ICML R. Schapire —
ICDM∧ SDM H.Wang —
PKDD∧ SDM P.Yu —
UAI∧ ICML D.Koller —
SDM∧KDD J.Han .0243
COLT∧ ICML M.Kearns .0253
COLT∧ ICML A.Blum .0506
ICDT∧PODS S.Abiteboul .0521
EDBT∧PODS A. Silberschatz .0733
FOCS∧COLT Y.Mansour .0897
ICDT∧ SIGMOD S.Abiteboul .0982
SDM∧KDD P.Yu .1079
VLDB∧ ICDT H.Garcia-Molina .1194
ICDM∧ SDM P.Yu .1210
FOCS∧ SODA N.Alon .3209
COLT∧ ICML R. Schapire .7251

which must therefore be extended. As explained in Section 3, our algorithms use
factorisation and quantisation to reduce the computational cost of evaluating
occurrence probabilities. For this reason, the runtime complexity is dominated
by the size of the largest factor in terms of value combinations, which may grow
arbitrarily large as the degree of overlap increases. This effect is exacerbated in
the case of real-valued variables due to the quantisation becoming finer following
some model updates.

Fortunately, statements involving variables that have occurred in earlier
selected statements are typically assigned higher probabilities. This means that
such overlapping redescriptions are generally deemed uninteresting and pushed
lower in the ranking, with the beneficial consequence of delaying the formation
of larger factors to later iterations of the algorithm.

Comparison to the MTV model. In this section we compare the ranking ob-
tained with our models to the ranking obtained with the model of Mampaey et al.
(2011), denoted as MTV.

The MTV algorithm originally mines interesting itemsets. In this comparison,
we consider only the DBLP data set, which is fully Boolean, and focus on the
subset of redescriptions that consist purely of conjunctions, to accommodate
the more restricted pattern language of MTV. Furthermore, we bypassed the tile
mining scheme proposed by the authors, using the model to rank the collection
of pre-mined redescriptions.

The rankings produced by our models and by MTV after the first four redescrip-
tions have been ranked are shown in Table 3, together with the probabilities
assigned at that stage to the remaining redescriptions.

All three models are initialised by first incorporating the most accurate
redescription. Note that up to the stage shown here, the top redescriptions
selected by MEALL and MEBLK are identical, but the probabilities assigned to
the remaining redrescriptions differ. In particular, the duplicate of the first
redescription is assigned a probability of 1 by MEBLK, but a probability of 0.1313
by MEALL. Still, it is considered uninteresting under all models.

Overall, the MTV model assigns much lower probabilities than our models and
its updates tend to be more conservative. Note that the MTV model takes into

From Sets of Good Redescriptions to Good Sets of Redescriptions 29

Table 4. Average accuracy ratio between testing and training sets for the top
ranked redescriptions versus the rest.

Data set Model J ratio top J ratio rest

DBLP MEBLK 0.733 (42 values) 0.707 (425 values)
DBLP MEALL 0.733 (42 values) 0.707 (425 values)

Bio MEBLK 0.839 (37 values) 0.910 (403 values)
Bio MEALL 0.819 (33 values) 0.911 (407 values)

account the frequencies of individual variables as prior information, allowing
to build rankings in a more informed manner than our models where ties are
broken based on accuracy. Incorporating such information into our model is an
interesting avenue for future work.

We observe that our models tend to strongly push down redescriptions that
share variables with previously selected redescriptions, MEBLK even more so than
MEALL, so that similar redescriptions are ranked far away from each other. This
behaviour is desirable since as soon as one redescription is reported, interest on
similar ones quickly drops. As a result, redescriptions ranked at the top by our
models clearly constitute a more diverse set than those selected by MTV. Indeed,
the first four redescriptions selected by our models cover the fields of machine
learning, databases, theoretical computer science, and data mining, respectively,
compared to only machine learning and data mining for MTV.

Ability to generalise. Next, we consider the ability of the redescriptions to
generalise. More specifically, we study whether the redescriptions that are ranked
as the most interesting by our models behave differently in terms of their ability to
generalise as compared to lower ranked ones. To this aim, we follow the procedure
introduced by Zinchenko et al. (2015). That is, we split the entities of the data
set into five subsets, mine redescriptions while holding out one subset, then assess
the accuracy of the obtained redescriptions on the full original data set. For the
DBLP data set, entities were split at random between training set and hold-out
set. For Bio, we sampled longitudinal stripes, so as to take into account the
north–south trends in climate data. For each redescription, we compute the ratio
between its accuracy in the training set and overall.

The reason why we consider the accuracy in the overall data rather than
only in the hold-out set is that, in contrast to the models validated in a typical
cross-fold setup, our redescriptions constitute local models of the data. More
specifically, the accuracy of a redescription only considers the entities that are in
the supports of either of the queries. If none of the entities in the hold-out set is
included in either of the supports, the redescription’s accuracy in the hold-out
set is undefined.

Here, our aim is not to evaluate whether the models hold everywhere but,
instead, where they hold, whether they do so with varying accuracies. Table 4
shows the average of this ratio for redescriptions ranked among the top 10 % as
compared to the rest of the redescriptions, for both data sets and both models.
The ability to generalise of the top ranked redescriptions appears to be very
similar to that of the rest of the redescriptions, meaning that selecting the top-
ranked redescriptions per our model does not harm the ability of the results to
generalise and that the rank of a redescription is not directly related to its ability
to generalise.

30 J. Kalofolias et al

DBLP Cover Bio

0 5 10

0

0.5

1

cov

J MEALL MEBLK

Iteration

C
o
v
e
ra

g
e
ra

ti
o

0 5 10

0

0.5

1

cov

J MEALL
MEBLK

Iteration

0 5 10

0

0.5

1

cov

J

MEALL

MEBLK

Iteration

EthnoAtlasR.25 EthnoAtlasR.5 EthnoAtlasR

0 5 10

0

0.5

1 cov

J

MEALL

MEBLK

Iteration

C
o
v
e
ra

g
e
ra

ti
o

0 5 10

0

0.5

1
cov

J

MEALL

MEBLK

Iteration

0 5 10

0

0.5

1 cov

J

MEALL

MEBLK

Iteration

EthnoAtlasN.25 EthnoAtlasN.5 EthnoAtlasN

0 5 10

0

0.5

1
cov

J

MEALLMEBLK

Iteration

C
o
v
e
ra

g
e
ra

ti
o

0 5 10

0

0.5

1

cov

J
MEALL

MEBLK

Iteration

0 5 10

0

0.5

1 cov

J

MEALL
MEBLK

Iteration

Figure 9. Cumulative ratio of entities covered by the redescriptions when selected
according to various rankings.

Coverage. In this experiment, we compare the rankings obtained with our
models to other methods for ranking the redescriptions. More precisely, we look
at how the set of entities is covered by the top redescriptions when picked
according to different rankings, as a means to assess how similar these rankings
are.

Figure 9 shows the cumulative ratio of entities that are covered by the ten first
redescriptions for each ranking. Beside the rankings obtained with our MEALL and
MEBLK models, we consider two further rankings. First, we rank the redescriptions
in order of decreasing accuracy, denoted by J in Figure 9. Second, we rank the
redescriptions by selecting at each step the redescription that covers the most
currently uncovered entities. Clearly, this latter ranking provides the upper-bound
for the achievable coverage, and it is denoted by the grey shading in Figure 9.

One further criterion for ranking would be the p-values computed for each
redescription, indicating how likely it would be that two independent queries
with the observed marginals have as large an intersection as the redescription

From Sets of Good Redescriptions to Good Sets of Redescriptions 31

Table 5. Ranking DBLP with MEBLK. Steps 0, 1, 6 and 7.
qL qR J(R)

SDM P.Yu ∨ V.Kumar .198
SDM P.Yu ∨ V.Kumar .198
COLT∧ ICML R. Schapire .175
COLT∧ ICML R. Schapire .175
COLT P.Bartlett∨ M.Kearns .173
COLT P.Bartlett ∨ A.Blum .172
SDM J.Han ∨ V.Kumar .166
ICDT R.Miller∨S.Abiteboul .164
SDM V.Kumar ∨ H.Wang .164
COLT C. Smith ∨ Y.Mansour .162

qL qR p(R)

SDM P.Yu ∨ V.Kumar —
EDBT ∧ PODS A. Silberschatz .125
FOCS ∧ SODA N.Alon .125
UAI ∧ ICML D.Koller .125
COLT ∧ ICML R. Schapire .125
COLT ∧ ICML M.Kearns .125
COLT ∧ ICML R. Schapire .125
ICDT ∧ PODS S.Abiteboul .125
VLDB ∧ ICDT H.Garcia-Molina .125
COLT ∧ ICML A.Blum .125

qL qR p(R)

SDM P.Yu ∨ V.Kumar —
EDBT ∧ PODS A. Silberschatz —
FOCS ∧ SODA N.Alon —
UAI ∧ ICML D.Koller —
VLDB ∧ ICDT H.Garcia-Molina —
COLT ∧ ICML M.Kearns .133
COLT ∧ ICML A.Blum .134
FOCS ∧ COLT Y.Mansour .143
COLT ∧ ICML R. Schapire .147
COLT ∧ ICML R. Schapire .147

qL qR p(R)

SDM P.Yu ∨ V.Kumar —
EDBT ∧ PODS A. Silberschatz —
FOCS ∧ SODA N.Alon —
UAI ∧ ICML D.Koller —
VLDB ∧ ICDT H.Garcia-Molina —
COLT ∧ ICML M.Kearns —
ICDT∧SIGMOD S.Abiteboul .153
ICDT ∧ PODS S.Abiteboul .153
FOCS ∧ COLT Y.Mansour .161
SDM ∧KDD J.Han .215

support. However, this is not useful in practice, due to the fact that most of these
p-values are essentially zero by construction.

We observe that MEALL either yields a clearly better coverage than MEBLK
or is on par with it. When it comes to comparing our models to ordering the
redescriptions by accuracy, the best coverage depends very much on which
data set and what number of redescriptions we consider. This shows that the
surprisingness does not reduce to coverage. On first thought, one might guess
that the most surprising redescription per our models is the one that covers most
of the not-yet-covered observations, but as these results show, that is not the
case.

This experiment clearly shows that the rankings obtained with our approach
are not equivalent to using a straightforward criterion such as accuracy or coverage.

Example rankings. Finally, we turn to a more qualitative assessment of our
proposed ranking procedure.

Our first example illustrates the iterative ranking process on the DBLP data
set, showing the evolution of the top-ranked redescriptions over a few steps in
Table 5.

Using the ReReMi algorithm, we mined redescriptions from this data set,
which were then sorted by accuracy and fed to the ranking algorithm. In the
first step, the top redescription is added to the model, the probabilities for the
other redescriptions are computed and the list is sorted by increasing occurrence
probability, since higher probabilities are associated to less surprising and thus
less interesting redescriptions. The second redescription is then added to the
model, the probabilities recomputed and the ranking updated. The iterations
continue until the entire list has been processed.

Table 5 shows how the redundant redescriptions are pushed away from the top
of the list. For example, after adding the first redescription, all other redescriptions
with SDM on the left-hand side are pushed out of the table. Notice, however, that
some overlap is possible, if the redescriptions are otherwise surprising enough:

32 J. Kalofolias et al

Table 6. Redescriptions from Bio ranked by accuracy.
qL qR

(1) polar bear [−7.07 ≤ t∼5 ≤ − 3.38]
(2) polar bear [−16.7 ≤ t∼3 ≤ − 11.5]

(3) polar bear [−4.5 ≤ t+10≤ − 1]

(4) polar bear [1 ≤ t+9 ≤ 3.5]

(5) polar bear [−9.6 ≤ t+4 ≤ − 5.6]

(6) polar bear [−11.9 ≤ t+3 ≤ − 7.3]

(7) b. vole ∨ n. r. vole
∨ s.mouse ∨ h. seal

[10.9 ≤ t+8 ≤ 29.9] ∧ [−9.2 ≤ t+12≤ 12.8]
∧[34.7 ≤p6] ∧ [47.6 ≤p8]

(8) w.mouse
(
([2.9 ≤ t+3] ∨ [9.7 ≤ t+7 ≤ 13.2])

∧ [−3.26 ≤ t∼11≤ 15.9]
)
∨ [5.81 ≤ t∼6 ≤ 5.88]

(9) w.mouse ∨ h. seal ∨ A. noctule [−0.8 ≤ t+2]∧ [−0.141 ≤ t∼10≤ 19.6]∧ [26.6 ≤p4]

for example, in the 7-th step, ICML appears in the right-hand side of two
redescriptions that have already been included in the model.

In this example, the redescriptions typically represent fields of computer
sciences, by associating major conferences and key researchers from these fields.
Three fields are represented among the most accurate redescriptions (Step 0,
Table 5 top left), namely (i) data mining, with for instance the SIAM International
Conference on Data Mining (SDM) and researchers including Phillip S. Yu and
Jiawei Han, (ii) databases, with the International Conference on Database Theory
(IDBT), Renée J. Miller and Serge Abiteboul, as well as (iii) machine learning,
with the International Conference on Machine Learning (ICML), the Conference
on Learning Theory (COLT), and Robert E. Shapire. Redescriptions selected
by our ranking procedure (Step 7, Table 5 bottom right) better represent the
diversity of fields in computer science. At the same time, they often combine
several conferences to delimit more specific subfields.

Next, we consider redescriptions mined from the Bio data set. In Table 6 we
show the top of the list of redescriptions, sorted by accuracy, which were fed to
the ranking procedure. The top of the output list is shown in Table 7.

In this example, the redescriptions characterise geographic areas based on the
mammals species that inhabit them on one hand (qL) and based on the climatic
profile, on the other hand (qR). More specifically, the right-hand side variables
contain the minimum, maximum, and average monthly temperatures, and total
monthly precipitations at the different locations. For instance, variables t∼5 , t+10,
p8 denote the average temperature of May, the maximum temperature of October,
and the precipitation of August, respectively.

When ranking the redescriptions by accuracy, we note that the first six all
characterise the habitat of the polar bear in terms of temperature. While the
conditions are different, with the first climate query fixing the range of the average
temperature in May, the second fixing the range of the average temperature in
March, and so on, they all impose a similar requirement: low temperatures. Hence,
while very accurate, those redescriptions are also highly redundant, and of limited
interest when taken together. Instead, the top redescriptions selected by our
algorithm exhibit a much greater diversity, involving various species and climate
conditions and having support of different sizes spreading over various geographic
areas. While they are optimal neither in terms of accuracy nor in terms of entity
coverage, these redescriptions are still of fairly high quality when considered
individually, while they form a set of good quality when considered together.

From Sets of Good Redescriptions to Good Sets of Redescriptions 33

Table 7. Redescriptions from Bio ranked with MEALL.
qL qR

(1) polar bear [−7.07 ≤ t∼5 ≤ − 3.38]

(2) g. w. shrew ∧ E.mongoose ([15.6 ≤ t−8 ≤ 19] ∧ [1.62 ≤p8≤ 7.44]
∧ [66.2 ≤p12≤ 137]) ∨ [13.9 ≤ t∼3 ≤ 14.3]

(3) w.mouse ∧ N. bat ∧ E. p. shrew ([3.2 ≤ t+3 ≤ 14.5] ∧ [17.3 ≤ t+8 ≤ 25.2]

∧ [14.9 ≤ t+9 ≤ 22.8]) ∨ [19.6 ≤ t∼7 ≤ 19.9]

(4) wolverine ([7.2 ≤ t+9 ≤ 11.7] ∧ [−11. ≤ t∼3 ≤ − 5.37]
∧ [63.1 ≤p7≤ 106]) ∨ [−3.43 ≤ t∼11≤ − 3.34]

(5) h.mouse ∧ E.mole [−0.3 ≤ t−4 ≤ 8.7] ∧ [19.4 ≤ t+8 ≤ 27.2]
∧ [45.4 ≤p6] ∧ [48.8 ≤p8≤ 126]

(6) w. lemming
(
([−4.3 ≤ t+11≤ 1.6] ∧ [3.29 ≤ t∼5 ≤ 9.75])

∨ [−6.8 ≤ t−3 ≤ − 6.8]
)
∧ [21.9 ≤p3≤ 72.2]

(7) N. lemming
(
([−21.8 ≤ t−2 ≤ − 8.7] ∧ [12.5 ≤ t+8 ≤ 16.6])
∨ [5.41 ≤ t∼5 ≤ 5.43]) ∧ [59 ≤p8≤ 166]

(8) E. p. vole ∨ R.muntjac [−0.8 ≤ t+2 ≤ 9] ∧ [10.9 ≤ t+4 ≤ 17.5]

∧ [17.7 ≤ t+9 ≤ 24.4] ∧ [43.3 ≤p7]
(9) L. shrew

(
([−9.7 ≤ t+2 ≤ − 4.7] ∨ [4.44 ≤ t∼10≤ 4.52])

∧ [41.7 ≤p6≤ 68.3]
)
∨ [−4.39 ≤ t∼12≤ − 4.32]

8. Conclusions

Thus far, redescription mining was mostly focused on the problem of finding
good redescriptions, ignoring the more global problem of finding a good set of
redescriptions. In this work, we have approached this latter problem from the
point of view of maximum-entropy distributions: a redescription is non-redundant
if and only if it has a low likelihood under the maximum-entropy distribution,
conditioned on the redescriptions seen previously. Thus, our approach fits into
the general framework of subjective interestingness as proposed by De Bie (2011).

Working with redescriptions comes with its own challenges, though. Most
notably, restricting redescriptions only to conjunctive queries – as is (implicitly)
done in the existing work on subjective interestingness – severely limits the
usability of the approach, and hence we extended our maximum-entropy model
to handle also disjunctive queries. Many real-world data sets contain missing
values, and our model can also handle them.

Another significant difference with the existing line of work on subjective
interestingness is that we do not enforce any a priori conditions on the data
(such as row and column marginals). With heterogeneous variable types (some
variables are Boolean, others nominal, and yet others real-valued), these kinds of
a priori conditions become less intuitive. Incorporating them to our model is also
not straightforward, and we leave it as a topic for future work.

One potential extension of the current model is to take the amount of missing
values into account: an observation with more missing values should be less
trustworthy than a more completely observed one. In our model, this could be
achieved via the row prior ρ, but a proper use of this approach would require us
to know the model for the missing values (e.g. whether they appear uniformly or
in bursts).

Finally, another natural direction for future work is to develop methods that
can directly mine the most surprising redescription given the current model;
the work presented in this paper can only be applied as a post-processing step.
Designing a scalable method for directly mining the most surprising redescriptions
is not straightforward. For example, it not clear how to effectively employ the

34 J. Kalofolias et al

quantisation and partition approaches presented in this work when one has to
consider arbitrary statements.

References

Agrawal, R., Gehrke, J., Gunopulos, D. and Raghavan, P. (1998), ‘Automatic Subspace Cluster-
ing of High Dimensional Data for Data Mining Applications’, SIGMOD Record 27(2), 94–105.

Agrawal, R. and Srikant, R. (1994), Fast Algorithms for Mining Association Rules in Large
Databases, in ‘Proceedings of 20th International Conference on Very Large Data Bases
(VLDB’94)’, pp. 487–499.

Barber, D. (2012), Bayesian Reasoning and Machine Learning, Cambridge University Press.
Berger, A. L., Pietra, V. J. D. and Pietra, S. A. D. (1996), ‘A Maximum Entropy Approach to

Natural Language Processing’, Computational Linguistics 22(1), 39–71.
Bickel, S. and Scheffer, T. (2004), Multi-View Clustering, in ‘Proceedings of the 4th IEEE

International Conference on Data Mining (ICDM’04)’, pp. 19–26.
Burden, R. L. and Faires, J. D. (2011), Numerical Analysis, 9 edn, Brooks/Cole.
De Bie, T. (2011), ‘Maximum Entropy Models and Subjective Interestingness: An Application

to Tiles in Binary Databases’, Data Mining and Knowledge Discovery 23(3), 407–446.
Galbrun, E. and Kimmig, A. (2014), ‘Finding Relational Redescriptions’, Machine Learning

96(3), 225–248.
Galbrun, E. and Miettinen, P. (2012a), ‘From Black and White to Full Color: Extending

Redescription Mining Outside the Boolean World’, Statistical Analysis and Data Mining
5(4), 284–303.

Galbrun, E. and Miettinen, P. (2012b), Siren: An interactive tool for mining and visualiz-
ing geospatial redescriptions, in ‘Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’12)’, pp. 1544–1547.

Galbrun, E. and Miettinen, P. (2014), Interactive Redescription Mining, in ‘Proceedings of the
2016 International Conference on Management of Data (SIGMOD’14)’, pp. 1079–1082.

Galbrun, E. and Miettinen, P. (2018), Redescription Mining, Springer, Cham.
Gallo, A., Miettinen, P. and Mannila, H. (2008), Finding Subgroups having Several Descrip-

tions: Algorithms for Redescription Mining, in ‘Proceedings of the 8th SIAM International
Conference on Data Mining (SDM’08)’, pp. 334–345.

Gray, J. P. (1999), ‘A corrected ethnographic atlas’, World Cultures 10(1), 24–85.
Grove, A. J., Halpern, J. Y. and Koller, D. (1992), Random worlds and maximum entropy, in

‘Proceedings of the 7th Annual IEEE Symposium on Logic in Computer Science (LICS’92)’,
pp. 22–33.

Hijmans, R. J., Cameron, S. E., Parra, L. J., Jones, P. G. and Jarvis, A. (2005), ‘Very High
Resolution Interpolated Climate Surfaces for Global Land Areas’, International Journal of
Climatology 25, 1965–1978.

Jaroszewicz, S. and Simovici, D. A. (2002), Pruning Redundant Association Rules using
Maximum Entropy Principle, in ‘Proceedings of the 6th Pacific-Asia Conference on Advances
in Knowledge Discovery and Data Mining (PAKDD’02)’, pp. 135–147.

Jaynes, E. (1982), ‘On the rationale of maximum-entropy methods’, Proceedings of the IEEE
70(9), 939–952.

Jaynes, E. T. (2003), ‘Probability Theory: The Logic of Science’, Cambridge university press
10, 33.

Jensen, F. V. and Jensen, F. (1994), Optimal Junction Trees, in ‘Proceedings of the 10th
Annual Conference on Uncertainty in Artificial Intelligence (UAI’94)’, pp. 360–366.

Kalofolias, J., Galbrun, E. and Miettinen, P. (2016), From Sets of Good Redescriptions to Good
Sets of Redescriptions, in ‘Proceedings of the 16th IEEE International Conference on Data
Mining (ICDM’16)’, pp. 211–220.

Kontonasios, K.-N. and De Bie, T. (2012), Formalizing Complex Prior Information to Quantify
Subjective Interestingness of Frequent Pattern Sets, in ‘Proceedings of the 11th International
Symposium on Advances in Intelligent Data Analysis (IDA’12)’, pp. 161–171.

Kontonasios, K.-N. and De Bie, T. (2015), ‘Subjectively interesting alternative clusterings’,
Machine Learning 98(1-2), 31–56.

Kontonasios, K.-N., Vreeken, J. and De Bie, T. (2011), Maximum Entropy Modelling for
Assessing Results on Real-Valued Data, in ‘Proceedings of the 11th IEEE International
Conference on Data Mining (ICDM’1)’, pp. 350–359.

From Sets of Good Redescriptions to Good Sets of Redescriptions 35

Kontonasios, K.-N., Vreeken, J. and De Bie, T. (2013), Maximum Entropy Models for Iteratively
Identifying Subjectively Interesting Structure in Real-Valued Data, in ‘Proceedings of the
2013 European Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML-PKDD’13)’, pp. 256–271.

Kröger, P. and Zimek, A. (2009), Subspace Clustering Techniques, in L. Liu and M. T. Özsu,
eds, ‘Encyclopedia of Database Systems’, Springer, pp. 2873–2875.

Mampaey, M., Tatti, N. and Vreeken, J. (2011), Tell Me What I Need To Know: Succinctly
Summarizing Data with Itemsets, in ‘Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’11)’, pp. 573–581.

Mampaey, M., Vreeken, J. and Tatti, N. (2012), ‘Summarizing Data Succinctly with the Most
Informative Itemsets’, ACM Transactions on Knowledge Discovery from Data 6(4), 16:1–
16:42.

Mannila, H., Pavlov, D. and Smyth, P. (1999), Prediction with Local Patterns Using Cross-
entropy, in ‘Proceedings of the 5th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’99)’, pp. 357–361.

Mihelčić, M. and Šmuc, T. (2016), InterSet: Interactive Redescription Set Exploration, in
‘Proceedings of the 19th International Conference on Discovery Science (DS’16)’, pp. 35–50.

Mitchell-Jones, A. J. et al. (1999), The Atlas of European Mammals, Academic Press.

Murdock, G. P. (1967), ‘Ethnographic atlas: a summary’, Ethnology 6(2), 109–236.

Novak, P. K., Lavrač, N. and Webb, G. I. (2009), ‘Supervised Descriptive Rule Discovery: A
Unifying Survey of Contrast Set, Emerging Pattern and Subgroup Mining’, The Journal of
Machine Learning Research 10, 377–403.

Parida, L. and Ramakrishnan, N. (2005), Redescription Mining: Structure Theory and Algo-
rithms, in ‘Proceedings of the 20th National Conference on Artificial Intelligence and the
7th Innovative Applications of Artificial Intelligence Conference (AAAI’05)’, pp. 837–844.

Pavlov, D., Mannila, H. and Smyth, P. (2003), ‘Beyond independence: Probabilistic models for
query approximation on binary transaction data’, IEEE Transactions on Knowledge and
Data Engineering 15(6), 1409–1421.

Phillips, S. J., Anderson, R. P. and Schapire, R. E. (2006), ‘Maximum Entropy Modeling of
Species Geographic Distributions’, Ecological Modelling 190(3), 231–259.

Ramakrishnan, N., Kumar, D., Mishra, B., Potts, M. and Helm, R. F. (2004), Turning
CARTwheels: an Alternating Algorithm for Mining Redescriptions, in ‘Proceedings of
the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’04)’, pp. 266–275.

Rasch, G. (1960), ‘Probabilistic models for some intelligence and achievement tests’, Copenhagen:
Danish Institute for Educational Research .

Tatti, N. (2006), ‘Computational complexity of queries based on itemsets’, Information Pro-
cessing Letters 98(5), 183–187.

Tatti, N. (2008), ‘Maximum entropy based significance of itemsets’, Knowledge and Information
Systems 17(1), 57–77.

Tatti, N. and Vreeken, J. (2011), Comparing apples and oranges, in ‘Joint European Conference
on Machine Learning and Knowledge Discovery in Databases’, Springer, pp. 398–413.

van Leeuwen, M. and Galbrun, E. (2015), ‘Association discovery in two-view data’, IEEE
Transactions on Knowledge and Data Engineering 27(12), 3190–3202.

Vreeken, J. and van Leeuwen, M. (2011), ‘KRIMP: Mining itemsets that compress’, Data Mining
and Knowledge Discovery 23(1), 169–214.

Wang, C. and Parthasarathy, S. (2006), Summarizing Itemset Patterns Using Probabilistic
Models, in ‘Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’06)’, pp. 730–735.

Wu, H., Vreeken, J., Tatti, N. and Ramakrishnan, N. (2014), ‘Uncovering the plot: detecting
surprising coalitions of entities in multi-relational schemas’, Data Mining and Knowledge
Discovery 28(5-6), 1398–1428.

Zaki, M. J. and Ramakrishnan, N. (2005), Reasoning About Sets Using Redescription Mining, in
‘Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’05)’, pp. 364–373.

Zinchenko, T., Galbrun, E. and Miettinen, P. (2015), Mining predictive redescriptions with
trees, in ‘IEEE International Conference on Data Mining Workshops’, pp. 1672–1675.

36 J. Kalofolias et al

Author Biographies

Janis Kalofolias received his Diploma of Engineering from the Uni-
versity of Patras, Greece, and his Master’s degree from Saarland Uni-
versity, Germany. He is currently a PhD student at Saarland University.
He is interested in exploring the theoretical foundations underlying the
Exploration of Data, to propose exact, efficient methods. His recent
work includes a study on the problem of Subgroup Discovery from a
fairness perspective.

Esther Galbrun is a junior research scientist at Inria Nancy–Grand
Est, France. She obtained her PhD in 2014 from the Computer Science
department at the University of Helsinki, Finland, on the topic of
redescription mining.

Pauli Miettinen is a senior researcher and head of the area Data
Mining at the Databases and Information Systems department of
the Max-Planck Institute for Informatics, Germany. He is also an
Adjunct Professor (docent) of computer science at the University of
Helsinki, Finland, where he previously worked in Prof. Heikki Mannila’s
group, and received his PhD in 2009. His main research interest is in
Algorithmic Data Analysis. In particular, he has been working on matrix
decompositions over non-standard algebras and their applications to
data mining and on redescription mining. He is an author of numerous

articles published in top data mining venues. Three of his articles have won best paper awards.
He is an action editor of Data Mining and Knowledge Discovery and regularly serves in the
program committees of leading data mining conferences.

Correspondence and offprint requests to: Janis Kalofolias, Max Planck Institute for Informatics,

Saarland Informatics Campus, Germany. Email: kalofolias@mpi-inf.mpg.de

	Introduction
	Background
	Redescription mining
	Maximum entropy modelling

	Theory
	Modelling rows
	Modelling a data set

	Handling Missing Values
	Inferring statement satisfiability
	Selecting constraining statements

	Algorithms
	Training the model
	Querying the model
	A ranking scheme

	Related Work
	Experimental Evaluation
	Evaluation on synthetic data sets
	Evaluation on real-world data sets

	Conclusions
	References

