
Capricorn: An Algorithm for Subtropical Matrix Factorization

Sanjar Karaev∗ Pauli Miettinen∗

Abstract Max-times algebra, sometimes known as subtropical
algebra, is a semi-ring over the nonnegative real numbers where
the addition operation is the max function and the multiplication is
the standard one. Factorizing a nonnegative matrix over the max-
times algebra, instead of the standard (nonnegative) one, allows us
to find structures and regularities that cannot be easily expressed
in the standard algebra. In this paper we study the problem of
decomposing matrices over the max-times algebra; in particular,
we present our algorithm, Capricorn, to find such decompositions.
Experimental evaluation shows that Capricorn finds the max-times
structure from data reliably, and furthermore, also identifies areas
where it cannot find any structure.

Keywords: tropical algebra; matrix factorization

1 Introduction
Summarising data using a set of patterns, or regularities,
found from it is among the primary tasks of data mining.
The type of patterns used and how they are combined
dictates the kind of insights a data analyst can get from the
summarisation. Matrix factorizations are one of the most
common techniques for doing the summarisation, expressing
the data matrix as a sum of rank-1 matrices, and revealing
linear dependencies between the data values; the venerable
Singular Value Decomposition (SVD) being perhaps the
best-known factorization. But if we want to find another
type of structure, say, where every rank-1 matrix contributes
something positive to the sum, we should use another kind
of decomposition – in this case, the non-negative matrix
factorization (NMF). Clearly, the kind of structure NMF finds
is not, in general, similar to what SVD finds.

Another, and arguably less common, way of changing
the structure we are after is to alter the summation, i.e. how
the individual rank-1 factors are combined. In this paper we
study an alternative way of combining the rank-1 matrices,
namely, by replacing the sum with the max operation. Used
over the nonnegative real numbers together with the standard
multiplication to generate the rank-1 matrices, this gives us
the so-called max-times (or subtropical) algebra.

While NMF is often interpreted to give the ‘parts-of-
whole’ view of the data, max-times algebra rather gives us
‘winner-takes-it-all’ view, where every rank-1 matrix can
be interpreted to give the minimum values for entries in
the matrix. Furthermore, using different algebra allows us

∗Max Planck Institute for Informatics, Saarbrücken, Germany
{skaraev, pmiettin}@mpi-inf.mpg.de

potentially to achieve better reconstruction error (or lower
rank) than NMF (or even SVD), as we show in Section 3.3.

The main contribution of this paper, however, is our algo-
rithm, Capricorn, aimed to find low-error fixed-rank max-
times decomposition of the matrix (Section 4). Capricorn
aims to minimize the L1 error and is tuned to work on discrete-
valued matrices. As we show in our experiments (Section 5),
Capricorn is capable of accurately reconstructing a matrix
and estimating unobserved values. Not every matrix has struc-
ture that can be well represented using the max-times algebra,
though, and Capricorn can generally identify these areas
and try not to fit anything there.

2 Related Work
Matrix factorization methods are part of the standard toolbox
for data analysis, and defining them over non-standard
algebras has resulted in a number of important techniques.
Arguably the best-known one is the nonnegative matrix
factorization (NMF) (see, e.g. [4]), where the factorization is
restricted to the nonnegative real numbers.

Another successful example is the Boolean matrix fac-
torization (see, e.g. [11] and references therein), where the
factorization is restricted to binary matrices and the algebra
is the Boolean one (i.e. the summation is the logical or). The
max-times algebra is in fact a relaxation of Boolean alge-
bra, since the latter can be seen as its restriction to the set
{0,1}. It should be stressed, however, that our emphasis is
on non-binary data sets.

The max-plus algebra [8] has received much more
research interest than max-times. Due to their isomorphic
nature (see Section 3), many results obtained for max-
plus automatically hold for max-times, although this is not
directly true in the case of approximate matrix factorizations
(Theorem 3.3). Despite the theory of max-plus algebra being
relatively young it has been thoroughly studied in recent years.
The reason for this is an explosion of interest in so called
discrete event systems (DES) [3], where max-plus algebra has
become ubiquitously used for modeling (see e.g. [1] and [5]).

Yet another approach of computing the matrix fac-
torization over non-standard algebras involves using the
Łukasiewicz algebra. They have been recently applied to
decompose matrices with grade values [2]. On the other
hand, the max-times algebra has also been used as a part of a
recommender system [12].

3 Theory
In this section we will introduce the theory of max-times
algebra. We will start with the general notation we use
throughout the paper, followed by the basic definitions of max-
times algebra and decompositions. In Section 3.3 we study the
computational complexity of finding good approximate max-
times decompositions, what can be said about the sparsity
of such decompositions with respect to the sparsity of the
original matrix, and the relations between max-times and
max-plus algebras in approximate decompositions.

3.1 Notation. Throughout this paper, we will denote a
matrix by upper-case boldface letters (A), and vectors by
lower-case boldface letters (a). The ith row of matrix A is
denoted by Ai,: and the jth column by A:, j. Most matrices
and vectors in this paper are restricted to the nonnegative
real numbers R+. We often endow R+ with not-a-number
symbol NaN: R+ = [0,∞)∪ {NaN}. The NaN symbol is
used to encode values that are either unknown or should
be ignored for other reasons; its presence is usually clear
from the context, and for the sake of clarity, we will present
our theoretical analysis assuming no NaNs. Any arithmetic
operation involving NaN always returns NaN, but they are
ignored in comparison operations. Empty matrices are
denoted by [] while for integer n, [n] = {1, . . . ,n}.

Given matrices A ∈Rn×m
+ , B ∈Rs×m

+ , and C ∈Rn×p
+ , we

denote by
[

A
B
]

the (n+ s)-by-m matrix obtained by vertical
concatenation of A and B, and by [A, C] the n-by-(m+ p)
matrix, which is a horizontal concatenation of A and C.

For any two vectors v ∈ Rk
+ and w ∈ Rk

+ of equal
length, we denote the elementwise division as . /, that is
v . /w = (v1/w1, . . . ,vk/wk) ∈ Rk

+.

3.2 Basic definitions. In this paper we consider matrix
factorization over so called max-times algebra. It differs
from the standard algebra of real numbers in that addition is
replaced with the operation of taking the maximum. Also the
domain is restricted to the set of nonnegative real numbers.
More formally we have

DEFINITION 3.1. The max-times (or subtropical) algebra
is a set R+ of nonnegative real numbers together with
operations a�b = max{a,b} (addition) and a�b = ab
(multiplication) defined for any a,b ∈ R+. The identity
element for addition is 0 and for multiplication it is 1.

In the future we will use the notation a�b and max{a,b} and
the names max-times and subtropical interchangeably. It is
straightforward to see that the max-times algebra is a dioid,
that is, a semiring with idempotent addition (a�a = a). It
is important to note that subtropical algebra is anti-negative,
that is, there is no subtraction operation.

A very closely related algebraic structure is the max-plus
(tropical) algebra. It is defined over the set of extended real

numbers R∪ {−∞} and has operations a⊕b = max{a,b}
(addition) and a�b = a+ b (multiplication) with identity
elements −∞ (addition) and 0 (multiplication). The tropical
and subtropical algebras are isomorphic, which can be seen
by taking the logarithm of the subtropical algebra (with the
convention that log0 =−∞).

The subtropical matrix algebra follows naturally:

DEFINITION 3.2. The max-times matrix product of two
matrices B ∈ Rn×k

+ and C ∈ Rk×m
+ is defined as

(3.1) (B�C)i j =
k

max
s=1

BisCs j .

The definition of a rank-1 matrix over the max-times
algebra is the same as over the standard algebra, i.e. a matrix
that can be expressed as an outer product of two vectors.
We will use the term block to mean a rank-1 matrix. The
general rank of a matrix over the max-times algebra is defined
analogously to the standard rank:

DEFINITION 3.3. The max-times rank of a matrix A∈Rn×m

is the least integer k such that A can be expressed as a (max)
sum of k rank-1 matrices, A = F1�F2� · · ·�Fk, where all
Fi are rank-1.

The final concept we need is that of dominating matrix:

DEFINITION 3.4. Let A and X be matrices of the same size,
and let Γ be a subset of their indices. Then if for all indices
(i, j) ∈ Γ, Xi j ≥ Ai j, we say that X dominates A within Γ.
If Γ spans the entire size of A and X, we simply say that X
dominates A. Correspondingly, A is said to be dominated by
X.

Now that we have sufficient notation, we can formally
introduce the main problem considered in the paper.

PROBLEM 3.1. Given a matrix A∈Rn×m
+ and an integer k >

0, find factor matrices B ∈ Rn×k
+ and C ∈ Rk×m

+ minimizing

(3.2) ‖A−B�C‖1 = ∑
i, j

∣∣Ai j− (B�C)i j
∣∣ .

We measure the reconstruction error in terms of the L1
(absolute) error here, as our target application are discrete-
valued matrices. We could, naturally, use the Frobenius
norm (sum-of-squares error) instead, without changing our
algorithm.

3.3 Computational complexity, sparsity, and relations
to other algebras. The main contribution of this paper is to
present an algorithm for solving Problem 3.1. But before
presenting the algorithm, let us present some results that
explain the behaviour of max-times algebra. We start by
studying the computational complexity of finding max-times
decompositions, after which we present results regarding the
sparsity of the factor matrices and relations to other algebras.

Computational complexity. We will now prove that the
max-times matrix factorization problem is computationally
hard, and thus the use of non-exact methods is justified. To
this end, we consider the max-times rank decision problem:
Given A ∈Rn×m

+ and an integer k, is the max-times rank of A
at most k?

THEOREM 3.1. Computing the max-times matrix rank is NP-
complete.

The proof of Theorem 3.1 is an easy reduction from
the Boolean Matrix Factorization problem [11] and it can
be found in the supplementary material.1 As computing the
rank is clearly a special case of Problem 3.1, we see that it is
NP-hard. But furthermore, we have the following corollary
on the hardness of approximating Problem 3.1:

COROLLARY 3.1. It is NP-hard to approximate Problem 3.1
to within any polynomially computable factor.

Proof. Any algorithm that can approximate Problem 3.1 to
within a factor α must find a decomposition of error α ·0 = 0
if the input matrix has exact max-times rank-k decomposition.
As this implies solving the max-times rank, per Theorem 3.1
it is only possible if P=NP. �

Sparsity of the factors. It is often desirable to obtain
sparse factor matrices if the original data is sparse, as well,
and the sparsity of its factors is frequently mentioned as one
of the benefits of using NMF. In general, however, the factors
obtained by NMF might not be sparse, but if we do restrict
ourselves to dominated decompositions, Gillis and Glineur [7]
showed that the sparsity of the factors cannot be less than the
sparsity of the original matrix.

The proof of Gillis and Glineur [7] relies on the anti-
negativity, and hence their proof is easy to adapt to max-times
setting. Let the sparsity of an n-by-m matrix A, s(A), be
defined as

(3.3) s(A) =
nm−η(A)

nm
,

where η(A) is the number of nonzero elements in A. Now
we have

THEOREM 3.2. Let matrices B ∈ Rn×k
+ and C ∈ Rk×m

+ be
such that their max-times product is dominated by an n-by-m
matrix A. Then the following estimate holds

(3.4) s(B)+ s(C)≥ s(A) .

Proof. We first prove (3.4) for k = 1. Let b ∈Rn
+ and c ∈Rm

+

be such that bicT
j ≤ Ai j for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. Since

(bcT)i j > 0 if and only if bi > 0 and c j > 0, we have

(3.5) η(bcT) = η(b)η(c) .

1 http://people.mpi-inf.mpg.de/~pmiettin/tropical/

By (3.3) we have η(bcT) = nm(1− s(bcT)), η(b) = n(1−
s(b)) and η(c) = m(1− s(c)). Plugging these expressions
into (3.5) we obtain (1− s(bcT)) = (1− s(b))(1− s(c)).
Hence the number of zeros in a rank-1 dominated approxima-
tion of A is

(3.6) s(b)+ s(c)≥ s(bcT) .

From (3.6) and the fact that the number of nonzero elements
in bcT is no greater than in A, it follows that

(3.7) s(b)+ s(c)≥ s(A) .

Now let B ∈ Rn×k
+ and C ∈ Rk×m

+ be such that B�C is
dominated by A. Then BilCl j ≤Ai j for all i∈ [n], j ∈ [m], and
l ∈ [k], which means that for each l ∈ [k], B:,lCl,: is dominated
by A. To complete the proof observe that s(B) = k−1

∑
k
l=1 B:,l

and s(C) = k−1
∑

k
l=1 Cl,: and that for each l estimate (3.7)

holds. �

Relation to other algebras. Let us now study how the
max-times algebra relates to other algebras, especially the
standard one, the Boolean one, and the max-plus algebra.
For the first two, we compare the ranks, and for the last, the
reconstruction error.

The standard rank and the max-times rank are incommen-
surable, that is, there are matrices that have smaller max-times
rank than standard rank and others that have higher max-times
rank than standard rank. Let us consider an example of the
first kind,1 2 0

2 4 1
0 4 2

=

1 0
2 1
0 2

�

(
1 2 0
0 2 1

)
.

As the decomposition shows, this matrix has max-times rank
of 2, while its normal rank is easily verified to be 3. Indeed,
it is easy to see that the complement of the n-by-n identity
matrix Īn, that is, the matrix that has 0s at the diagonal and
1s everywhere else, has max-times rank of O(logn) while
its standard rank is n (the result follows from similar results
regarding the Boolean rank, see, e.g. [11]).

A pattern of a matrix A ∈ Rn×m is an n-by-m binary
matrix P such that Pi j = 0 if and only if Ai j = 0 and otherwise
Pi j = 1. The max-times rank of A can be bounded from
below by the Boolean rank of its pattern B; the proof of this
statement is provided in the supplementary material.

As we have discussed earlier, max-plus and max-times
algebras are isomorphic, and consequently max-times and
max-plus ranks agree. Yet, the errors obtained in approximate
decompositions do not have to (and usually will not) agree. In
what follows we characterize the relationship between max-
plus and max-times errors. We denote by R the extended
real line R∪{−∞} and by A�B the tropical (or max-plus)
matrix product, i.e. the matrix product taken over the max-
plus algebra.

THEOREM 3.3. Let A∈Rn×m
, B∈Rn×k

and C∈Rk×m
. Let

N = max
i∈[n]
j∈[m]

{
max

{
Ai j, max

1≤d≤k

{
Bid +Cd j

}}}

and let M = exp{N}.
If an error can be bounded in max-plus algebra

(3.8) ‖A−B�C‖2
F ≤ λ

then the following estimate holds with respect to the max-
times algebra

(3.9) ‖exp{A}− exp{B}�exp{C}‖2
F ≤M2

λ .

Proof. Denote αi j = maxk
d=1{Bid + Cd j}. From (3.8) it

follows that there exists a set of numbers {λi j ≥ 0 | i∈ [n], j ∈
[m]} s.t. for any i, j we have (Ai j−αi j)

2≤ λi j and ∑i j λi j = λ .
By mean-value theorem for every i, j we obtain∣∣exp{Ai j}− exp{αi j}

∣∣= ∣∣Ai j−αi j
∣∣ exp{α∗i j}

≤
√

λi j exp{α∗i j},

for some min{Ai j,αi j} ≤ α∗i j ≤max{Ai j,αi j}. Hence,

(exp{Ai j}− exp{αi j})2 ≤ λi j(exp{max{Ai j,αi j}})2

The estimate for the max-times error now follows from the
monotonicity of the exponent:

‖exp{A}− exp{B}�exp{C}‖2
F

≤∑
i j

(
exp{α∗i j}

)2
λi j ≤∑

i j
(exp{max{Ai j,αi j}})2

λi j

≤M2
λ ,

proving the claim. �

4 Algorithm
Here we present an algorithm called Capricorn for finding
the best low-rank matrix factorization over max-times algebra.
That is, given a matrix A∈Rn×m

+ and an integer k > 0, it finds
factor matrices B ∈ Rn×k

+ and C ∈ Rk×m
+ that try to minimize

the error E(A,B,C) = ‖A−B�C‖1.

4.1 The main algorithm. From Definition 3.2 it is clear
that a matrix that has the pure max-times structure is
essentially a union of overlapping rank-1 blocks – whichever
block dominates the matrix at any given region determines
its local landscape. The pseudo-code of the Capricorn

algorithm is given in Algorithm 1. The algorithm accepts
as input a matrix A, a positive integer k (rank of the
decomposition), and additional parameters bucketSize,δ ,θ ,τ ,

and M, the last five being parameters for the algorithm that
will be explained in the following.

Capricorn finds the rank-1 blocks one-by-one using
the FindBlock procedure that we will explain in the next
subsection (line 7). But max-times decompositions, similar
to, say, NMF and unlike SVD, do not have the hierarchy
property where smaller-rank decompositions are always part
of higher-rank decompositions. Consequently, finding the
blocks one-by-one often yields into suboptimal solutions
where the first selected blocks cover large area badly, and the
later blocks cannot correct for that, due to the anti-negativity
of max-times algebra.

To combat that problem, after finding the first k blocks,
Capricorn tries to discard the oldest found block and replace
it with a new one. After it has tried to replace all k original
blocks, it will start discarding the blocks that replaced the
original blocks, continuing this process until it has found in
total M times the k blocks; the best rank-k decomposition that
Capricorn saw during this process is then returned (lines 6–
14). At first glance it appears to be more intuitive to get
rid of the block that is the least useful in terms of the error
instead of the oldest one. But it can be very hard to predict
the impact that a given block is going to have once other
blocks are in place. In particular the very first found block
tends to cover a big portion of the data, which is beneficial
at the beginning, but becomes redundant as the algorithm
progresses. By removing the oldest block we make sure that
all parts of the decomposition are updated regularly.

The new blocks are found using the residual matrix
R, storing only the values that are not yet covered by the
factorization. The building of the residual (line 14) reflects
the winner takes it all property of the max-times algebra: if an
element of A is approximated by any smaller value, it appears
as such in the residual; if value is equal or larger, though, the
corresponding residual element is NaN, indicating that this
value is already covered.

4.2 Finding the rank-1 blocks: the FindBlock proce-
dure. The key element of Capricorn is of course how we
find the rank-1 blocks. The main idea behind the algorithm is
to spot potential blocks by considering ratios of matrix rows.
Consider an arbitrary rank-1 block X = bc, where b ∈ Rn×1

+

and c ∈ R1×m
+ . For any indices i and j such that bi > 0 and

b j > 0 we have X j =
b j
bi

Xi. This is a characteristic property
of rank-1 matrices – all rows are multiples of one another.
Hence if a block X dominates some region Γ of a matrix A,
then rows of A should all be multiples of each other within Γ.
These rows might have different lengths due to block overlap,
in which case the rule only applies to their common part.

FindBlock (Algorithm 2) starts by selecting a seed row
(line 2), with the intention of growing a block around it. We
choose the row with the largest sum as this increases the
chances of finding the most prominent block. In order to

Algorithm 1 Capricorn

Input: A ∈ Rn×m
+ , k > 0, bucketSize > 0, δ > 0, θ > 0, τ ∈ [0,1],

M > 0
Output: B∗ ∈ Rn×k

+ , C∗ ∈ Rk×m
+

1: function Capricorn(A,k,bucketSize,δ ,θ ,τ,M)
2: B← 0n×0, C← 00×m

3: B∗← B,C∗← C
4: bestError← E(A,B,C)
5: R← A . Residual matrix
6: for count← 1 to k×M do
7: [b,c]← FindBlock(A,R,bucketSize,δ ,θ ,τ)
8: B← [B,b], C←

[
C
c
]

9: if E(A,B,C)< bestError then
10: B∗← B,C∗← C
11: bestError← E(A,B,C)

12: if B has more than k columns then
13: B:,1← [], C:,1← []

14: Ri j←

{
Ai j (B�C)i j < Ai j

NaN otherwise

15: return B∗, C∗

Algorithm 2 FindBlock

Input: A ∈ Rn×m
+ ,R ∈ Rn×m

+ , bucketSize > 0, δ > 0, θ > 0,
τ ∈ [0,1]

Output: b ∈ Rn×1
+ , c ∈ R1×m

+
1: function FindBlock(A,R,bucketSize,δ ,θ ,τ)
2: idx← argmaxi ∑ j ri j
3: H← CorrelationsWithRow(R, idx,bucketSize,δ ,τ)
4: r← argmaxi ∑ j hi j
5: c← argmax j ∑i hi j
6: bidx←{i |Hic = 1}
7: cidx←{i |Hri = 1}
8: [b,c]← RecoverBlock(R,bidx,cidx)
9: b← AddRows(b,c,A,θ ,bucketSize,δ)

10: c← AddRows(cT ,bT ,AT ,θ ,bucketSize,δ)T

11: return b, c

find the best block X that the seed row passes through, we
first find a binary matrix H that represents the pattern of X
(line 3). Next, on lines 4–7 we choose an approximation of
the block pattern with index sets bidx and cidx, which define
what elements of b and c should be nonzero. The next step
is to find the actual values of elements within the block with
the function RecoverBlock (line 8). Finally, we inflate the
found core block with ExpandBlock (line 9).

The function CorrelationsWithRow (Algorithm 3)
finds the pattern of a new block. It does so by comparing
a given seed row to other rows of the matrix and extracting
sets where the ratio of the rows is almost constant. As was
mentioned before, if two rows locally represent the same
block, then one should be a multiple of the other, and the
ratios of their corresponding elements should remain level.
CorrelationsWithRow processes the input matrix row by

Algorithm 3 CorrelationsWithRow

Input: R ∈ Rn×m
+ , idx ∈ [n], bucketSize > 0, δ > 0, τ ∈ [0,1]

Output: H ∈ {0, 1}n×m

1: function CorrelationsWithRow(R, idx,bucketSize,δ ,τ)
2: turn all NaN elements of R to 0
3: H← 0n×m

4: for i← 1 to n do
5: Vi← FindRowSet(Ridx,:,Ri,:,bucketSize,δ)
6: H(i,Vi)← 1
7: s← argmaxi : i6=s ∑ j hi j
8: Hidx :←Hs :
9: for i← 1 to n do

10: if φ(H, idx, i)< φ(H, idx,s)− τ then
11: Hi :← 0
12: return H

row using the function FindRowSet, which for every row
outputs the most likely set of indices, where it is correlated
with the seed row (lines 4–6). Since the seed row is obviously
the most correlated with itself, we compensate for this by
replacing its pattern with that of the second most correlated
row (lines 7–8). Finally, we drop some of the least correlated
rows after comparing their correlation value φ to that of
the second most correlated row (after the seed row). The
correlation function φ is defined as follows

(4.10) φ(H, idx, i) =
〈Hi,:,Hidx,:〉
〈Hi,:,Hi,:〉+1

.

The parameter τ is a threshold determining whether a row
should be discarded or retained. The auxiliary function
FindRowSet (Algorithm 4) compares two vectors and finds
the biggest set of indices where their ratio remains almost
constant. It does so by sorting the log-ratio of the input
vectors into buckets of fixed size and then choosing the
bucked with the most elements. It accepts two additional
parameters: bucketSize and δ . If the largest bucket has fewer
than bucketSize elements, the function will return an empty
set – this is done because very small patterns do not reveal
much structure and are mostly accidental. The width of the
buckets is determined by the parameter δ .

At this point we know the pattern of the new block, that
is, the locations of its non-zeros. To fill in the actual values,
we consider the submatrix defined by the pattern, and find the
best (in L2 sense) rank-1 approximation of it. The pseudo-
code of the RecoverBlock procedure doing this is presented
in the supplementary material.

4.3 Extending found blocks. Since blocks often heavily
overlap, we are susceptible to finding only fragments of
patterns in the data – some parts of a block can be dominated
by another block and subsequently not recognized. Hence
we need to expand found blocks to make them complete.
This is done separately for rows and columns in the method

Algorithm 4 FindRowSet

Input: u ∈ Rm
+,v ∈ Rm

+,bucketSize > 0,δ > 0
Output: V ⊂ [m]

1: function FindRowSet(u,v,bucketSize,δ)
2: r← log(u . /v)
3: nBuckets← d(max{r}−min{r})/δe
4: for i← 0 to nBuckets do
5:

Vi←{idx ∈ [m] |min{r}+ iδ ≤ ridx < min{r}+(i+1)δ}
6: V ← argmax{|Vi| | i = 1, . . . ,nBuckets}
7: if |V |< bucketSize then
8: V ← /0
9: return V

Algorithm 5 AddRows

Input: b ∈ Rn×1
+ , c ∈ R1×m

+ , A ∈ Rn×m
+ , θ > 0, bucketSize > 0,

δ > 0
Output: b ∈ Rn×1

+
1: function AddRows(b,c,A,θ ,bucketSize,δ)
2: bidx←{t | bt > 0}
3: for i ∈ [n]\bidx do
4: Vi← FindRowSet(c,Ri,:,bucketSize,δ)
5: if Vi = /0 then
6: continue
7: α ← mean(RiVi ./cVi)

8: impact← ∑s∈Vi
max{0,αcs−Ais}

∑s∈Vi
Ais−|Ais−αcs|

9: if impact ≤ θ then
10: bi← α

11: return b

called AddRows (Algorithm 5), which, given a starting block
X = bc and the original matrix A, tries to add new nonzero
elements to b. It iterates through all rows of A and adds
those that would make a positive impact on the objective
without unnecessarily overcovering the data. In order to
decide whether a given row should be added, it first extracts a
set Vi of indices where this row is a multiple of the row vector
c of the block (if they are not sufficiently correlated, then the
row does not belong to the block) (line 4). A row is added if
the evaluation of the following function (line 8)

(4.11) ψ(α) =
∑s∈Vi max{0, αcs−Ais}
∑s∈Vi Ais−|Ais−αcs|

is below the threshold θ . In (4.11) the numerator measures by
how much the new row would overcover the original matrix,
and the denominator reflects the improvement in the objective
compared to a zero row.

4.4 Complexity. In order to estimate the theoretical com-
plexity of Capricorn it suffices to do this for the FindBlock
routine since it does most of the work. There are three
main contributors to its runtime: CorrelationsWithRow,
RecoverBlock, and AddRows. CorrelationsWithRow

compares every row to the seed row, each time calling
FindRowSet, which in turn has to process all m ele-
ments of both rows. This gives the total complexity of
CorrelationsWithRow to be O(nm). To find the complex-
ity of RecoverBlock, first observe that any “pure” block X
can be represented as X= bc, where b∈Rn′×1 and c∈R1×m′

with n′ ≤ n and m′ ≤ m. RecoverBlock selects c from
the rows of X and then finds the corresponding column
vector b that minimizes ‖X−bc‖F . In order to select the
best row, we have to try each of the n′ candidates, and
since finding the corresponding b for each of them takes
time O(n′m′), this gives the runtime of RecoverBlock as
O(n′)O(n′m′) = O(n2m). The most computationally expen-
sive parts of AddRows are FindRowSet (line 4), finding the
mean (line 7), and computing the impact (line 8), which all
run in O(m) time. All of these operations have to be repeated
O(n) times, and hence the runtime of AddRows is O(nm).
Note that if we have k blocks, then the FindBlock routine
will execute Mk times, where M is a fixed parameter. Thus,
we can now estimate the complexity of Capricorn to be
O(k)(O(nm)+O(n2m)+O(nm)) = O(n2mk).

5 Experiments
We tested Capricorn with both synthetic and real-world
data. The purpose of the synthetic experiments is to evaluate
the properties of the algorithm in controlled environments
where we know the data has the max-times structure. The
purpose of the real-world experiments is to confirm that these
observations also hold true in real-world data, and to study
what kinds of data sets actually have max-times structure.
The implementation of Capricorn is freely available.2

5.1 Other methods. We compared Capricorn against
three other methods: SVD and two versions of NMF. For
SVD, we used Matlab’s built-in implementation. The two
versions of NMF are differentiated by their capability to
handle missing values. The first method, called simply NMF,
by Kim and Park [9], cannot handle missing values, while the
other method, which we call here WNMF, by Li and Ngom [10],
is designed to deal with them.

5.2 Synthetic experiments. The synthetic experiments
were performed over 1000-by-800 matrices with true max-
times rank 10. All results presented in this section are
averaged over 10 instances. For reconstruction error tests, we
compared against SVD and NMF on the data with no unknown
values. As the data contains max-times structure, we expect
to be consistently better than either of them (and indeed, we
are). The reconstruction error is measured as the relative
Frobenius norm ‖Ã−A‖F/‖A‖, where A is the data and Ã
its approximation, as that is the measure both SVD and NMF

2 http://people.mpi-inf.mpg.de/~pmiettin/tropical/

aim at minimizing; the results with L1 norm are presented in
the supplementary material.

Varying density. In our first experiment we studied the
effects of varying the density of the factor matrices. We
varied the density of the factors from 10% to 100% with an
increment of 10%. There are two different versions of this
setup – the first one having 10% noise (Figure 1a), and a high-
noise variation containing 50% noise (Figure 1b). In both
cases Capricorn is consistently the best method, obtaining
almost perfect reconstruction consistently in low-noise case.
With higher density and noise levels, the reconstruction error
starts to increase slightly, reaching level of approximately
10% at 100% density. That SVD and NMF start behaving better
at higher levels of density indicates that these matrices can be
explained relatively well using standard algebra.

Varying noise. Next we tested the effects of noise. The
amount of noise is always with respect to the number of
nonzero elements in a matrix, that is, for a matrix A with
κ(A) nonzero elements and noise level α , we flip ακ(A)
elements to random values. The level of noise varied from
0% to 110% with increments of 10%. Again, this experiment
was performed in two different setups: one with 30% factor
density (Figure 1c), and the other with factor density of 60%
(Figure 1d).

In the low-density case, Capricorn is consistently the
best method with essentially perfect reconstruction for up to
80% of noise. In the high-density case, however, the noise
has more severe effects, and in particular after 60% of noise,
SVD and NMF are already better than Capricorn. The severity
of the noise is, at least partially, explained by the fact that in
the denser data we flip more elements than in sparser data:
as the data matrices are essentially full, by 50%, we have
replaced half of the values in the matrices with random values.
Further, the quick increase of the reconstruction error for
Capricorn hints strongly that the max-times structure of the
data is mostly gone at these noise levels.

Varying the rank. For the last reconstruction error test
we tested the effects of the (max-times) rank, with the
assumption that higher-rank matrices are harder to reconstruct.
The true max-times rank of the data varied from 2 to 20 with
increments of 2. There are four variations of this experiment:
with 30% factor density and 10% noise (Figure 1e), with 30%
factor density and 50% noise (Figure 1f), with 60% factor
density and 10% noise (Figure 1g), and with 60% factor
density and 50% noise (Figure 1h).

Capricorn obtains perfect reconstruction in all cases
except high noise and high density (Figure 1h), where we
can see that higher ranks increase the reconstruction error.
Interestingly, the inverse is true for SVD and NMF.

Prediction. In this experiment we choose a random
holdout set and remove it from the data (elements of this
set are marked as missing values). We then try to learn the
structure of the data from the remaining part of the data

using Capricorn and WNMF, and finally test how well they
predict the values inside the holdout set. All input matrices
are integer-valued and since the recovered data produced by
the algorithms can be continuous-valued, we round it to the
nearest integer. The quality of the prediction is measured
as the fraction of correct values in the hold-out set, and the
results are reported in Figure 2.

As can be seen in Figure 2, as the fraction of held-out
data increases, Capricorn’s results get worse, as expected,
but it still is consistently better than WNMF that does not seem
to be able to recover any specific structure.

Discussion. The synthetic experiments confirm that
Capricorn is able to recover matrices with max-times
structure even when this structure has been perturbed with
high levels of noise. Furthermore, the experiments confirm
that NMF or SVD cannot recover structure from matrices with
max-times structure, that is, we cannot use existing methods
as a substitute to find the max-times structure neither for the
reconstruction nor for the prediction tasks.

5.3 Real-world experiments. As was mentioned before,
Capricorn is not exactly an approximation algorithm since
it only returns nontrivial decomposition if the subtropical
structure is present in the data. This is because it works
by finding patterns in the data and adding them to the
decomposition rather than minimizing the distance to the
input matrix. Consequently, if an existing pattern can be
completed by covering some zeros in the data, Capricorn is
likely to do that, even if it means increasing the reconstruction
error. This behaviour is beneficial when dealing with missing
values, but the main drawback is that some zeros may be
filled with positive values, which will increase the error.
Unlike with synthetic experiments, here we are not so much
interested in getting all the elements of the input matrix
exactly, but rather we aim to extract as much subtropical
structure as possible. In order to facilitate this we turn all zero
elements in the data into missing values and when computing
the error, we ignore them. It is important to mention that
neither SVD nor NMF support missing values – so we feed
them the original data without replacing zeros. Although
they can find the structure in the nonzero parts of the data,
they also tend to fit the zeros, which generally increases the
measured error since we only care about nonzero entries. For
this reason we also run the same setup with WNMF, which can
ignore missing values.

We used the following two datasets, both of which
are available at the University of Florida Sparse Matrix
Collection3 [6]. The first one is called Bas1LP and represents
a linear program.4 The other dataset is called Trec12 and it is a
brute force disjoint product matrix in tree algebra on n nodes.5

3 http://www.cise.ufl.edu/research/sparse/matrices/
4 Submitted to the matrix repository by Csaba Meszaros.
5 Submitted by Nicolas Thiery.

Factor density
0.2 0.4 0.6 0.8 1

F
ro

b
en

iu
s
er

ro
r

0

0.05

0.1

0.15

0.2 Capricorn
NMF
SVD

(a) Varying density with low
level of noise.

Factor density
0.2 0.4 0.6 0.8 1

F
ro

b
en

iu
s
er

ro
r

0

0.1

0.2

0.3

0.4

(b) Varying density test with
high level of noise.

Noise
0 0.5 1

F
ro

b
en

iu
s
er

ro
r

0

0.2

0.4

0.6

0.8

(c) Varying noise with low
density.

Noise
0 0.5 1

F
ro

b
en

iu
s
er

ro
r

0.2

0.4

0.6

0.8

(d) Varying noise with high
density.

Rank
5 10 15 20

F
ro

b
en

iu
s
er

ro
r

0

0.05

0.1

0.15

0.2

(e) Varying the rank with
10% noise and 30% factor
density.

Rank
5 10 15 20

F
ro

b
en

iu
s
er

ro
r

0

0.1

0.2

0.3

0.4

(f) Varying the rank with
50% noise and 30% factor
density.

Rank
5 10 15 20

F
ro

b
en

iu
s
er

ro
r

0

0.05

0.1

0.15

(g) Varying the rank with
10% noise and 60% factor
density.

Rank
5 10 15 20

F
ro

b
en

iu
s
er

ro
r

0.1

0.2

0.3

0.4

(h) Varying the rank with
50% noise and 60% factor
density.

Fig. 1: Reconstruction errors on synthetic data using different parameter settings. x-axis is the parameter varied and y-axis
is the relative Frobenius norm. All results are averages over 10 random matrices and the width of the error bars is twice the
standard deviation.

Holdout set size
0.2 0.4 0.6

P
re

d
ic
ti
on

ra
te

0.2

0.4

0.6

0.8
Capricorn
WNMF

Fig. 2: Prediction rate on synthetic data. x-axis represents
the size of the holdout set and y-axis is the correct prediction
rate (higher is better). All results are averages over 10 random
matrices and the width of the error bars is twice the standard
deviation.

In the following we conduct two types of experiments on both
datasets. In the first setup we try to reconstruct the original
data using the algorithms and then measure the resulting error
with respect to L1 and Frobenius errors (we present the former
results here and postpone the latter ones to the supplement).
In the second setup we select a random holdout set and test
how well the algorithms can predict values in it based on the
rest of the data.

Real-world data will probably not have pure subtropical
structure, hence the purpose with the real-world tests is to
study if we can recover sensible amount of structure. For
reconstruction (Tables 1 and 2), both real-world data sets can
be expressed best using WNMF. With Bas1LP, Capricorn is
second-best (although with a wide margin), but worst with
Trec12 in Table 1. When we consider only the non-zero

Tab. 1: Reconstruction error with respect to the L1 norm on
various real-world data sets.

Bas1LP Trec12

Algorithm k = 20 k = 30 k = 20 k = 30

Capricorn 32.1 26.2 57.5 54.8
NMF 48.0 40.6 48.5 45.5
WNMF 6.4 4.3 21.8 18.9
SVD 45.4 37.6 44.0 39.7

Tab. 2: Reconstruction error on non-zero elements with
respect to the L1 norm on various real-world data sets.

Bas1LP Trec12

Algorithm k = 20 k = 30 k = 20 k = 30

Capricorn 18.7 19.6 42.3 40.9
NMF 48.0 40.6 48.5 45.5
WNMF 6.4 4.3 21.8 18.9
SVD 45.4 37.6 44.0 39.7

Tab. 3: Prediction accuracy on various real-world data sets.

Algorithm Bas1LP Trec12

Capricorn 74.0 19.8
NMF 23.4 18.3
WNMF 85.2 39.9
SVD 28.2 20.5

Tab. 4: Prediction accuracy on non-zero predictions on
various real-world data sets.

Algorithm Bas1LP Trec12

Capricorn 85.2 39.3
NMF 29.1 19.6
WNMF 93.1 49.8
SVD 29.1 22.5

elements, though, Capricorn is second or third best with
Trec12, depending on the rank (Table 2).

When predicting the missing values, WNMF is again the
best method, although with much smaller margin (Tables 3
and 4), whereas Capricorn is consistently the second-best.
Overall the real-world experiments show that Capricorn
is capable of extracting fair amount of subtropical structure
from the tested real-world data sets.

Running times. Table 5 shows the execution time of
Capricorn on two real-world datasets. All experiments were
performed on a machine with eight Intel Xeon 2.4GHz cores
and 48GB RAM. It is worth noting though that Capricorn is
not easily parallelizable, and was effectively using only one
core.

6 Conclusions
Doing the matrix factorization over the max-times (or sub-
tropical) algebra allows us to recover structure that is hard
to capture using the standard algebra. While finding the best
max-times decomposition is computationally hard, our ex-
periments show that our algorithm, Capricorn, is capable
of successfully recovering at least some structure. Not ev-

Tab. 5: Runtime of Capricorn on real-world datasets in
seconds.

k Bas1LP Trec12

10 3612 404
15 5281 538
20 6467 677
25 8539 809
30 10346 941

ery data exhibits subtropical structure, though, but in these
cases Capricorn generally will not claim to have found any
structure, either.

Notwithstanding the good results we showed,
Capricorn has its limitations. Most importantly, it
will not work well on matrices with continuous values, as the
FindBlock procedure assumes discrete values. Extending
Capricorn to continuous-valued matrices hence remains an
important step for future research. That would also help on
finding more data sets that exhibit subtropical structure and
thus help us gauge the usefulness of the subtropical algebra
in data analysis.

References

[1] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat.
Synchronization and linearity, volume 3. Wiley New York,
1992.

[2] R. Bělohlávek and M. Krmelova. Factor analysis of ordinal
data via decomposition of matrices with grades. Ann Math
Artif Intell, 72(1-2):23–44, Jan. 2014.

[3] C. G. Cassandras and S. Lafortune. Introduction to Discrete
Event Systems (The International Series on Discrete Event
Dynamic Systems). Springer, 1 edition, Sept. 1999.

[4] A. Cichocki, R. Zdunek, A. H. Phan, and S.-i. Amari.
Nonnegative Matrix and Tensor Factorizations: Applications
to Exploratory Multi-way Data Analysis and Blind Source
Separation. John Wiley & Sons, Chichester, 2009.

[5] G. Cohen, S. Gaubert, and J.-P. Quadrat. Max-plus algebra
and system theory: where we are and where to go now. Annual
Reviews in Control, 23:207–219, 1999.

[6] T. A. Davis and Y. Hu. The university of Florida sparse matrix
collection. ACM Trans Math Soft, 38(1):1, 2011.

[7] N. Gillis and F. Glineur. Using underapproximations for
sparse nonnegative matrix factorization. Pattern Recognition,
43(4):1676–1687, 2010.

[8] L. Hogben. Handbook of linear algebra. CRC Press, 2006.
[9] J. Kim and H. Park. Toward faster nonnegative matrix factor-

ization: A new algorithm and comparisons. In Data Mining,
2008. ICDM’08. Eighth IEEE International Conference on,
pages 353–362. IEEE, 2008.

[10] Y. Li and A. Ngom. The non-negative matrix factorization
toolbox for biological data mining. Source code for biology
and medicine, 8(1):1–15, 2013.

[11] P. Miettinen. Matrix Decomposition Methods for Data Mining:
Computational Complexity and Algorithms. PhD thesis,
Department of Computer Science, University of Helsinki,
2009.

[12] J. Weston, R. J. Weiss, and H. Yee. Nonlinear latent
factorization by embedding multiple user interests. In RecSys

’13, pages 65–68, 2013.

