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Abstract

Nonnegative matrix factorization (NMF) is one of the
most frequently-used matrix factorization models in data
analysis. A significant reason to the popularity of NMF is
its interpretability and the ‘parts of whole’ interpretation of
its components. Recently max-times, or subtropical, matrix
factorization (SMF) has been introduced as an alternative
model with equally useful ‘winner takes it all’ interpretation.
In this paper we propose a new mixed linear—tropical model
and a new algorithm called Latitude that combines NMF
and SMF, being able to smoothly alternate between the two.
In our model the data is modeled using latent factors and
additional latent parameters that control whether the factors
are interpreted as NMF or SMF features or as mixtures
of both. We present an algorithm for our novel matrix
factorization. Our experiments show that it improves over
both baselines and can yield interpretable results that reveal
more of the latent structure than either NMF or SMF alone.

Keywords: matrix factorization; subtropical algebra; NMF

1 Introduction

Matrix factorizations are a popular method for extracting
latent structure from the data. Different factorizations
find different types of structure. For example, singular
value decomposition (SVD) and principal component
analysis (PCA) can be used to find the directions of the
greatest variance in the data. In other cases, we might
want to decompose the matrix into nonnegative compo-
nents to gain so-called “parts-of-whole” interpretation.
For that, we would use some nonnegative matrix factor-
ization (NMF) algorithm. Or perhaps, instead of taking
the sum of the nonnegative components, we are only
interested in the largest elements, to gain “winner-takes-
it-all” interpretation; for that, we would use subtropical
matrix factorizations (SMF). Matrix factorizations are
global models, meaning that they apply their structures,
be that SVD, NMF, or something else, to the whole
matrix. But it is not clear that any data is only a result
of a single model. Indeed, it can be that parts of the
data are formed using a sum of the rank-1 components,
while other parts are formed by taking the element-wise
maximums. Consider, for example, the classical example
of movie ratings data, that is, people-by-movies matrix
containing the movies’ ratings. It is often assumed that
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these ratings have a latent low-rank structure, that there
exists some k factors that dictate how much different
people like different movies, and that the users’ final
rating is a linear combination of these factors. For ex-
ample, Alice might like some movie because she likes
the director, the lead actor, and the genre, though she’s
less keen on the supporting actress. But it is equally
plausible that some factor is so dominant, that the rat-
ing is dictated by that factor alone. For example, Bob
might like all Star Wars movies simply because they are
Star Wars movies, and completely irrespective of their
director, actors and actresses, or other factors. In this sit-
uation, taking the largest value instead of the sum would
be a better model. In this paper we present a mized
linear—tropical model that allows us to mix NMF and
subtropical matrix decompositions. This provides much
more accurate decompositions than what we can achieve
using either NMF or SMF — or even SVD — alone (see
Section 5). That we can improve over the base models,
NMF and SMF, indicates that our hypothesis of the data
being of mixed structure is correct. In addition to giving
a better reconstruction error, our model is also highly
interpretable, and uncovers interesting novel structure
from the data. Namely, we can study which elements are
more NMF-style and which are more SMF-style. Our
algorithm for finding the mixed linear—tropical structure
is called Latitude, as it varies smoothly between the
tropic (SMF) and pole (NMF). Latitude can be used to
decompose relatively large data sets, as it scales linearly
with the input data.

Main contributions. In this paper we present a
novel matrix factorization model, called mixed linear—
tropical model (Section 3) and a scalable algorithm for
finding a decomposition in this model (Section 4). Our
experiments (Section 5) show that our algorithm finds
decompositions that have smaller reconstruction error
than what NMF or SMF methods — or even SVD — can
find, and that the results are also intuitive and reveal
interesting structures from the data sets.

2 Notation and Basic Definitions

In this section we present the basic notation and briefly
recall NMF and SMF. We postpone the discussion of
the related work to Section 6.
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Basic notation. Throughout this paper we will
denote the ith row of matrix A with A; and the jth
column with A7. Element (i,7) of A is A;;. We use R,
to denote the nonnegative real numbers [0, c0), and N to
denote the natural numbers {1,2,...}. The Frobenius

norm of a matrix A is denoted by [|A| = (Zij Afj)l/2

Nonnegative matrix factorization. In nonnega-
tive matrix factorization (NMF), we are given a nonneg-
ative matrix A € R7*™ and target rank k, and our task
is to find nonnegative factor matrices B € Ri” and
Cc Rixm that minimize [|A — BC||,. Alternatively,
we can write BC = Y.F_| B'C;, where each B'C, is a
nonnegative rank-1 component matrix. Each component
matrix contributes a nonnegative part to the total sum,
and it is standard to interpret these rank-1 components
as “parts of a whole.” Over the years, many different
algorithms have been proposed to solve NMF, with meth-
ods based on alternating least squares optimization or
multiplicative update rules being the most prominent
ones (see [4] for a comprehensive treatise).

Subtropical matrix factorization. Subtropical
matrix factorization (SMF) is similar to NMF, but it
replaces the sum with the maximum in the component
formulation: B X C = max’_ {B'C;}, where the
maximum is taken element-wise. Equivalently, SMF
is a matrix factorization over the subtropical (or maz-
times) semi-ring, that is, values R, endowed with the
addition operation max and the multiplication operation
X (i.e. the standard multiplication). To recap, in SMF,
we are given a nonnegative matrix A € R}*™ and
target rank k, and our task is to find nonnegative factor
matrices B € RﬁXk and C € Rixm that minimize
|A-BRC|p= HA — maxf;l{BzCi}HF.

Since only the element-wise largest element has effect
to the final product, SMF is said to exhibit the “winner-
takes-it-all” structure. This tends to yield sparser factor
matrices [9,10]. Note also that (B X C);; < (BC);;
for all 4 and j. Since SMF is taken over the subtropical
semiring, it is possible that the factorization obtains
smaller reconstruction error than SVD.

It should be noted that the concept of a rank-1
matrix in NMF and SMF coincide, even though rank-%
decompositions are generally different. This is a key
feature for our model. In tropical algebra the summation
operation is max and the multiplication is +. Hence,
matrix A has tropical rank-1 if there exists vectors a
and b such that A;; = a; + b;. For more on tropical
algebra, see Section 6 and references therein.

3 The Mixed Linear—Tropical Model

Rather than describing the data using NMF or subtrop-
ical matrix factorization, we propose a hybrid model

that incorporates them both and allows for a smooth
transition between the two. Ideally, given an input
matrix A € R?*™, we want to be able to determine
what elements A;; are better represented using the stan-
dard algebra, and which ones require the subtropical
one. Namely, we seek factor matrices B € RiXk and

C e Rixm and parameters a € R"*™ guch that
(3.1) Aij = f(ou;)(BRC) + g(ai;) (BC)y;

for some functions f and g that we will define below.
By representing A as a “mixture” of the normal and
subtropical products of the factor matrices, we allow for
more flexibility in fitting the data. Since by altering
the parameter matrix o we can choose different mixing
coefficients for different elements of A, it is possible
to better explain data that has piecewise NMF and
piecewise subtropical structure. Moreover, since the
functions f(oy;) and g(a;) don’t have to be restricted
to binary values, we can also express some elements A,;;
as a weighted sum of (BX C);; and (BC);;.

It is important to note that the equation (3.1) is
quite general, and unless we impose restrictions on
functions f and g, as well as the matrix a;, our model will
overfit the data. When it comes to choosing the proper
functions f and g, there is a trade-off between fitting
the data and keeping the model simple. In this paper
we use the convex combination f(a;) = ouj, g(a;) =
1—oyj, a;; € [0,1], which is very simple, and at the same
time provides an intuitive transition from the standard
product at a;; = 0 to the subtropical product at o;; = 1.
We obtain

(3.2)

for a;; € [0, 1].

When choosing @ we are faced with a similar trade-
off. Indeed, without additional constraints, we can
fit arbitrarily complex matrices with constant factor
matrices, as the following proposition illustrates.

PROPOSITION 3.1. Let A € [1,2]"*™ and let k = 4.
There ezists o € [0,1]"*™, B € R"** and C € RF*™
such that all entries of B and C are the same and that
Aij = aij(B®C’)+(1 —aij)(BC)ij foralli=1,...,n
and j=1,...,m.
Proof. Let all entries of B and C be v/3/2. Then for
any 1 <i<nand1<j<m wehave (BXC);; =3/4
and (BC);; =3 . Now if we set

Aij — (BC)i
(BRC);; — (BC)y;
then 0 < a;; < 1 holds. By plugging (3.3) into (3.2), we
obtain a;; (BXC);+(1—a;)(BC);; = A,j, concluding
the proof.

Ajj = a;j(BRC)+ (1 - ay)(BC);

(3.3)

ai]‘ =
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Being able to decompose essentially arbitrary matri-
ces into constant factor matrices shows that unrestricted
« can have too much power. To constrain «, we enforce
it to have essentially a tropical rank-1 structure:

(3.4) aij=0(0;+ ;) ,
where 8 € R™*! and ¢ € R'*™ are arbitrary vectors,
and o(xz) =1/(1 + e~*) is the sigmoid function.

Now, given the factors B € R7**, C' € R¥*™ and
the parameter vectors 8 € R"*!, ¢ € R'*™ we can
define their mixed linear—tropical product, B g 4 C,
elementwise as follows

(3.5) (BXg,C)ij = a;j(BRC);j+(1-avi;)(BC)ij ,

where a;; = 0(6; + ¢;).

It is trivial to see that when elements in both 6
and ¢ tend to —oo, we have BXg 4 C — BC. The
greater the element a;; = 0(6; + ¢;) is, the closer the
corresponding element in the mixed product is to the
subtropical product. In the limit, when all elements of
o tend to oo, we have BXg o C - BX C.

We can interpret the values in parameter vectors 6
and ¢ to give the “typical” level of NMF or subtropical
structure associated with the corresponding rows and
columns. If, for example, 6; < 0, it means that row
1 has strong NMF-type structure, while 8; > 0 would
mean strongly subtropical structure. If 8; ~ 0, then the
structure is an even mixture of the two. Similarly, if
0; + ¢; > 0, then the element A;; has subtropical
structure, and vice versa for 6; + ¢; < 0. This
interpretation also explains why we use the tropical rank-
1 model, that is, summation, instead of the standard
rank-1 model 0¢”: if we calculate the product, we
cannot interpret negative values of 8; or ¢; as indicative
of “typically NMF” structure, as if both 6;, ¢; < 0, then
0:¢; > 0, indicating subtropical structure.

Now we can define the main problem considered in
this paper.

PROBLEM 3.1. Gwen an input matric A € R?*™ and
an integer k > 0, find two factor matrices B € RiXk

and C € Rixm and parameter vectors @ € R™1 and
¢ € R such that

(36) E(A7B70707¢) = HA_B|X9,¢ C”F
18 minimized.

Unfortunately it seems that the optimization of the
above problem is hard:

PROPOSITION 3.2. Given A € R}*™  k, 0, and ¢,
finding B € RiXk and C € R¥*™ that minimize

E(A,B,C,0,¢) is NP-hard. It is also NP-hard to
find B ¢ RiXk and C € Rixm that approximate
E(A,B,C,0,¢) to within any polynomially computable
factor.

The proposition is a direct consequence of the NP-
hardness of computing or approximating NMF [16] or
subtropical matrix factorization [10].

4 The Algorithm

The algorithm Latitude (Algorithm 1) finds a mixed
linear—tropical matrix decomposition of the given input
data.’ As input it accepts the data matrix A € R},
the rank of the sought decomposition & € N, and an
integer parameter N € N, that determines the number
of iterations of the algorithm. It returns the computed
factors B € ]Rim and C € Rix ™ and parameter vectors
0 ¢ R**! and ¢ € R'*™. Latitude has also one
parameter, M € R,;. Each element in 6 and ¢ must
belong to the [—M, M] interval. In practice very high
values in the parameter vectors do not make sense due to
the use of the sigmoid function (see (3.4)) — they would
get “smoothed out” and make only marginal changes
to the parameter matrix a. For this reason for all
experiments in this paper we used M = 5, at which
point o(M) = 0.9933, and there is almost nothing to be
gained by increasing M further.

The main idea of Latitude is to repeatedly use a
routine that solves the linear—tropical regression problem
to alternatingly update the factor matrices and the
parameter vectors. Namely, when the factor matrix
B and the parameter vector @ are fixed, finding the
other factor matrix C' and parameter vector ¢ reduces
to solving the problem

(4.7) [C7, ;] + |A? — BRg, c||r

arg min
ceRY X!, se[— M, M]

m times (once per column of C). Then we fix C
and ¢ and do the same for B and 6. This process is
repeated M times. The algorithm starts by initializing
the factor matrices B and C (line 2). This can be done
by using random matrices, or, for example, by using
some NMF algorithm. Starting with a “pure” NMF
solution gives us a reasonable initial solution, and we
use that initialization in our experiments. The updates
to the factors and parameters are done inside the main
loop (lines 12-20), where line 14 updates C and ¢, and
line 16 updates B and 6. On each iteration we check if
the current solution B, C, 8, ¢ improves on the best
one found before that (line 17), and if it does, then we
update the best solution and the best error (lines 18-20).

TCode is available at https://people.mpi-inf.mpg.de/

~pmiettin/linear-tropical/
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Algorithm 1 Latitude

Algorithm 2 MixReg

Input: AeR}*™, keN, NeN
Output: B* € R7**, C* e RF ™, 6" e R™,
d)* c Rlxm
Parameters: M > The maximum possible value of
parameter vectors. In practice 5 is a good choice
1: function LaTITUDE(A, k, N)

2: initialize B and C
3: D+ BC-A
4 f 20 Dij,g; < >, Dij
5: 8; + index of the i-th smallest element of f
6: t; < index of the j-th smallest element of g
7 0; + :L:’I M
8: ¢; < ZY;TELM
9: B*«+ B,C*"+ C > Initialize best factors.
10: 0" +— 0,¢0p" — ¢ > Initialize best parameters.
11: bestError < ||A — BXg,¢ C| 5
12: for iter <~ 1 to N do
13: for j + 1 to m do
14: [C7,¢,] « MixReg(A’, B,C’,0,¢,,M)
15: for i < 1 ton do
16: (B, 0;] < MixReg(AT,CT, BT, ¢,0;, M)
17: if |A— BXg ¢ C|lp < bestError then
18: B*"«+ B,C*"+ C
19: 0" +— 0,0" + ¢
20: bestError < ||A — BXg ¢ C|| -

21: return B*, C*, 0%, ¢*

The function MixReg (Algorithm 2) solves problem
(4.7), and is where the actual updates to the factors
and parameters are performed. It takes as input vector
a € R, the first factor matrix B € R:L_Xk, an initial
solution for the output vector ¢ € Rﬁ_“, the column
parameter vector 6, the starting value for the row
parameter element ¢, and the number M > 0 that defines
the range of the values in the parameter vectors. It
returns the updated versions of the vector ¢ and the
element ¢. Finding the global minimum of (4.7) with
respect to both ¢ and t is hard, and hence we update
them separately. In fact, even when the parameter ¢ is

fixed, optimizing (4.7) with respect to ¢ is problematic.

To see that, let us first rewrite (4.7) for a fixed value of
t. It becomes

(4.8) argmin ||la—(c(6+t)BRC+(1—0(0+t))Bc)||F -

CERiX t

For every 1 < i < n denote by ¢(i, ¢) the index of
the largest element in the vector B;dc”, where O is the

Input: a € R}, B e RP** c e RY*', 0 e R™,
teR, M >0
Output: c€ RY*' t e R

1: function M1xRec(a, B, ¢, 0, t, M)

2. X;+« B;0Oc"

3: a+—o(0+1t)

" T, « 1 Jj= arg-maxlgsgk Xis
1 — «; otherwise

5: Y « BOT

6: c%argminpeRim la — Bp||r

7 t < argmingg_ s\ lla — BRes c|r

8: return c, ¢

element-wise (Hadamard) product. We have
a;B;Xc+ (1 - a;)B;c

= maX{Biscs} + (]. - az) Z Bij,c,
(4.9) ; 5
= Bi(,p(i,c)cap(i,c) + (1 - az) Z B;c, )
s#p(i,c)

and hence the problem (4.8) is transformed into
(4.10)

argmin |la—Y (c)c||r, Y (c)i; = {

cGRiX !

1 J=e(ic)
1 — «; otherwise .

If the coefficient matrix Y (¢) did not depend on
¢, (4.10) would become a standard nonnegative linear
regression problem. Unfortunately, the dependence of
p(i,¢) on ¢ is very complex, and hence it is hard to
solve (4.10) directly. In order to overcome this obstacle,
we use another heuristic, that is we fix the coefficient
matrix Y (¢), and assume it to be independent from
c. Under these assumptions ¢ can be found using a
standard nonnegative linear regression algorithm. We
use the MATLAB built-in 1sqnonneg. The matrix Y is
built on lines 2-5, and the vector ¢ is found on line 6.
Finally, on line 7 we update the parameter ¢. This is
done using the binary search on the interval [—M, M]
for the point where the derivative with respect to ¢ is
close to 0.

Time complexity. Running Latitude comprises
of executing NMF to initialize the factors, and then
repeatedly updating them, as well as the parameters,
using the MixReg routine. For each ¢+ = 1,...,n and
j =1,...,m, MixReg is called N times. In order to
estimate the complexity of MixReg, it suffices to consider
the case when it is called to update C and ¢ as the
alternate case is analogous (one just needs to replace
n by m). Computing the matrix Y (lines 2-5) and
finding ¢ (line 7) take time O(nk) each; the latter one
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because it is enough to make a finite number of steps
of the binary search. Thus, if we denote by I'(n, k) the
complexity of solving the nonnegative linear regression
problem, then the running time of MixReg would be given
by O(nk) + T'(n, k). Since we use NMF to initialize the
factors, the runtime of Latitude depends on what NMF
algorithm is called. If we denote the complexity of NMF
by II(n, m, k), then the total complexity of Latitude
is Nm(O(nk) + I'(n,k)) + Nn(O(mk) + T'(m,k)) +
II(n,m,k) = O(Nnmk) + NmI'(n, k) + NnI'(m, k) +
II(n,m, k).

Using lsqnonneg for the nonnegative regression
and denoting its average number of iterations by /¢
as above, we have that I'(n,k) = O({nk?). Using
projected ALS algorithm [4] for the NMF, each iteration
takes O(nk? + mk? + nmk) time, and we denote the
expected number of iterations of the NMF algorithm by .
With these choices, the total time complexity becomes
O(Nk(nm + lnmk) + tk(nk + mk + nm)). Importantly,
this is linear in the dimensions of the input matrix.

For actual runtime on various real-world datasets
see the full version of the paper [8].

5 Experimental Evaluation

In this section we test Latitude on both synthetic and
real-world data, in order to verify how well it can recover
the mixed tropical-linear structure. We also compare it
against various benchmark matrix factorization methods.

5.1 Other methods. Since Latitude is designed to
work with data that has a mixture of NMF and SMF
structures, it is important to compare against algorithms
that target them both. There is a multitude of NMF
algorithms, but in this paper we use MATLAB’s default
implementation nnmf, to which we will refer simply as
NMF. We will also compare against SVD in order to get a
comparison to optimal rank-k decomposition. Unlike NMF
or SVD, the subtropical matrix factorization is a quite new
direction of research, and to the best of our knowledge
there are only two available algorithms: Cancer [9] and
Capricorn [10]. Of these, Cancer is more suitable due
to its ability to handle Gaussian noise, and hence we
chose it over Capricorn.

5.2 Synthetic Experiments. The purpose of the
synthetic experiments is to verify that the proposed
algorithms are actually capable of recovering the sought
structure when the data conforms to the mixed tropical-
linear model. First we generate the data using the
mixed tropical-linear structure, then add some Gaussian
noise, and finally run the methods to see how much
structure they can recover. Unless stated otherwise,
the matrices are of size 1000 x 800 with true rank 10

and values drawn uniformly at random from the [0, 1]
interval. The factor density is by default 20%, and
the standard deviation of the Gaussian noise is 0.01.
In order to make sure that after applying the noise
the data remains nonnegative, we truncate all values
below 0. The parameter vectors @ and ¢ are drawn
uniformly at random from the [—5, 5] interval. For the
pure subtropical and NMF structure experiments we did
not use parameters, but rather multiplied the factors
directly. The reconstruction error is always measured
against the original, noise-free matrix.

Varying noise with pure subtropical data.
(Fig 1a) This experiment tests how well various methods
can recover the pure subtropical structure, that is, the
extreme case of all parameters being set to oo. The
data is generated by multiplying the factors using the
subtropical matrix product. We varied the standard
deviation of the Gaussian noise from 0 to 0.14 with
increments of 0.01. Latitude is clearly the best method,
followed by Cancer, and NMF and SVD come close together
in the last place. The reason why Latitude beats
Cancer on its own kind of data is that it has more leeway
in choosing what structure to use, thus being able to fit
everywhere where Cancer approximates the data well,
but also deviate from the pure subtropical model when
needed. NMF and SVD do not seem to find much structure
in this experiment. In this and some other experiments
SVD and NMF produce similar reconstruction errors, which
sometimes makes their lines hard to distinguish.

Varying noise with pure NMF data. (Fig. 1b)
This setup is analogous to the previous one, except
now the data was generated using the pure NMF
structure. Here, NMF and SVD are performing very well,
as is expected as the data is generated with the NMF
structure. Latitude, although having been initialized
by NMF, only achieves the same results for zero level of
noise — then its results start to slowly deteriorate. The
cause of this is that it overfits to the noise. Nevertheless,
Latitude’s results are not much worse than NMF or SVD,
and hence it is definitely applicable to datasets that
exhibit the pure NMF structure. Meanwhile Cancer
is the worst of the methods, which is expected given
that the data has pure NMF rather than subtropical
structure.

Varying noise with mixed data. (Fig. 1c) Here
we test the actual mixed model by using parameters
drawn uniformly at random from the [—5,5] interval.
This means that the expected value of 6; + ¢; is 0,
which corresponds to the midpoint between the NMF
and subtropical structures. The randomness ensures that
both structures are present in the data. Here NMF and
SVD perform much better than for the pure subtropical
case, but Latitude is nevertheless the best method by
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Figure 1: Reconstruction errors on synthetic data. The z-axis represents the varying parameter and the
y-axis the Frobenius error. All results are averages over 10 random matrices and the width of the error bars is

twice the standard deviation.

a big margin, which demonstrates the advantages of
combining both models.

Varying factor density with mixed data.

(Fig. 1d) Here we varied the factor density from 10 % to
100 % with increments of 10 %. Again, we have Latitude
as the best method. There is a peculiar bump on its
curve at the very low density level. It can be explained
by noise having more influence on sparse data, since
then the data/noise ratio is worse.

Varying rank with mixed data. (Fig. le) Here
we varied the actual rank of the data from 2 to 40 with
increments of 2. The factor density was kept at 50 %. As
in previous experiments, Latitude performs significantly
better, especially for lower ranks. The full version of the
paper [8] contains another variation of this setup.

Varying rank with mixed data with a high
level of noise. (Fig 1f) Same setup as above, but with a
higher level of noise (standard deviation 0.07). Latitude
again performs much better than other methods, albeit
having a weird bump for lower ranks. Here again
it is explained by lower rank data having also lower
density, which exacerbates the effect of the noise. It
is worth mentioning that, with the exception of the
subtropical data test (Fig la), Cancer gives the highest

reconstruction error. This is not surprising since it aims
at recovering the subtropical structure, which is no more
present in the data in its pure form.

5.3 Real-World Experiments. Now that we have
evidence that Latitude can extract the mixed tropical-
linear structure when it is present in the data, we want to
see if this kind of structure is also present “in the wild”.
For that we ran all the competing algorithms on various
real-world datasets. First we briefly describe the data,
then provide the numerical comparison of the results of
the algorithms, followed by some example results.
Datasets. Rather than using raw data, we did some
common preprocessing for the real-world datasets. To
ensure nonnegativity, we subtract from each column its
smallest element. In addition, to make the data more
uniform, we divide each column by its standard deviation.
These steps are performed on all matrices except 4News,
for which we use the TF-IDF model. Climate was
obtained from the global climate data repository?
It describes historical climate data across different

2The raw data is available at http://www.worldclim.org/,

accessed 18 July 2017.
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geographical locations in Europe. Columns represent
minimum, maximum, and average temperatures and
precipitation in different months, and rows (2575) are
50-by-50 kilometer squares of land where measurements
were made. Although temperatures and precipitation
are seemingly heterogeneous and have different numeric
scales, they are equally important in determining the
climate type. To be able to use both of them together,
prior to performing the standard preprocessing as with
other matrices, we subtract from every column its
mean. NPAS is a nerdiness personality test that uses
different attributes to determine the level of nerdiness
of a person? It contains answers by 1418 respondents
to a set of 36 questions that asked them to self-assess
various statements about themselves on a scale of 1 to
7. We preprocessed NPAS analogously to Climate. Face
is a subset of the Extended Yale Face collection of face
images [5]. It consists of 222 32-by-32 pixel images under
different lighting conditions. We used a preprocessed
data by Xiaofei He et al* We selected a subset of
pictures with lighting from the left. 4News is a subset
of the 20 Newsgroups dataset? containing the usage
of 800 words over 400 posts for 4 newsgroups® Before
running the algorithms we transformed the data to TF-
IDF values, and scaled by dividing each entry by the
greatest entry in the matrix. HPI is a land registry house
price index” Rows (253) represent months, columns
(177) are locations, and entries are residential property
price indices. Further information about these datasets
is available in the full version of this paper [8].
Numerical experiments. The reconstruction er-
rors for all the real-world experiments are shown in
Table 1. Latitude and SVD are competing for the first
place, with Latitude having the best reconstruction er-
ror in 2 datasets and SVD in 3. All other methods fall
significantly behind. It is worth mentioning that SVD has
an advantage in that it its factors are not restricted to
nonnegative values. One can also argue that Latitude
has more degrees of freedom due to having one additional
dimension of parameters. For this reason we also test
the truncated version, called Lat.trunc., that was run
with k£ — 1 dimensions. It is still the third best method
(after SVD and Latitude), beating both NMF and Cancer

3The dataset can be obtained on the online personal-
ity website http://personality-testing.info/_rawdata/NPAS-
data.zip, accessed 18 July 2017.

“http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.
html, accessed 18 July 2017

Shttp://qwone.com/~jason/20Newsgroups/, accessed 18 July
2017

6The authors are grateful to Ata Kabdn for pre-processing the
data, see [13].

7 Available at https://data.gov.uk/dataset/land-registry-
house-price-index-background-tables/, accessed 18 July 2017

Table 1: Reconstruction error for real-world datasets.

Climate NPAS Face 4News HPI
k= 10 10 40 20 15
Latitude 0.023 0.207 0.157 0.536 0.016
Lat.trunc. 0.025 0.213 0.158 0.541 0.017
SVD 0.025 0.209 0.140 0.533 0.015
NMF 0.080 0.223 0.302 0.541 0.124
Cancer 0.066 0.237 0.205 0.554 0.026

by a wide margin. Given these results we can conclude
that the mixed tropical-linear structure is present in
the datasets that we tested, and that Latitude is an
appropriate algorithm to extract this structure.
Interpretation. In order to validate that our ap-
proach also provides interpretable results, we study the
results with Climate and Face in more detail. We used
the ranks from Table 1. NMF is used in climate mod-
els [14], so we would expect this data to have mostly
NMEF structure, but certain phenomena, such as rainfall,
and certain areas, such as mountains or coastal sites, can
well have more subtropical structure. To validate this in-
tuition, we can study the parameter vectors € and ¢ and
matrix a = (o(0; + ¢j))ij' For the Climate data, these
are depicted in Figure 2. Recall that for the parameters,
negative values indicate NMF-type structure, while posi-
tive values indicate subtropical-type structure. Vector @
corresponds to the geographical locations, and its values
are plotted in a map in Figure 2a. As we expected, most
of the data has NMF-type structure (depicted as blue),
but especially Lapland, Portugal, and some mediter-
ranean coastlines have more subtropical-type structure.
These areas probably have some dominating climate
phenomena, for example, heavy rainfall or low tempera-
tures, that is best explained using subtropical structure.
Vector ¢ corresponds to the climate variables. The val-
ues in ¢ are shown in Figure 2b, where we can see that
most variables are negative, that is, they have NMF-type
structure. Precipitation is an exception, as the precipita-
tion variables for January and May are in fact positive,
indicating more subtropical-type structure. The com-
plete parameter matrix « is shown in Figure 2c. Most
elements in the factorization have medium to strong
NMF-type structure, but there exist also elements with
more subtropical-type structure. The vector 8 for the
Face data corresponds to the pixels and is depicted in
Figure 3a. It is clear that the dominating features of
faces — eyes, nose, and mouth, are best expressed us-
ing subtropical-type structure, while the other parts are
better explained using NMF-type structure. This is to
be expected, as the subtropical areas are those where
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Figure 2: Visualizations for the parameters in the decomposition of Climate. (a) Values in vector 0 plotted in
a map. (b) Values in vector ¢ shown as a bar plot. The variables are divided in four groups of twelve months
corresponding to minimum, maximum, and average temperature, and precipitation (tmin, tmax, tave, and rain,
respectively). January is always at the bottom. (c) The matrix o = (0(8; + ¢;)) ;+ Columns are divided in four
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groups of twelve months, as in (b). January is always at the left.

lighting has the largest effects (either as bright areas,
or areas in shadows, depending on the direction of the
light). These extremes are often easiest to describe using
the subtropical structure.

Similarly to Climate, we can also plot the matrix
a® There we notice that there are some faces that
have a strong subtropical structure, and again, most
of the structure is mostly NMF. To validate that also
the factors are interpretable, we present examples from
the left factor matrix B for the Face data in Figure 3c.
We see that factors mostly depict facial features, except
the one at the bottom right, which can be used to add
lighting effects to the bottom left part of the figures.

6 Related Work

Nonnegative matrix factorization is a well-studied data
analysis method, and over time, many algorithms have
been proposed (e.g. [12,14]; see [4] for a comprehensive
treatise). NMF has been applied to many data mining
problems (e.g. [2,15,17]) and algorithms for computing
it are included in all major data analysis packages.

Subtropical (or max-times) matrix factorizations are
less commonly used in data analysis — the first such
use of approximate low-rank SMF was presented by [10]
together with the Capricorn algorithm. Capricorn is
designed for subtropical noise, and later [9] presented
the Cancer algorithm that deals with Gaussian noise.
Recently, Capricorn and Cancer have been unified
under the Equator framework [11], that also provided
other quality functions than the squared error.

In general a tropical semiring is any semiring in
which the addition operation is max or min. Other

8Plots of the o matrix for the other data sets are in [8].

than max-times two well studied examples are the
max-plus and min-plus semirings [3, 6]. Note that
the max-plus and min-plus semirings are isomorphic
via the map h(x) = —z and that this transformation
preserves the norm d(x,y) = |z —y|. Note also that
max-plus (tropical) and max-times (subtropical) are
also isomorphic via h(z) = exp(z), but that the norm
is not preserved by this transformation [10]. This
means that whilst the algebraic structures of max-plus
and max-times are the same, approximation in max-
plus works differently to approximation in max-times.
Intuitively max-times gives a lower weight to relative
perturbations of smaller numbers. Approximation
of network structures by low-rank min-plus matrix
factorization is explored in [7]. Possible applications
of max-plus low-rank matrix factorizations to non-linear
image processing are discussed in [1].

7 Conclusions

Mixed linear—tropical factorization is an interesting
novel model for matrix factorization. By smoothly
combining factorizations over two algebras, it allows us
to model complex structure in an interpretable way. Our
algorithm, Latitude, was able to consistently obtain
better reconstruction errors than either NMF or SMF
algorithms. Indeed, Latitude was often better than even
SVD. And while SVD comes with well-known limitations
to the interpretability, Latitude’s factorization is easier
to interpret due to the nonnegative factor matrices and
intuitive interpretation of the parameter vectors.
While Latitude generally showed superior perfor-
mance compared to NMF or SMF, there were a few
instances where it performed slightly worse, which was
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the Face data.

due to overfitting to the noise. This raises the ques-
tion of the use of regularization in mixed linear—tropical
factorization and is left for future studies.

Latitude has running time which is linear in the
input matrix’s dimensions, making it a rather scalable
method. Its reliance on nonnegative least-squares
optimization, however, can be a limiting factor in scaling
Latitude to big data and distributed systems. Our goal
in this paper was to establish the feasibility and usability
of mixed linear—tropical models, and developing more
scalable algorithms is a natural next step.

In this work we constrained the parameter matrix
a to tropical rank-1 (before the logistic transforma-
tion). As we saw in Proposition 3.1, some constraints
are mandatory for sensible decompositions. It is an in-
teresting open question how much more power would a
tropical rank-2 parameter matrix give. Also, the rela-
tionship between the rank of the factorization and the
rank of the parameter matrix is currently unknown.

References

[1] J. Angulo and S. Velasco-Forero. Non-negative sparse
mathematical morphology. Advances in Imaging and
Electron Physics, 2017.

[2] J.-P. Brunet, P. Tamayo, T. R. Golub, and J. P.
Mesirov. Metagenes and molecular pattern discovery
using matrix factorization. Proc. Natl. Acad. Sci.
U.S.A., 101(12):4164-4169, 2004.

[3] P. Butkovi¢. Maz-Linear Systems: Theory and Algo-
rithms. Springer, 2010.

[4] A. Cichocki, R. Zdunek, A. H. Phan, and S.-i. Amari.
Nonnegative Matriz and Tensor Factorizations: Appli-
cations to Ezxploratory Multi-way Data Analysis and
Blind Source Separation. John Wiley & Sons, Chich-
ester, 2009.

[5] A.S. Georghiades, P. N. Belhumeur, and D. J. Krieg-
man. From few to many: Generative models for recog-

(6]

(9]

[10]

(1]

[12]

(13]

(14]

(15]

[16]

(17]

nition under variable pose and illumination. In FG 00,
pages 277-284, 2000.

B. Heidergott, G. J. Olsder, and J. van der Woude. Maz
Plus at Work: Modeling and Analysis of Synchronized
Systems: A Course on Maz-Plus Algebra and Its
Applications. Princeton University Press, 2005.

J. Hook. Linear regression over the max-plus semiring:
algorithms and applications. arXiv:1712.03499., 2017.
S. Karaev, J. Hook, and P. Miettinen. Latitude: A
model for mixed linear—tropical matrix factorization.
Technical Report 1801.06136, arXiv, 2018.

S. Karaev and P. Miettinen. Cancer: Another Algo-
rithm for Subtropical Matrix Factorization. In ECML-
PKDD ’16, pages 576-592, 2016.

S. Karaev and P. Miettinen. Capricorn: An Algorithm
for Subtropical Matrix Factorization. In SDM 16, pages
702-710, 2016.

S. Karaev and P. Miettinen. Algorithms for approxi-
mate subtropical matrix factorization. Technical Report
1707.08872, arXiv, July 2017.

D. D. Lee and H. S. Seung. Algorithms for Non-negative
Matrix Factorization. In NIPS 01, pages 556-562,
2001.

P. Miettinen. Matriz decomposition methods for data
mining: Computational complexity and algorithms.
PhD thesis, University of Helsinki, 2009.

P. Paatero and U. Tapper. Positive matrix factorization:
A non-negative factor model with optimal utilization of
error estimates of data values. Environmetrics, 5:111—
126, 1994.

V. P. Pauca, F. Shahnaz, M. W. Berry, and R. J.
Plemmons. Text mining using nonnegative matrix
factorizations. In SDM ’04, pages 22—24, 2004.

S. A. Vavasis. On the complexity of nonnegative matrix
factorization. SIAM J. Optim., 20(3):1364-1377, 2009.
W. Xu, X. Liu, and Y. Gong. Document clustering
based on non-negative matrix factorization. In SIGIR
03, pages 267273, 2003.

Copyright (© 2018 by SIAM

Unauthorized reproduction of this article is prohibited



