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ABSTRACT
Communities in graphs are usually modelled as (quasi-) cliques,

but this is not the only – or even necessarily the best – model.

Other models, such as stars, hyperbolic shapes, or core-periphery

communities have been proposed as well. �ese can be generalized

to nested subgraphs, i.e. graphs whose adjacency matrix is nested.

In this paper, we study the problem of summarizing a graph as a

union of nested subgraphs. We approach the problem by applying

a recent characterization of nested graphs using rounding rank.

We extend this characterization to sets of overlapping nested ma-

trices using tropical algebra. �is allows us to model the problem

as a thresholded tropical matrix factorization, and to design an

algorithm for a maximum-likelihood version of the problem. Our

experiments show that our algorithm is very scalable and can �nd

good summarizations using structures that cannot be concisely

expressed in terms of normal matrix factorizations.

CCS CONCEPTS
•Information systems →Data mining; •Computing method-
ologies →Factorization methods;

KEYWORDS
tropical algebra, nested matrix, rounding rank

1 INTRODUCTION
Mining a concise set of dense subgraphs (quasi-cliques) that jointly

explain most of the edges in a graph is a fundamental problem

in graph mining. �asi-cliques are usually identi�ed as the com-
munities of the graph, and the problem of �nding them is called

community detection. Many variants of the problem exist, depend-

ing on whether the communities are allowed to overlap or not

(e.g. [5, 20]), whether the graph has labels [5], and so forth. �asi-

cliques, however, are not the only possible model for communities.

�e core-periphery model [4] in social sciences models communities

having an L-shaped structure: there are densely connected people

in the core of a social network with loose ties to the periphery.

Recently there has been an increasing interest in �nding non-clique

communities [2, 10, 11, 13] and evidence that real-world commu-

nities assume shapes that range from star graphs to hyperbolic

shapes and cliques [2, 11, 13].
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In this paper we study the problem of identifying nested sub-

graphs from given undirected graphs. Nested subgraphs generalize

many of the proposed shapes of communities, including stars, hy-

perbolic structures, core-periphery communities, and cliques. In

addition, nested subgraphs are important in their own right, and

are studied extensively, especially in ecology since the 1980’s [16].

While nested subgraphs o�er a generalized way of summarizing

a graph with a collection of submatrices of its adjacency matrix,

the existing work has required or assumed these submatrices to be

non-overlapping. �is is, however, unrealistic in many applications.

For instance, in ecology, it would mean that no species can be part

of di�erent ecosystems, and widely-spread species would have to

be arti�cially assigned into one ecosystem only; in social networks,

similarly, no person could be a member of multiple communities. To

overcome this problem, we allow the nested submatrices to overlap.

Overlapping community detection is o�en formalized as a ma-

trix factorization problem [5, 20]. �e key observation in these

approaches is that rank-1 submatrices of the adjacency matrix cor-

respond to cliques. Hence, representing the adjacency matrix as a

union (or sum) of rank-1 matrices identi�es the cliques. Re-writing

the union (sum) of rank-1 matrices as a matrix product gives the

standard matrix factorization formulation.
1

Unfortunately, this approach does not work as such for nested

subgraphs, as they are not rank-1 matrices in the conventional

sense. Instead, we base our approach on the recent work on round-
ing rank [15] that gives us a convenient characterization of nested

matrices (see also [3]). Another problem lies in the combination

of nested graphs, as the characterization from rounding rank falls

apart in higher-rank decompositions. �e crux of our approach is

to replace the standard algebra with tropical algebra [8, 9]: we will

show that the characterization of nested matrices under rounding

rank extends naturally to higher-rank tropical decompositions. Fur-

thermore, as nested matrices do not allow any way of assessing the

con�dence of the algorithm, we relax the problem so that we can

obtain the likelihood of the data under the model.

Our main contributions are as follows: (i) We characterize the
task of summarizing a graph with overlapping nested subgraphs
as a thresholded matrix factorization problem over the tropical

algebra. �is characterization provides a new view to the task of

�nding non-clique-looking subgraphs, and will facilitate the design

of algorithms for the task. (ii) We present a probabilistic formulation
of the problem, allowing the assessment of the likelihood of the data

under the model. (iii) We present the �rst algorithm for the problem.

�e algorithm, SLTF, uses our matrix factorization framework, is

very scalable, and can identify nested submatrices that would be

impossible to �nd using conventional methods.

1
�e factorization is Boolean if we take the union [5], and standard or nonnegative if

we take the sum of the rank-1 matrices [20].
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2 BACKGROUND
For an undirected graph G = (V ,E), we use N (v) to denote the

neighbourhood of the vertex v ∈ V : N (v) = {u ∈ V : {v,u} ∈ E}.
�roughout this paper, we will denote a matrix by upper-case

boldface le�ers (A), and vectors by lower-case boldface le�ers (a).

�e ith row of matrix A is denoted by Ai and the jth column by Aj
.

�e union of two graphs over the same set of vertices,G = (V ,E)
and H = (V ,E ′), is the union of their edges: G ∪ H = (V ,E ∪ E ′).
Likewise, for two adjacency matrices A and B, which are binary

n-by-m matrices, we say their union A ∪ B is the element-wise

logical or of the entries of A and B. �at is, (A ∪ B)i j = Ai j ∨ Bi j .
�e threshold function is de�ned as follows.

De�nition 2.1. Let τα : R→ {0, 1}. For a value α ∈ R, we de�ne

τα (x) =

{
1 if x ≥ α

0 otherwise

. (1)

Typical thresholds are α = 1/2 in the binary domain, and α = 0

when working with tropical algebra. If implicitly clear, we will omit

the subscript α subsequently.

Tropical algebra. �e tropical algebra (see e.g. [1]) will be

used for combining nested submatrices.

De�nition 2.2. �e max-plus (or tropical) algebra is de�ned over

the set of extended real numbers R = R ∪ {−∞} with operations

a�b = max{a,b} (addition) and a�b = a + b (multiplication).

�e identity elements for addition and multiplication are −∞ and

0, respectively.

�e tropical matrix product as well as the rank for tropical ma-

trices are de�ned analogously to the classical counterparts:

De�nition 2.3. For two matrices B ∈ R
n×k

and C ∈ R
k×m

their

tropical matrix product is de�ned as

(B�C)i j =
k

max

s=1

{Bis +Cs j } . (2)

De�nition 2.4. We say that a matrix A ∈ R
n×m

has tropical rank-
1 if it can be represented as an outer sum of two vectors, that is

Ai j = bi + c j for some vectors b ∈ R
n×1

and c ∈ R
1×m

.

If a matrix has tropical rank 1, the matrix obtained by its el-

ementwise exponentiation is rank-1 in the classical sense. �e

(Schein/Barvinok) rank of a matrix A over the tropical algebra is de-

�ned analogously to the standard matrix rank as the least number k
of rank-1 matrices Si whose (tropical) sum S1 � S2 � · · ·� Sk = A.

Nested subgraphs. Let G = (V ,E) be an undirected graph.

We say G is nested if we can order the vertices v ∈ V in a sequence

(v1,v2, . . . ,vn ) such that N (vi+1) ⊆ N (vi ) for all i = 1, . . . ,n −
1. For the equivalent de�nition in the adjacency matrix, we use

the concept of a step function. Let [n] = {1, 2, . . . ,n} and [m] =
{1, 2, . . . ,m}. We say that function s : [n] → [m] is a step function
if s(i) ≥ s(j) for all i and all j < i . A binary matrix A ∈ {0, 1}n×m is

directly nested if there exists a step function s such that on each row

i ∈ [n] of A, ai j = 1 if j ≤ s(i) and ai j = 0 if j > s(i). A is nested if

there exists a way to permute its rows and columns such that the

permuted matrix A′ is directly nested. Notice that this de�nition

applies also to asymmetric and even non-square matrices, making

it more general than the graph-based de�nition.

An equivalent way to de�ne a nested matrix is by using the

concept of rounding rank [15]. A binary matrix A ∈ {0, 1}n×m has

nonnegative rounding rank of 1 if and only if there exist nonnegative

vectors x ∈ Rn
≥0

and y ∈ Rm
≥0

such that A = τ (xyT ). Notice that

we apply the threshold function independently to each element of

the matrix xyT . �e nonnegative rounding rank is connected to

nestedness as the following proposition shows:

Proposition 2.5 ([15]). Let A be an arbitrary binary matrix. A
is nested if and only if it has nonnegative rounding rank of 1.

3 RELATEDWORK
Community detection is an important problem in data analysis;

for the purpose of this paper, the methods based on matrix fac-

torizations are the most relevant ones (e.g. [3, 5, 20]). O�en, the

communities are assumed to be quasi-cliques, and NMF [20] and

Boolean matrix factorization [5] have been proposed to �nd over-

lapping quasi-cliques.

On the other hand, the ‘beyond blocks’ movement has argued

that the communities come in more varied shapes than just blocks [2,

4, 10, 11, 13]; stars, biclique cores, and chains are some examples of

the types of communities considered. Studies on real-world graphs

support this argument [2, 13].

Many of these community models are a special case of nested

subgraphs [12, 16]. Although for example [7] used SVD to solve

the segmented nestedness, the connection between nestedness and

continuous matrix factorizations was unclear until the recent char-

acterization of nested matrices via rounding rank [15]. Indepen-

dently, [3] proposed an algorithm called FastStep for doing thresh-

olded nonnegative matrix factorization. Each rank-1 component

of FastStep is nested a�er thresholding, but the full factorization

is not a union of nested matrices (see Section 4.2). Logistic PCA

(LPCA) [17] is an earlier approach for �nding thresholded factor-

izations, although it uses also negative values (and hence has no

nested structure) and the algorithm is not scalable.

Subtropical matrix factorizations have recently been proposed

for �nding ‘winner-takes-it-all’ type decompositions [8, 9] instead

of NMF’s ‘parts-of-whole’, although earlier examples of using the

maximum operator instead of the sum exist as well (e.g. [19]).

4 PROBLEM DEFINITIONS AND THEORY
�e main problem studied in this paper is to (approximately) express

a given unweighted graphG = (V ,E) as a union of nested subgraphs

Ni = (Vi ⊆ V ,Ei ). Formally, for A as the adjacency matrix of G:

Problem 4.1 (Covering by nested submatrices). Given a binary ma-

trixA and an integerk , �ndk nested binary matricesN 1,N 2, . . . ,N k
such that their union Ã =

⋃k
`=1

N ` minimizes∑
i

∑
j :j,i

���Ai j − Ãi j

��� . (3)

Notice that in (3), we do not consider the diagonal, ignoring the

potential self-loops. If the graph G is undirected, A is symmetric

and we assume also the nested matrices N to be symmetric.

4.1 Computational Complexity
To analyse the computational complexity of Problem 4.1, we will

start by analysing its parts. In the �rst problem we are given a
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binary matrix A, and our task is to �nd the nested binary matrix

N that is as close to A as possible (i.e. Problem 4.1 with k = 1).

No polynomial-time algorithm for this problem is known, but the

problem is also not known to be NP-hard [6, Ch. 4.4]. On the other

hand, the problem of �nding the largest nested submatrix of A is

NP-hard [6, �m. 4.13], where the size of the submatrix is counted

as the total number of its rows and columns.

While generating the optimal matrices N i is hard, we can gen-

erate some nested matrices, and choose from them. Unfortunately,

a nested matrix is an example of generalized rank-1 matrix [14],

and hence, given a matrix A and a collection N = {N i }
n
i=1

, it is

NP-hard to choose the smallest subcollection S ⊆ N such that

A =
⋃

N ∈S N (assuming such collection exists). It is also NP-hard

to choose the k matrices from N that minimize the distance be-

tweenA and

⋃k
i=1

N i [14]. Even approximating the error to within

a superpolylogarithmic factor is NP-hard [14].

Conclusively establishing the computational complexity of Prob-

lem 4.1 remains intriguing future work. As many of its subproblems

are NP-hard, it seems reasonable to expect it to be NP-hard.

4.2 Matrix Factorization Formulation
Given Proposition 2.5, it is tempting to think that Problem 4.1 can

be solved by �nding a symmetric nonnegative rounding rank-k
decomposition of A, i.e. an n-by-k nonnegative matrix B such that

τ (BBT ) ≈ A. Unfortunately, this does not solve the problem. �e

nonnegative rounding rank-k decomposition is not equal to the

union of k nested matrices, as the following example illustrates.

Example 4.2. Consider the rank-1 matrices A and B:

A =
©­«

1 1/
√

3 1/3

1/
√

3 1/3 1/
√

27

1/3 1/
√

27 1/9

ª®®¬ B =
©­«
0 0 0

0 1/9 1/3

0 1/3 1

ª®¬ .
τ (A) =

(
1 1 0

1 0 0

1 0 0

)
and τ (B) =

(
0 0 0

0 0 0

0 0 1

)
are nested. But for A + B the

resulting matrix is not the union τ (A) ∪ τ (B) as τ (A + B) has 1s in

the lower-right corner that are not present in either τ (A) or τ (B):

A + B =
©­­«

1 1/
√

3 1/3

1/
√

3 4/9
3+
√

3

9

1/3
3+
√

3

9
10/9

ª®®¬ ,τ (A + B) =
©­«
1 1 0

1 0 1

0 1 1

ª®¬ .
With the tropical algebra we can preserve the original nested

matrices. To see that, we will make use of the following lemma.

Lemma 4.3. Let f : R≥0 → R≥0 be a monotonically increasing
function. �en f and � distribute, that is

f (a�b) = f (a)� f (b) for all a,b ∈ R≥0. (4)

Proof. Without loss of generality, let a > b. �en f (a�b) =
f (a) = f (a)� f (b), following from the monotonicity of f . �

Elementwise exponentiation of a rank-1 tropical matrix produces

a classic rank-1 matrix. In fact, the exponential map establishes an

isomorphic relation between the set of rank-1 tropical matrices and

the nonnegative subset of classical rank-1 matrices: for any nested

matrix N , such that N i j = τ1/2(aib j ) for some vectors a ∈ Rn×1

and b ∈ R1×m
, there exists a tropical rank-1 matrix T such that

N i j = τ0(exp(T i j )). �is can be veri�ed by se�ing T i j = x i + y j ,

where x i = log(bi ) and y j = log(c j ). �e expression of nested

matrices via the tropical algebra can be simpli�ed even further:

Proposition 4.4. Let A ∈ {0, 1}n×m be an arbitrary binary ma-
trix. A is nested if and only if there exist vectors x ∈ R

n×1

and
y ∈ R

1×m
such that Ai j = τ (x i +y j ).

Proof. From Proposition 2.5 we know that Ai j = τ (aib j ) for

some vectors a ∈ Rn×1
and b ∈ R1×m

. De�ne x i = log(ai ) +
log(2)/2 and y j = log(b j ) + log(2)/2. We have

τ (x i +y j ) = τ (log(ai ) + log(b j ) + log(2))

= τ (log(aib j ) − log(2))
(5)

By exponentiating (5) and monotonicity of the exponential function,

we conclude τ (x i +y j ) = 1 if and only if 2 exp(x i ) exp(y j ) ≥ 1. �

�e nested matrix preservation property follows from Lemma 4.3.

Corollary 4.5. Let N i = τ (ai + bi ), i = 1, . . . ,k , be a set of
nested binary matrices, where ai ∈ R

n×1

and bi ∈ R
1×m

for all i .
Let A be the n-by-k matrix with the vectors ai as its columns, and
let B be them-by-k matrix with bi as its columns. �en the rounded
tropical matrix product is the union of the nested matrices:

τ (A�BT ) =
k⋃
i=1

N i . (6)

Proof. We have

τ (A�BT ) = τ ((a1 + b1)�(a2 + b2)� · · ·�(ak + bk ))

= τ (a1 + b1)�τ (a2 + b2)� · · ·�τ (ak + bk )

= τ (a1 + b1) ∪ τ (a2 + b2) ∪ · · · ∪ τ (ak + bk ) ,

where we used (4) in the second equality, and the fact that if a,b ∈
{0, 1} then a�b = a ∨ b in the last equality. �

Hence we can re-write Problem 4.1 as follows.

Problem 4.6 (Rounded tropical factorization). Given an n-by-m

binary matrix A and an integer k , �nd matrices B ∈ R
n×k

and

C ∈ R
k×m

that minimize∑
i

∑
j :j,i

��Ai j − τ (B�C)i j
�� . (7)

For a symmetric decomposition we have A ≈ τ (B�BT ).

4.3 Maximizing the Likelihood of the Data
Problem 4.6 has two issues: it is NP-hard to optimize, and, as (7)

measures the binary reconstruction error, it yields no con�dence
how certain a particular entry should be 1 or 0. �erefore, we re-

place the threshold function τ with the logistic (or sigmoid) function

σt (x) =
(
1 + exp(−tx)

)−1

. (8)

We will omit the subscripts when they are obvious and we will

write σt (A) = B for the matrix B that has Bi j = σt (Ai j ).

Using the sigmoid function, we model the input matrix as a multi-

variate Bernoulli random variable with its odds given by σt (B�C)
(cf. [17]). As the sigmoid function is monotonically increasing, the

distributivity lemma (Lemma 4.3) holds. �us, our goal becomes to
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maximize the likelihood of observing the data. �is is equivalent

to minimizing the negative log-likelihood of A,

E(A,B,C, t) = −
∑
i

∑
j,i

Ai j log(σt (B�C)i j )

−
∑
i

∑
j,i
(1 −Ai j ) log(1 − σt (B�C)i j ) ,

(9)

We can now formulate the maximum likelihood problem:

Problem 4.7 (Logistic-tropical factorization). Given an n-by-m

binary matrix A, an integer k , and t > 0, �nd matrices B ∈ R
n×k

and C ∈ R
k×m

that minimize (9).

For a symmetric decomposition, the objective (9) changes to

E(A,B, t) = − 2

∑
i

∑
j>i

Ai j log(σt (B�BT )i j )

− 2

∑
i

∑
j>i
(1 −Ai j ) log(1 − σt (B�BT )i j ) ,

(10)

which yields the problem we use in the remainder of this work:

Problem 4.8 (Symmetric logistic-tropical factorization). Given an

n-by-n binary matrix A, an integer k , and t > 0, �nd a matrix

B ∈ R
n×k

minimizing (10).

5 ALGORITHM
Real-world networks tend to be very sparse, and hence we need an

algorithm that can solve Problem 4.8 without having to all O(n2)

potential edges. To that end, we use stochastic gradient descent

(SGD) with subsampling of the zeros. SGD is a common approach

for decomposing sparse matrices, but usually – as in collaborative

�ltering – the zero entries are assumed to be unobserved. �is is

not the case here, as the zeros also carry information. Hence, we

use subsampling.

�e algorithm, called SLTF (Symmetric Logistic-Tropical Factor-

ization) and presented in Algorithm 1, runs multiple epochs. On

every epoch, we sample O(|A|) elements, where |A| is the number

of non-zero elements in the matrix, and update the corresponding

rows of the factor matrix. It takes three main parameters: k , the

rank of the decomposition; t , the steepness of the sigmoid function;

and µ that controls the behaviour of the so� max function (see

Section 5.1).

�e factor matrix B is initialized with random numbers from

[−0.1, 0] (Line 2). �is guarantees that the initial solution is sparse.

We use tiered sampling to sample the elements we update (Lines 6

and 7) so that we can ensure that we sample enough 1s even from

the sparsest matrices. We sample the locations Ai j = 1 uniformly,

but to sample the locations of zeros, we use weighted sampling. We

sample a location Ai j = 0 with a probability that is proportional to

the number of 1s in rows i and j of A.

We use separate step sizes for the elements that are 1 and that

are 0 (s1 and s0, respectively). �ese are updated (Line 11) using a

bold driver heuristic: we increase them if the new error is smaller

than the previous one, otherwise we decrease them. In addition,

if the current error is greater on 1s than on 0s, then we increase

the step size for 1s relative to that for 0s, and vice versa. �e actual

gradient updates are explained in detail below.

Algorithm 1 SLTF

Input: A ∈ {0, 1}n×m , k ∈ N, t ∈ R>0, µ ∈ R>0

Output: B ∈ Rn×k

1: function SLTF(A, k, t, µ)
2: Initialize B
3: LL← E(A, B, t )
4: Initialize s1, s0
5: while not converged do
6: idx1 ← sample O ( |A |) 1s uniformly at random

7: idx0 ← sample O ( |A |) 0s weighted by the degree

8: B ← UpdateFactors(A, B, k, t, s1, s0, µ, idx1, idx0)

9: LL
old
← LL

10: LL← E(A, B, t )
11: [s1, s0] ← UpdateStepSizes(s1, s0, LL, LL

old
)

12: return B that had the smallest negative log-likelihood

Computing the objective function (Line 10) has complexityO(n2k)
for n-by-k matrix B. Instead of computing it completely, we approx-

imate it on a sample of size O(|A|), again using tiered sampling.

5.1 UpdateFactors
�e function UpdateFactors (Line 8) follows the SGD approach

and updates the factor matrix B given a sequence of sampled

data points by optimizing the objective locally. We will explain

UpdateFactors using an asymmetric notation A ≈ BC as this sim-

pli�es the discussion. �e symmetric variant will be explained at

the end of this section.

In the standard matrix factorization se�ing the objective of SGD,

‖A − BC‖2F , is represented as a sum of functions that each depend

only on one row of B and one column of C:

‖A − BC‖2F =
∑
i j
(Ai j − (BC)i j )

2 =
∑
i j
φi j (Bi ,C

j ) . (11)

�en, given a sequence of index pairs {i(α), j(α)}lα=1
that corre-

spond to the elements of A, SGD updates the individual rows of B
and columns of C by each time taking a single step in the direction

of the steepest descent of φi(α )j(α )(Bi(α ),C
j(α )).

We adapt the SGD approach to the tropical-logistic factorization

problem. First observe that (9) is additive and can be represented

in a form identical to (11) by se�ing

φi j (Bi ,C
j , t) = −

(
Ai j log(σt (Bi �C j ))

+ (1 −Ai j ) log(1 − σt (Bi �C j ))
)
.

(12)

Unfortunately, φi j are not di�erentiable, as they contain the max

operator. In order to di�erentiate φi j , we replace the maximum

with the so� max function,

max

s=1..k
{xs } ≈

k∑
s=1

e
µxs∑k

j=1
e
µx j

xs =
k∑
s=1

f (xs ,x , µ)xs , (13)

where µ is a relaxation parameter.

Using the so� max in our original objective, we obtain

φi j (Bi ,C
j , t) ≈ −

(
Ai j log(σt (Bi �µ C

j ))

+ (1 −Ai j ) log(1 − σt (Bi �µ C
j ))

)
= φ̃i j (Bi ,C

j , t , µ) ,

(14)
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where �µ denotes the tropical matrix product with the max op-

eration relaxed using parameter µ. For any matrices B ∈ R
n×k

and C ∈ R
k×m

, we have B�µ C → B�C when µ → ∞. We

can now use the gradient of the right side of (14) as a “relax-

ation” of the gradient of φi j (Bi ,C
j , t). Note that since the functions

φ̃i j (b,c, t , µ) depend only on elementwise sums of the vectors b
and c , we have 5b φ̃i j (b,c, t , µ) = 5c φ̃i j (b,c, t , µ). If we denote

x = b + c , a = Ai j , and maxµ (x) =
∑k
s=1

f (xs ,x , µ)xs , then the

relaxed value of
∂

∂b l
φ̃i j (b,c, t , µ) is given by

− t
[
a(1 − σt (b�µ c)) + (1 − a)(1 − σt (−b�µ c))

] ∂
∂bl

b�µ c ,

where

∂

∂bl
b�µ c = f (xl ,x , µ)

[
µ(xl −max

µ
(x)) + 1

]
. (15)

Finally, to adapt (15) to our symmetric objective, we need to set

b = Bi and c = BTj and recall that the gradients with respect to Bi
and B j are the same.

5.2 Time Complexity of SLTF
�e major contributors to the complexity of SLTF are the com-

putation within UpdateFactors and computing the likelihood of

the data given the current factor matrix. On every iteration of

SLTF, UpdateFactors performs updates to B for each of theO(|A|)
sampled data points. Each time it has to compute the gradient of

φ̃i j (Bi ,B
T
j , t , µ) and then update Bi and B j . Both of these proce-

dures take timeO(k), and hence the complexity of UpdateFactors
isO(|A| k). Since we use a �xed number of samplings for estimating

the likelihood, and an evaluation of the likelihood at a single point

takes O(k) time, the complexity of approximating the objective is

O(|A| k). Other parts of SLTF are not as computationally expensive

– initializing B takes timeO(nk) and the complexity of SampleData
is O(|A|). If M is the total number of cycles performed by SLTF,

then its total complexity is O(Mk(n + |A|). Due to the complex

objective, proofs of speed of convergence seem hard to obtain.

One of the bene�ts of SGD is that it allows us to parallelize the

algorithm: we can use a partitioned approach, an asynchronous

distributed approach, or other parallelization methods for SGD

(see e.g. [18] and references therein). For our implementation,

we use shared-memory parallelization over the di�erent elements

we update, and SIMD vectorization over the individual gradient

computations.

6 EXPERIMENTAL EVALUATION
In this section we experimentally test SLTF and compare it to other

methods. We �rst describe the competing algorithms, then report

the performance for synthetically generated data, and �nish with

the results on various real-world data.

SLTF is implemented in Matlab and C and uses OpenMP for

parallel processing. �e source code for SLTF, the scripts to generate

synthetic data and to execute the experiments, together with the

parameters used in all experiments, are freely available.
2

For all

of these experiments, we ran SLTF for 600 iterations without any

early stopping criteria.

2
h�p://people.mpi-inf.mpg.de/∼pmie�in/tropical/logistic/

6.1 Methods and metrics
To evaluate SLTF, we compare it against existing approaches. �ese

can be divided into three classes: Basic matrix factorization meth-

ods – NMF and Asso– aim for �nding a good decomposition of the

input using real values, nonnegative real values, or Boolean algebra,

respectively. As NMF and Asso both are asymmetric decompositions,

we also experimented with a symmetric version of NMF, NMFsym, that

has formatWWT
orHTH , depending on which one gives less error.

We also tried to use the factors found by NMF in a logistic tropi-

cal factorization, i.e. σ (W 1H1)�σ (W 2H2)� · · ·�σ (W kHk ). We

call this version NMF�. It solves Problem 4.7, but since NMF does

not try to optimize for this, it is not expected to perform as well as

SLTF.

�e second group involves methods that directly �nd thresholded

decompositions. �e main methods here are LPCA and FastStep
(see Section 3). We use the approximate version of FastStep with

at least 10 internal iterations, as suggested.

�e third group contains just one method, HyCoM-FIT [2]. It

�ts power-law models to non-overlapping communities. Since

HyCoM-FIT does not decompose the data in the matrix factorization

sense, we obtain its reconstruction matrix by joining the top k
largest communities predicted by its model.

We measure the quality using two metrics: negative log-likelihood

(10) and relative binary reconstruction error. Assuming
˜A is the ap-

proximation a method gave for input matrix A, the relative binary

error is ‖A − τα ( ˜A)‖2F /‖A‖
2

F . Here, α is selected to be correct with

the method (usually α = 1/2) and we set the diagonal of A and
˜A to

all-zeros to ignore self-loops. Notice that ‖A‖2F simply calculates

the number of non-zeros in A, as A is binary. Also note that every

column b of the factor matrix B yields a nested matrix, which can

be seen by applying the thresholding τ (σ (b + bT )).
Most methods do not optimize for our likelihood model, and

hence the binary error is more fair measure for them. All methods

are run 10 times on the synthetic data and 3 times on the real data

to account to the random variance and select a good result. A�er

the required number of runs, we return the best result.

6.2 Synthetic data
In the synthetic experiments we test whether SLTF can �nd the

logistic tropical structure when it is present in the data. To generate

the data, we �rst create the factor matrix B ∈ Rn×k , and compute

the thresholded product A = τ (σt (B�BT )).
Unless speci�ed otherwise, we generated matrices of size 1000×

1000 with matrix B having dimensions 1000 × 10 (i.e. rank 10). By

default, the input matrix density is set to 3 %, and the levels of both

additive and destructive noise to are 5 %. In every experimental

setup we vary one of the above parameters, while keeping the rest

�xed. �e number of nonzeros in the synthetic data sets ranges

from less than 1000 to roughly 120 000.

All algorithms were run 5 times on each matrix, with the best

result being selected. We do not report the results for LPCAsym or

NMF�, as their original versions rely heavily on the ability to use

asymmetric factors, and hence their errors were orders of mag-

nitude worse than those of other methods. For the negative log-

likelihood, we also show the likelihood the original factors would

give.

http://people.mpi-inf.mpg.de/~pmiettin/tropical/logistic/
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We will �rst present the experimental setups before discussing

the results in detail.

Varying additive noise. �e level of additive noise (i.e. re-

placing 0s with 1s) is de�ned with respect to the number of 1s in

the data. We varied the noise from 0 % to 55 % with increments of

5 %. �e results are in Figures 1a and 1g.

Varying additive noise with 12 % density. �is setup only

di�ers from the one above in that the factor matrix density is 12 %.

�e results are in Figures 1c and 1i.

Varying destructive noise. �e level of destructive noise

(turning 1s to 0s) rises from 0 % to 55 % with increments of 5 %.

�e results are shown in Figures 1b and 1h, and the results of the

dense version in Figures 1d and 1j.

Varying density. We varied the density of the input matrix

A from 1 % to 12 % with increments of 1 % and report the errors in

Figures 1e and 1k.

Varying rank. In this setup we investigate how the algorithms

respond to varying the (tropical logistic) rank of the data. We varied

the number of columns of the factor matrix B from 2 to 12 with

increments of 2. �e results are shown in Figures 1f and 1l.

Scalability. Here we test how well SLTF scales with respect to

the number of non-zeros (edges), rows (nodes), rank, and computing

cores. �e results are in Figure 2. �ese experiments were run on

an Intel Xeon E5-2667 CPU with 16 cores at 3.2 GHz. When not

varied, these matrices had 2
13

rows and columns and 2
13

non-zeros.

We used rank 50 and sixteen cores.

Discussion. SLTF and LPCA give the best overall results. For

the most part they are quite close, with SLTF producing somewhat

be�er results on the varying density test and LPCA being slightly

be�er with additive noise. �e close results of SLTF and LPCA are

not surprising because we tested them on SLTF’s native data, while

LPCA has more degrees of freedom. It is worth noting that both SLTF
and LPCA produce likelihoods that are be�er than those of original

factors that were used to generate the data. While this might seem

strange, it is easily explained by the fact that the original factors

were merely used for generating binary matrices and not optimized

for the likelihood. In contrast to SLTF and LPCA, the NMF-based

methods do not show good results with either likelihood or binary

error. FastStep gives quite good binary reconstruction errors,

although it is on average inferior to SLTF and LPCA. Asso, on the

other hand, has consistently high reconstruction errors, indicating

that the structure of the data is very di�erent from what it expects.

SLTF is a scalable algorithm – its running time grows moderately

relative to the number of non-zeros; indeed, we can increase the

number of non-zeros by 32-fold (from 2
16

to 2
20

) while only dou-

bling the running time (from 4 to 8 seconds). �e behaviour with

respect to the number of rows and factorization rank is also good,

as expected by the runtime analysis. �e algorithm also shows

good speedups with increasing numbers of cores.

�e synthetic experiments con�rm that SLTF behaves as ex-

pected: high noise levels do have an e�ect, but otherwise it is quite

robust against the characteristics of the data.

6.3 Real-world data
�e real-world experiments are conducted to validate that our �nd-

ings on the synthetic experiments correlate with the real world.

Table 1: Properties of small real-world data sets. All matri-
ces are symmetric and k denotes the rank used for recon-
struction.

MamN MamE Jazz Paleo 4News Christ.

# rows 3203 194 198 139 800 1736

# nonzeros 864083 21844 5484 8995 263400 15010

density 0.084 0.580 0.139 0.465 0.411 0.005

k 40 10 5 6 10 30

We will also use the real-world data to study what kind of rank-1

matrices SLTF �nds. It is important to note that, as with many

other matrix factorization methods, there is no general way of de-

termining the best rank for SLTF. �e user might apply their prior

knowledge about the nature of the data, but in most cases some

empirical search for the best rank will be needed.

Data sets. We used two sets of real-world data sets: smaller

sets where we could compare all di�erent methods, and larger sets,

where only SLTF was able to run.

�e smaller data sets are MamN , MamE , Jazz, Paleo, 4News,
and Christ.. �eir properties are listed in Table 1, and further

information is given in our online appendix.
3

�e larger data sets come from the SNAP dataset collection.
4

We

preprocessed the datasets by removing nodes that were not part

of communities of size at least 100. �at le� us with: YouTube, a

graph of 20 329 nodes, 133 communities, and a density of 0.061 %;

DBLP, a graph of 212 637 nodes, 954 communities, and a density

of 0.004 %; Amazon, a graph of 299 902 nodes, 1675 communities,

and a density of 0.002 %; and LiveJournal, a graph of 775 003 nodes,

9314 communities, and a density of 0.003 %.

Numerical results. We report the binary errors for all meth-

ods in Table 2; log-likelihoods are available in the online appendix.

With the small real-world data sets, LPCA is the best, obtain-

ing o�en perfect reconstructions (behaviour also observed in [15]).

One should note, however, that LPCA is an asymmetric decompo-

sition and clearly the slowest of the methods presented here. �e

symmetric version of LPCA, LPCAsym, is among the worst methods.

FastStep �nds decompositions with reconstruction error compa-

rable to or be�er than SLTF. It does this with a signi�cantly slower

running time, though. Hence, we also tested a version with the min-

imum number of iterations set to 5 instead of 10, called FastStep5.

�is improved the running time to be comparable to SLTF, but with

a signi�cant cost in quality. Finally, while some NMF results are of

comparable quality, one should remember that it is not symmetric.

As only LPCA and FastStep were really comparable to our re-

sults, we tried to use them with the larger real-world data sets. For

LPCA, this was clearly undoable, while FastStep5 managed to run

YouTube in a bit over 9 h, compared to the 22 min SLTF took, and it

could not �nish DBLP in a week. Hence, we will only report results

from SLTF: Table 3 gives the negative log-likelihoods relative to the

data size for the di�erent data sets, together with the rank and the

time SLTF took on a 16-core server.

As can be seen from Table 3, YouTube gives clearly the best result.

�is is probably a combination of the data being more amenable to

3
h�p://people.mpi-inf.mpg.de/∼pmie�in/tropical/logistic/

4
h�p://snap.stanford.edu/data/

http://people.mpi-inf.mpg.de/~pmiettin/tropical/logistic/
http://snap.stanford.edu/data/
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Table 2: Binary error for small real-world data sets

MamN MamE Jazz Paleo 4News Christ.

SLTF 0.184 0.033 0.508 0.110 0.264 0.567

LPCA 0.000 0.000 0.305 0.000 0.222 0.000

LPCAsym 8.682 0.624 3.891 0.394 0.850 203.900

NMF 0.189 0.158 0.481 0.169 0.325 0.503

NMFsym 10.910 0.729 5.531 1.136 1.434 201.600

NMF� 0.477 0.544 0.577 0.320 0.525 0.539

Asso 0.336 0.202 0.562 0.228 0.423 0.542

HyCoM-FIT 0.869 0.842 0.829 0.968 0.955 2.128

FastStep 0.024 0.021 0.405 0.120 0.236 0.236

FastStep5 0.024 0.444 1.750 0.120 1.109 1.109

Table 3: Rank, relative negative log-likelihood, and time for
large real-world data sets and SLTF

YouTube DBLP Amazon LiveJournal

rank 133 954 1675 5000

log L/n2
0.0091 0.0283 0.0277 0.0440

time 22 min 263 min 441 min 36 h

the model and SLTF having a be�er initial solution or parameter

con�guration for the data (all results are best-of-3 restarts, but we

tuned the parameters for the YouTube data). Nonetheless, SLTF
was relatively fast with all data sets, including the large ones; for

example, on LiveJournal, storing the 775003 × 5000 factor matrix in

64-bit �oating point numbers takes approximately 31 GB.

Example results. To understand the kind of decompositions

SLTF �nds, and to evaluate our assumption that the datasets have

nested communities, we looked at the factors in the real-world

datasets. Example rank-1 matrices are shown in Figure 3. We see

that the communities are nested, and that the area under the blue

curve, which is where our factorization gives likelihoods above

1/2, is also dense, while the area above it is much sparser. �e

shape of these communities also varies. �e le�most community

(from Christ.) has near star-like structure, in the next (from Jazz)
the line is almost diagonal. �e third community (from MamN )

shows a concave line, while the last one (also from MamN ) has

a more convex structure. Notice that all these submatrices have

essentially full rank, and are hence very hard to describe using

standard algebra.

�ese di�erent communities provide an empirical veri�cation

for three of our hypotheses: First, the communities in the di�erent

real-world graphs are indeed nested. Second, the nested structure

is not only ‘hyperbolical’ (cf. [2, 13]). �ird, SLTF can �nd these

non-clique-like structures from di�erent data sets.

7 CONCLUSIONS
Covering a graph with nested subgraphs seems like an inherently

combinatorial problem. But using the rounding rank characteriza-

tion of nested matrices together with the tropical algebra, we could

express it as a continuous problem. �is allows us to use optimiza-

tion methods, such as stochastic gradient descent, that would not

be applicable to the combinatorial domain. It seems plausible that

also other types of graph pa�erns could be modelled in a similar

vein, allowing novel algorithms to be developed also for them.

�e use of SGD also allows us to utilize the vast literature on

parallel and distributed implementations. For this work, we have

only studied a shared-memory parallel implementation, but a dis-

tributed approach is equally viable. It can also solve the biggest

e�ciency bo�leneck of our approach, namely that the factor matrix

B is dense and storing it is memory-intensive for larger matrices.

Sometimes, the goal of identifying the communities is to com-
press the matrix (see, e.g. [10, 11]). Here nested submatrices can

also be used – the main problem is then how the nestedness struc-

ture should be expressed: using the continuous-valued vectors (as

done here), or the step function. Di�erent expressions will lead

to di�erent compression, and potentially also to di�erent-looking

results. We leave further studies on this for future research.

Being mainly interested in undirected graphs, we designed SLTF
for symmetric matrices. An asymmetric version would not be a

signi�cant change, though. An asymmetric algorithm could be used

on directed or bipartite graphs (e.g. locations-by-species matrices).
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Figure 1: Negative log-likelihoods (a–f) and binary reconstruction errors (g–l) on synthetic data. All results are averages over
10 random matrices and the width of the error bars is twice the standard deviation.
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Figure 2: Scalability of SLTF with respect to (from le� to right) number of non-zeros; dimensionality; rank; number of cores.
All values are means over �ve restarts. Notice that the �rst two plots have logarithmic x-scale.

Figure 3: Example nested factors. Datasets from le�: Christ., Jazz, and MamN (twice).�e orange dots are the 1s in the matrix
and the found community is the area le� and down from the blue line.
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