
Clustering Boolean Tensors

Saskia Metzler and Pauli Miettinen

Max Planck Institut für Informatik
Saarbrücken, Germany

{saskia.metzler, pauli.miettinen}@mpi-inf.mpg.de

Abstract. Tensor factorizations are computationally hard problems, and
in particular, often are significantly harder than their matrix counterparts.
In case of Boolean tensor factorizations – where the input tensor and all
the factors are required to be binary and we use Boolean algebra – much
of that hardness comes from the possibility of overlapping components.
Yet, in many applications we are perfectly happy to partition at least one
of the modes. In this paper we investigate what consequences does this
partitioning have on the computational complexity of the Boolean tensor
factorizations and present a new algorithm for the resulting clustering
problem. While future work aims at further tuning our algorithm for
Boolean tensor clustering, it already now can obtain better results than
algorithms solving different relaxations of the problem.

1 Introduction

Tensors become increasingly popular data representations in data mining. Ternary
(or higher order) relations, for instance, can be represented as binary 3-way
(or multi-way) tensors. Given such data, the question is whether there is any
underlying structure or regularity in the data. To approach that question, typically
tensor decomposition methods are applied. In this work, we restrict ourselves to
binary data and also restrict the factors in the decomposition to be binary.

Tensor decompositions with similar restrictions have previously been studied:
Cerf et al. [3] present an algorithm for the extraction of noise-tolerant itemsets
in binary relations. Erdős and Miettinen [6] propose a scalable algorithm for
Boolean CANDECOMP/PARAFAC (CP) and Tucker decompositions, and apply
it to information extraction [5].

The novelty of the Boolean tensor decomposition approach we present is the
restriction to non-overlapping factors in one mode. This takes apart complexity
from the task and also often fits the structure of real-world data. For example in
subject–relation–object data, the relations are non-overlapping: While a subject
can be linked to multiple objects and vice versa, the relation is a property of the
link between them. The algorithm we present has better approximability results,
is simpler than previous algorithms, and also outperforms them.

Existing work relates to different aspects of our approach: Jegelka et al. [9]
study the problem of clustering simultaneously all modes of a tensor (tensor
co-clustering). In the context of formal concept analysis, Belohlavek et al. [2] use

triadic concepts to obtain an optimal decomposition of three-way binary data.
That approach is extended to approximate solutions by Ignatov et al. [8]. Huang
et al. [7] and Liu et al. [12] (among others) study the problem where only one
mode is clustered and the remaining modes are represented using a low-rank
approximation. The latter form is closer to what we study in this paper, but the
techniques used in the continuous methods do not apply to the binary case.

2 Preliminaries

Throughout this paper, we indicate vectors as bold lower-case letters (v), matrices
as bold upper-case letters (M), and tensors as bold upper-case calligraphic letters
(T). Element (i, j, k) of a 3-way tensor X is denoted as xijk. A colon in a subscript
denotes taking that mode entirely; for example, X ::k is the kth frontal slice of
X (shorthand Xk).

A tensor can be unfolded into a matrix by arranging its fibers (i.e. its columns,
rows, or tubes in case of a 3-way tensor) as columns of a matrix. For a mode-n
matricization, mode-n fibers are used as the columns and the result is X(n).

The outer product of vectors is denoted by �. For vectors a, b, and c of
length n, m, and l, X = a� b� c is an n-by-m-by-l tensor with xijk = aibjck.

The Boolean tensor sum of binary tensors X and Y is defined as (X ∨Y)ijk =
xijk ∨ yijk. For binary matrices X and Y where X has r columns and Y has r
rows their Boolean matrix product, X ◦Y , is defined as (X ◦Y)ij =

∨r
k=1 xikykj .

The Boolean matrix rank of a binary matrix A is the least r such that there
exists a pair of binary matrices (X,Y) of inner dimension r with A = X ◦ Y .

Definition 1 (Boolean tensor rank). The Boolean rank of a 3-way binary
tensor X , rankB(X), is the least integer r such that there exist r triplets of
binary vectors (ai, bi, ci) with X =

∨r
i=1 ai � bi � ci .

A binary matrix X is a cluster assignment matrix if each row of X has exactly
one non-zero element. In that case the Boolean matrix product corresponds to
the regular matrix product, X ◦ Y = XY .

For a tensor X , |X | denotes its number of non-zero elements. The Frobenius

norm of a 3-way tensor X is ‖X‖ =
√∑

i,j,k x
2
ijk. If X is binary, |X | = ‖X‖2.

The similarity between two n-by-m-by-l binary tensors X and Y is defined as
sim(X ,Y) = nml − |X −Y |.

Let X be n1-by-m1 and Y be n2-by-m2 matrix. Their Kronecker (matrix)
product, X ⊗ Y , is the n1n2-by-m1m2 matrix defined by

X ⊗ Y =


x11Y x12Y ··· x1m1

Y

x21Y x22Y ··· x2m1
Y

...
...

. . .
...

xn11Y xn12Y ··· xn1m1Y

 .

The Khatri–Rao (matrix) product of X and Y is defined as ‘column-wise
Kronecker’. That is, X and Y must have same number of columns (m1 = m2 =

m), and their Khatri–Rao product X � Y is the n1n2-by-m matrix defined as
X � Y =

(
x1 ⊗ y1,x2 ⊗ y2, . . . ,xm ⊗ ym

)
. Notice that if X and Y are binary,

so are X ⊗ Y and X � Y .
The Boolean tensor CP decomposition mirrors the standard tensor CP de-

composition.

Definition 2 (Boolean CP). Given an n-by-m-by-l binary tensor X and an
integer r, find binary matrices A (n-by-r), B (m-by-r), and C (l-by-r) such that
they minimize |X −

∨r
i=1 ai � bi � ci|.

Following Kolda and Bader [11], we use [[A,B,C]] to denote the normal 3-way
CP and [[A,B,C]]B for the Boolean CP. We can also write the Boolean CP
as matrices using unfolding. The matrix product has to be the Boolean matrix
product while the Khatri–Rao product is closed under the Boolean algebra:

X(1) = A ◦ (C �B)T , X(2) = B ◦ (C �A)T , X(3) = C ◦ (B �A)T . (1)

Both problems, finding the least error Boolean CP decomposition and deciding
the Boolean tensor rank, are NP-hard [13].

3 Problem Definition

We consider the variation of tensor clustering where the idea is to cluster one
mode of a tensor and potentially reduce the dimensionality of the other modes.

Assuming a 3-way tensor and that we do the clustering in the last mode, we
can express the Boolean CP clustering (BCPC) problem as follows:

Definition 3 (BCPC). Given a binary n-by-m-by-l tensor X and an inte-
ger k, find matrices A ∈ {0, 1}n×k, B ∈ {0, 1}m×k, and C ∈ {0, 1}l×k such
that C is a cluster assignment matrix and that the tuple (A,B,C) maximizes
sim(X , [[A,B,C]]B)

To understand what BCPC does, we use the unfolding rules (1) and write
X(3) ≈ C(B�A)T , where we can see that we have restricted the type of cluster
centroids: While in a general clustering problem, we would aim to cluster the
frontal slices of X into k clusters each represented by an n-by-m matrix, in this
setting each cluster representative has to be of type (b⊗ a)T . This restriction on
the cluster centroids plays a crucial role in the decomposition, as we shall see
shortly.

4 Solving Maximum-Similarity BCPC

Given a tensor X , for the optimal solution to BCPC, we need matrices A, B, and
C that maximize sim(X(3),C(B �A)T). If we replace B �A with an arbitrary
binary matrix, this would equal the hypercube segmentation problem defined
in [1]: Given a set S of l vertices of the discrete d-dimensional cube {0, 1}d, find
k vertices P1, . . . , Pk ∈ {0, 1}d and a partition of S into k segments to maximize∑k

i=1

∑
c∈S sim(Pi, c). Therefore we employ an algorithm that resembles those

for hypercube segmentation, with the added restrictions to our centroid vectors.

Algorithm 1 SaBoTeur algorithm for the BCPC

Input: A 3-way binary tensor X , number of clusters k, number of samples r.
Output: Binary factor matrices A and B; cluster assignment matrix C.
1: function SaBoTeur(X , k, r)
2: repeat
3: Sample k rows of X(3) into matrix Y
4: Find binary matrices A and B that maximize sim(Y , (B �A)T)
5: Cluster C by assigning each row of X(3) to its closest row of (B �A)T

6: until r resamples are done
7: return best A, B, and C
8: end function

4.1 The Algorithm

Alon et al. [1] gave an algorithm for the hypercube segmentation problem that
obtains similarity within (1 − ε) of the optimum. The running time of the

algorithm is eO((k2/ε2) ln k)nml for n-by-m-by-l data. While technically linear in
data size, the first term turns the running time unfeasible even for moderate
values of k (the number of clusters) and ε. We therefore base our algorithm
on the simpler algorithm by Kleinberg et al. [10] that is based on random
sampling. This algorithm obtains an approximation ratio of 0.828 − ε with
constant probability and running time O(nmlk(9/ε)k ln(1/ε)). While the running
time is still exponential in k, it is dominated by the number of samples we
do: each sample takes time O(nmlk) for k clusters and n-by-m-by-l data. For
practical purposes, we can keep the number of samples constant (with the cost
of losing approximation guarantees, though).

Our algorithm SaBoTeur (Sampling for Boolean Tensor clustering), Algo-
rithm 1, considers only the unfolded tensor X(3). In each iteration, it samples k
rows of X(3) as the initial, unrestricted centroids. It then turns these unrestricted
centroids into the restricted type in line 4, and then assigns each row of X(3) to
its closest restricted centroid. The sampling is repeated multiple times, and in
the end, the factors that gave highest similarity are returned.

The algorithm is extremely simple, which is an asset as it gives a very fast
algorithm that, as we shall see in Section 5, also performs very well. In line 3 the
algorithm samples k rows of the data as its initial centroids. Kleinberg et al. [10]
proved that among the rows of X(3) that are clustered into the same optimal
cluster, one is a good approximation of the (unrestricted) centroid of the cluster.
Intuitively, then, if we sample one row from each cluster, the sample has a high
probability of inducing a close-optimal clustering.

4.2 Binary Rank-1 Matrix Decompositions

The final piece of the SaBoTeur algorithm is to turn the unrestricted centroids
into the restricted format required by the BCPC problem (line 4). We start by
showing that this problem is equivalent to finding the maximum-similarity binary
rank-1 decomposition of a binary matrix:

Algorithm 2 Approximate maximum-similarity binary rank-1 decompositions

Input: An n-by-m binary matrix X.
Output: Binary vectors a and b.
1: function A(X)
2: for all rows xi of X do
3: Let b = xi

4: Find a maximizing sim(X,abT)
5: end for
6: return best vectors a and b
7: end function

Definition 4 (Binary rank-1 decomposition). Given an n-by-m binary ma-
trix X, find an n-dimensional binary vector a and an m-dimensional binary
vector b that maximize sim(X,a� b).

Lemma 1. Given an k-by-nm binary matrix X, finding n-by-k and m-by-k
binary matrices A, B that maximize sim(X, (B �A)T) is equivalent to finding
the most similar binary rank-1 approximation of each row x of X, where the
rows are re-shaped as n-by-m binary matrices.

Proof. If xi is the ith row of X and zi is the corresponding row of (B �A)T ,

then sim(X, (B �A)T) =
∑k

i=1 sim(xi, zi), and hence we can solve the problem
row-by-row. Let x = (x1,1, x2,1, . . . , xn,1, x1,2, . . . , xn,m) be a row of X. Re-write
x as an n-by-m matrix in column major order.

Consider the row of (B�A)T that corresponds to x, and notice that it can be
written as (b⊗ a)T , where a and b be the columns of A and B that correspond
to x. As (b⊗ a)T = (b1a

T , b2a
T , · · · , bmaT), re-writing it similarly as x we get

(b⊗a)T = (a1b1, a2b1, . . . , anb1, a1b2, . . . , anbm) = abT = a�b. Thus, we obtain
sim(x, (b⊗ a)T) = sim(Y ,a� b). ut

We present a simple, deterministic algorithm that approximates the maximum
similarity within 0.828, Algorithm 2. It is similar to the algorithm for hypercube
segmentation based on random sampling presented by Kleinberg et al. [10]. The
algorithm considers every row of X as a potential vector b and finds the best a
given b. Using Lemma 3.1 of [10] it is straight forward to show that the algorithm
achieves the claimed approximation ratio:

Lemma 2. Algorithm 2 approximates the optimum similarity within 0.828 in
time O(nmmin{n,m}).

Proof. To prove the approximation ratio, let a∗(b∗)T be the optimum decompo-
sition. Consider the rows in which a∗ has 1. Per Lemma 3.1 of [10], selecting one
of these rows, call it b, gives us sim(X,a∗bT) ≥ (2

√
2− 2)sim(X,a∗bT) (notice

that a∗bT agrees with the optimal solution in rows where a∗ is zero). Selecting a
that maximizes the similarity given b can only improve the result, and the claim
follows as we try every row of X.

If n < m, the time complexity follows as for every candidate b we have to
make one sweep over the matrix. If m < n, we can operate on the transpose. ut

4.3 Discussion

Lemma 1 gives us yet another way of interpreting BCPC, namely, in BCPC
each centroid must be a binary rank-1 matrix. One could define a more general
variant where the centroids are arbitrary-rank binary matrices. Between these
two extrema is a problem where the (Boolean) ranks of the centroids are bounded
from above by some constant r < min{n,m}. For such a problem, however,
finding the centroids is even harder than it is now, as it essentially requires us to
solve the Boolean matrix factorization problem which is a hard problem even to
approximate [14].

5 Experimental Evaluation

5.1 Other Methods and Evaluation Criteria

We decided to compare SaBoTeur to other Boolean tensor CP methods, and for
some real-world experiments we also used a continuous CP method.

The Boolean CP methods we used for comparison were BCP ALS [13] and
Walk’n’Merge [6]. BCP ALS is based on iteratively updating the factor matrices
one at a time (similarly to the classical alternating least squares optimizations),
while Walk’n’Merge is a recent algorithm for highly scalable Boolean tensor
factorization in sparse binary tensors. We did not use Walk’n’Merge on synthetic
data as BCP ALS is expected to perform better on smaller and denser tensors [6]
but we used it on larger real-world tensors; BCP ALS, on the other hand, does not
scale well to larger tensors and hence we had to omit it from some experiments.

Of the continuous methods we used CP APR [4] (implementation from the
Matlab Tensor Toolbox v2.51), an alternating Poisson regression algorithm that
is specifically developed for sparse (counting) data.

For synthetic data, we report the relative similarity, that is, the fraction of
the elements where the data and the clustering agree. For real-world data, we
report the error measured using the squared Frobenius norm. This norm however
can help the real-valued methods, as it scales all errors less than 1 down, but at
the same time, small errors cumulate unlike with fully binary data. To alleviate
this problem, we also rounded the reconstructed tensors from CP APR to binary
tensors. From different rounding thresholds between 0 and 1 we selected the one
that gave the lowest (Boolean) reconstruction error.

5.2 Synthetic Experiments

To test the SaBoTeur algorithm in a controlled environment we created synthetic
data sets that measured the algorithm’s response to (1) different numbers of
clusters, (2) different density of data, and (3) different levels of noise. All tensors
were 700-by-500-by-50. All data sets were created by first creating ground-truth
binary factor matrices A, B, and C. The default number of clusters was 7 and

1 http://www.sandia.gov/~tgkolda/TensorToolbox/

3 5 7 9 11 13 15
0.9

0.91

0.92

0.93

0.94

0.95

0.96

Number of clusters

R
e
la

ti
v
e
 s

im
ila

ri
ty

SaBoTeur

BCP_ALS

(a) Varying number of clusters.

0.1 0.15 0.2 0.25 0.3
0.84

0.86

0.88

0.9

0.92

0.94

0.96

Factor density

R
e
la

ti
v
e
 s

im
ila

ri
ty

SaBoTeur

BCP_ALS

(b) Varying density of the factors.

Fig. 1. Synthetic experiment results. Markers are at the mean over five random tensors
and the width of the errorbars is twice the standard deviation.

the default density of A and B was 0.2. A symmetric random noise was applied
to the tensor and flipped 4% of the elements by default.

We varied each of the three features one at a time keeping the others in their
default values, and created 5 random copies on each parameter combination.
The results we report are mean values over these five random copies. In all
experiments, the number of clusters (or factors) was set to the true number of
clusters used to create the data. The number of re-samples in SaBoTeur was set
to r = 20 in all experiments. We only used BCP ALS to compare against in the
synthetic experiments.

Varying the number of clusters. The number of clusters varied from 3 to 15 with
steps of 2. The results are shown in Figure 1a. Perhaps the most surprising result
here is how much better SaBoTeur is compared to BCP ALS, especially given that
SaBoTeur’s answer is a valid Boolean CP decomposition.

Varying the density. The density of the factor matrices varied from 10% to 30%
with steps of 5%. The results can be seen in Figure 1b. Again SaBoTeur is better
than BCP ALS: it has gradually declining slope for increased density, whereas
BCP ALS’s results dive much faster.

Varying the noise. In the final synthetic experiment, we varied the noise level
between 2% and 10% with steps of 2%. As is to be expected, increasing the noise
decreases the results of both algorithms. Both algorithms exhibit roughly linear
decrease in the similarity w.r.t. noise level, but SaBoTeur is again consistently
the better of the two (results not shown).

Scalability. SaBoTeur is implemented in Matlab2 and we run the scalability tests
on a dedicated machine with 8 Intel Xeon E5530 2.4GHz processors and 48GB

2 The code is available from http://www.mpi-inf.mpg.de/~pmiettin/btc/

10 20 30 40

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Number of clusters

T
im

e
 (

s
e

c
)

SaBoTeur

(a) Varying the number of clusters.

200 400 600 800
0

1

2

3

4

5

6

7

Dimensionality of first and second mode

T
im

e
 (

s
e
c
)

SaBoTeur

(b) Varying the dimensionality of the data.

Fig. 2. Scalability experiment results. Markers are at the mean over five random tensors
and the width of the errorbars is twice the standard deviation.

of main memory. All reported times are wall-clock times. For these experiments,
we created a new set of tensors. First, we tested the effect the number of clusters
has to the algorithm. The data was 400-by-400-by-80 and the number of clusters
varied from 10 to 40 with steps of 10. As can be seen in Figure 2a, we observe
that the algorithm scales almost-linearly with the number of clusters. The slight
non-linearity is due to the increasing number of non-zeros in the data in higher
values of k. For the second experiment, we varied the dimensionality of the first
and second mode between 200 and 800 with steps of 200. The results can be
seen in Figure 2b, where we observe close-to-quadratic behavior, in line with the
theoretical running time of the algorithm.

Discussion. The synthetic experiments confirm that SaBoTeur is capable of
recovering the latent cluster structure from the synthetic data sets. Arguably
the most surprising result of the synthetic experiments was that SaBoTeur was
consistently better than BCP ALS, even though the latter has more freedom to
obtain better solutions.

5.3 Real-World Data

Datasets and earlier experiments. We tested SaBoTeur with three real-world data
sets: The Resolver data contains entity–relation–entity tuples from the TextRunner
open information extraction algorithm3 [15]. A sample of size 343-by-360-by-200
(entity-by-entity-by-relation) was used for the experiments. The Enron data4

(146-by-146-by-38) contains information about who sent e-mail to whom (rows and
columns) per months (tubes). The TracePort data set5 (10 266-by-8 622-by-501)

3 http://www.cis.temple.edu/~yates/papers/jair-resolver.html
4 http://www.cs.cmu.edu/~enron/
5 http://www.caida.org/data/passive/passive_2009_dataset.xml

Table 1. Reconstruction errors rounded to the nearest integer. ‘—’ denotes that the
experiment was not conducted. Part of the results are from [6] and [13].

Algorithm Enron TracePort Resolver

SaBoTeur 1 765 10 946 1 488
BCP ALS 1 850 — 1 492
Walk’n’Merge 1 753 10 968 —
CP APR 1 619 11 069 1 497
CP APR 0/1 1 833 11 121 1 543

contains anonymized passive traffic traces (source and destination IP and port
numbers) from 2009. With Enron and TracePort data sets, for Walk’n’Merge,
CP APR and ParCube we used the results from [6]. The results for BCP ALS and
Resolver are from [13]. The number of clusters/factors was set to k = 15 except
for Enron data, for which it was k = 12.

Results. The results with the real-world data sets can be seen in Table 1. SaBoTeur
continues its impressive results, being roughly on par with the other binary
methods and with TracePort even better than the continuous method, CP APR. In
conjunction with what we observed in the synthetic setting, SaBoTeur consistently
outperforms BCP ALS despite solving a more restricted problem.

6 Conclusions and Future Work

We have studied the problem of clustering one mode of a 3-way binary tensor
while simultaneously reducing the dimensionality in the two other modes. This
problem bears close resemblance to the Boolean CP tensor decomposition, but
the additional clustering constraint makes the problem significantly different.
The main source of computational complexity, the consideration of overlapping
factors in the tensor decomposition, does not play a role in BCPC. This lets us
design algorithms with provable approximation guarantees better than what is
known for the Boolean matrix and tensor decompositions.

Our experiments show that the algorithm for BCPC, SaBoTeur, is better than
the dedicated (Boolean) tensor decomposition algorithms in building a Boolean
CP decomposition of a tensor. Sometimes SaBoTeur also outperforms continuous
methods for non-Boolean CP decomposition.

The essential piece, the maximum-similarity binary rank-1 approximation
achieves an approximation ratio of 0.828 in O(nmmin{n,m}) time, and with that
dominates the running time. Faster algorithms for the rank-1 approximation (with
better approximation guarantees) would have an instant impact on SaBoTeur.

For the rank-1 approximation, the running time of O(nmmin{n,m}) is as-
cribed to the fact that every row of X (resp. every column if n < m) is tried
as candidate. Because a∗bT already agrees with the optimal solution in rows
where a∗ is zero, it would be enough to take the non-zero elements into account
rather than the complete rows. This modification is in particular beneficial to

sparse settings. Further improvement in terms of speed could be gained from
parallelization of the algorithm, possibly using a MapReduce model. Each of the
two concatenated loops in Algorithm 2 could be executed in parallel. Also early
stopping might be advantageous if no rows are left that could improve the result.
This might however require an additional step of sorting the rows according to
their number of non-zero elements. Future investigations need to show which
parallel configuration is most beneficial. Another aspect of refinement concerns
the introduction of data structures and operations tailored to Boolean algebra.
Storing the data as bit vectors and the use of native bit operations might yield
additional speedup. At the same time this reduces the space needed to store the
data compared to the representation as vectors of numbers.

Overall, this paper covered an extreme of the Boolean tensor clustering: each
centroid was restricted to a rank-1 binary matrix. In future research, we hope to
better cover the spectrum between this problem and the other extreme, clustering
the frontal slices of the tensor with no reduction on the other modes.

References

1. N. Alon and B. Sudakov. On two segmentation problems. J. Algorithm, 33:173–184,
1999.

2. R. Belohlavek, C. Glodeanu, and V. Vychodil. Optimal Factorization of Three-Way
Binary Data Using Triadic Concepts. Order, 30(2):437–454, Mar. 2012.

3. L. Cerf, J. Besson, K.-N. T. Nguyen, and J.-F. Boulicaut. Closed and noise-tolerant
patterns in n-ary relations. Data Min. Knowl. Discov., 26(3):574–619, 2013.

4. E. C. Chi and T. G. Kolda. On Tensors, Sparsity, and Nonnegative Factorizations.
SIAM J. Matrix Anal. Appl., 33(4):1272–1299, Dec. 2012.

5. D. Erdős and P. Miettinen. Discovering Facts with Boolean Tensor Tucker Decom-
position. In CIKM ’13, pages 1569–1572, 2013.

6. D. Erdős and P. Miettinen. Walk’n’Merge: A Scalable Algorithm for Boolean Tensor
Factorization. In ICDM ’13, pages 1037–1042, Dec. 2013.

7. H. Huang, C. Ding, D. Luo, and T. Li. Simultaneous tensor subspace selection and
clustering: The equivalence of high order svd and k-means clustering. In KDD ’08,
pages 327–335, Aug. 2008.

8. D. I. Ignatov, S. O. Kuznetsov, J. Poelmans, and L. E. Zhukov. Can triconcepts
become triclusters? Int. J. Gen. Syst., 42(6):572–593, Aug. 2013.

9. S. Jegelka, S. Sra, and A. Banerjee. Approximation Algorithms for Tensor Clustering.
In ALT ’09, pages 368–383. Springer Berlin Heidelberg, 2009.

10. J. M. Kleinberg, C. H. Papadimitriou, and P. Raghavan. Segmentation problems.
J. ACM, 51(2):263–280, Mar. 2004.

11. T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM
Rev., 51(3):455–500, 2009.

12. X. Liu, L. De Lathauwer, F. Janssens, and B. De Moor. Hybrid Clustering of
Multiple Information Sources via HOSVD. In ISNN ’10, pages 337–345. Springer
Berlin Heidelberg, 2010.

13. P. Miettinen. Boolean Tensor Factorizations. In ICDM ’11, pages 447–456, 2011.
14. P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, and H. Mannila. The Discrete

Basis Problem. IEEE Trans. Knowl. Data En., 20(10):1348–1362, Oct. 2008.
15. A. Yates and O. Etzioni. Unsupervised methods for determining object and relation

synonyms on the web. J. Artif. Intell. Res., 34:255–296, 2009.

