
Join Size Estimation on Boolean Tensors of RDF Data

Saskia Metzler
Max-Planck-Institut für Informatik

Saarbrücken, Germany
saskia.metzler@mpi-inf.mpg.de

Pauli Miettinen
Max-Planck-Institut für Informatik

Saarbrücken, Germany
pauli.miettinen@mpi-inf.mpg.de

ABSTRACT
The Resource Description Framework (rdf) represents in-
formation as subject–predicate–object triples. These triples
are commonly interpreted as a directed labelled graph. We
instead interpret the data as a 3-way Boolean tensor. Stan-
dard sparql queries then can be expressed using elementary
Boolean algebra operations. We show how this representa-
tion helps to estimate the size of joins. Such estimates are
valuable for query handling and our approach might yield
more efficient implementations of sparql query processors.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

Keywords
Tensors; Khatri–Rao product; rdf; sparql

1. INTRODUCTION
Rdf data are commonly treated as a directed labelled

graph. While this interpretation is often intuitive, other in-
terpretations are also possible. One alternative is to consider
each predicate a relation in standard relational database.
This interpretation facilitates the use of existing techniques
for faster query evaluation and efficient storage, among oth-
ers. On the other hand, it is too restrictive to naturally
express many sparql queries.

We propose an alternative interpretation, where rdf data
is considered as a 3-way Boolean tensor. This allows us to
present sparql queries using tensor slicing and specific types
of matrix multiplications. Furthermore, certain optimization
techniques will lend themselves very naturally to this setting.
In our on-going work, we study what benefits can be gained
from this tensor interpretation. In this short paper, we con-
centrate on one of those benefits: the techniques to estimate
the sizes of the join operations. Before that, however, we give
a short introduction on tensors and rdf data as a Boolean
tensor (please see [4] for a full explanation).

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). Copyright is held by the author/owner(s).
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2742738.

2. RDF DATA AS A BOOLEAN TENSOR
For a 3-way Boolean tensor X ∈ {0, 1}n×m×k, x:jk ∈
{0, 1}n is the mode-1 (row) fibre, xi:k ∈ {0, 1}m is the mode-
2 (column) fibre, and xij: ∈ {0, 1}k is the mode-3 (tube) fibre.
A tensor can also be sliced, e.g. X ::k ∈ {0, 1}n×m is the kth
frontal slice.

Let X ∈ {0, 1}n1×m1 and Y ∈ {0, 1}n2×m2 . Their Kro-
necker product X ⊗ Y ∈ {0, 1}n1n2×m1m2 is defined as

X ⊗ Y =


x11Y x12Y · · · x1m1Y
x21Y x22Y · · · x2m1Y

...
...

. . .
...

xn11Y xn12Y · · · xn1m1Y

 . (1)

The Khatri–Rao product of X and Y is defined as “column-
wise Kronecker”. That is, X and Y must have the same
number of columns (m1 = m2 = m), and their Khatri–Rao
product X � Y ∈ {0, 1}n1n2×m is defined as

X � Y =
(
x1 ⊗ y1,x2 ⊗ y2, . . . ,xm ⊗ ym

)
. (2)

Given an rdf graph T , let S(T), P (T), and O(T) de-
note the sets of distinct subjects, predicates and objects,
respectively. The number of distinct subjects is denoted by
|S(T)|, or shorthand |S|. Correspondingly |P (T)| = |P | and
|O(T)| = |O| denote the number of predicates and objects.

To represent rdf data by a binary tensor, we enumerate
all subjects, predicates, and objects to obtain mappings from
the items in S(T), P (T), and O(T) to indices. Let si denote
the ith subject with the corresponding index i = 1, . . . , |S|
and respectively pj the jth predicate with j = 1, . . . , |P | and
ok the kth object with k = 1, . . . , |O|.

With this mapping we can represent any rdf graph T
as a 3-way binary |S| -by- |P | -by- |O| tensor T . An element
(i, j, k) of T is 1 if and only if the respective subject-predicate-
object triple (si, pj , ok) is present in the rdf graph T .

A join operation on such data can be expressed by means
of a Khatri–Rao product. Consider for example a basic
graph pattern consisting of two triple patterns, {?a T:pi
?b} . {?c U:pj ?b}. This queries for all rdf triples where
the object ?b is linked to a subject by predicate pi of rdf
graph T as well as by predicate pj of rdf graph U , where
i ∈ {1, . . . , |P (T)|} and j ∈ {1, . . . , |P (U)|}.

In Boolean tensor algebra these triple patterns resemble the
slices T :i: and U :j: of rdf tensors T and U . A join operation
on equal objects is equivalent to the Khatri–Rao product of
T :i: and U :j:. We assume the length of the columns of both
slices to match and the labels to be in the same order (this
assumption can be lifted using standard techniques). The

result to the basic graph pattern (i.e. the join) is a matrix
of size |S(T)| |S(U)| -by- |O|,

T :i: �U :j:

=


t1i1u:j1 1i2u:j2 · · · t1i|O|u:j|O|
t2i1u:j1 t2i2u:j2 · · · t2i|O|u:j|O|

...
...

. . .
...

t|S|i1u:j1 t|S|i2u:j2 · · · t|S|i|O|u:j|O|

 .

This matrix has non-zeroes where objects have corresponding
subjects when the predicate is pi as well as pj . It can be
regarded as |S(T)| blocks of |S(U)| -by- |O| matrices stacked
on top of each other. Each block then corresponds to a
subject ?a from T and each row per block corresponds to a
subject ?c from U .

Similarly we can express join queries where another vari-
able than the object is bound. For a detailed analysis on
sparql queries in the Boolean tensor setting, see the afore-
mentioned technical report.

3. ESTIMATING THE JOIN SIZE
An important problem in query processing is to esti-

mate the cardinality of join operations. While the prob-
lem has attracted a significant amount of research in rela-
tional databases over the years, much less work addresses the
specifics of sparql joins, although [5] presents characteristic
sets to estimate the cardinalities of sparql joins. The tensor
framework, however, allows us to use techniques similar to
relational databases natively with sparql queries, as we shall
demonstrate below.

Let us assume we have stored the marginal sums along
each mode of the |S| -by- |P | -by- |O| data tensor T . That is,
we have three matrices, P (|P | -by- |O|), Q (|S| -by- |O|), and
R (|S| -by- |P |), for column, row, and tube marginal sums,

respectively (for example, qij =
∑|P |

k=1 tijk).
The number of triples returned by a join (with no projec-

tion or distinct keyword) is the number of non-zeroes in
the result. When a join can be expressed as a Khatri–Rao
product between two matrices A and B, the number of non-
zeroes in A�B can be determined exactly using the column
marginal sums of A and B. Specifically, if A and B both
have n columns, let σA = (σA

i)ni=1 and σA = (σB
i)ni=1 be

row vectors that contain the column marginals of A and B,
respectively (e.g. σA

i =
∑

j aji).

Proposition 3.1. Let σA and σB be as above. The num-
ber of non-zeroes in A�B is

|A�B| =
n∑

i=1

σA
i σ

B
i = σA(σB)T . (3)

The column marginal vectors σ are appropriate rows or
columns of the tensor marginal sum matrices P , Q, or R. If
they are stored in a sparse format, the size of the join can
be computed exactly in time Θ(α+ β), where α and β are
the number of non-empty columns of A and B, respectively.

We can also obtain an upper bound for the size of the join
in constant time if we in addition store the l2-norms for each
row and column of the marginal sum matrices (that is, ‖σ‖
for every possible σ):

Proposition 3.2. Let σA and σB be as above. Then

|A�B| ≤ ‖σA‖‖σB‖ . (4)

Proof. Noticing that σA(σB)T =
∥∥σA

∥∥ ∥∥σB
∥∥ cos θ to-

gether with (3) gives the result as cos θ ≤ 1.

This estimate can be improved if we can estimate the angle
θ between vectors σA and σB. To that end, Charikar [3]
gives a locality sensitive hashing scheme where the collision
probability for vectors u and v hashed by a function hr is

Pr [hr(u) = hr(v)] = 1− θ(u,v)

π
. (5)

The hash function hr(x) = 1 if rxT ≥ 0, and hr(x) = 0
otherwise. The random vector r is drawn from a multidi-
mensional Gaussian distribution.

To estimate θ, we evaluate k hash functions hr1 , . . . , hrk

for each row and column marginal of the tensor slices and
store the results as k-dimensional bit vectors h(σ) for every
possible σ (in total 2(|S|+ |P |+ |O|) vectors). Then, for two
vectors σA and σB , the join cardinality can be estimated in
O(k) time by

θ = π ·
(

1−Pr
[
h(σA) = h(σB)

])
. (6)

The larger k is, the more accurate the estimate is. Charikar [3]
points out that in order to hash n vectors, it is enough to
evaluate O(log2 n) randomly chosen hash functions.

This approach is most valuable for systems where many
queries are made but the data are rarely edited. The initial
computation of the hashes is costly but then the estimate of
θ and hence the cardinality of the join can be computed fast.
If the data are edited more often, we should either store the
full marginal vectors σ or use techniques similar to [1] for
dynamically tracking the join sizes.

Finally, it is worth noting that in case of the distinct
keyword, the problem of estimating the join size returns
to the problem of estimating the size of a Boolean matrix
product, for which there are existing methods [2] (see the
aforementioned technical report for details).

4. CONCLUSIONS
We interpreted rdf data as a Boolean tensor instead of a

graph. This view admits for defining sparql operations by
means of Boolean algebra. This facilitates the application
of methods designed for relational data and matrices to rdf
data and sparql queries. As an example of that, we pre-
sented methods to estimate the join sizes, but improvements
on other aspects of sparql query processing should also be
possible.

5. REFERENCES
[1] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy.

Tracking join and self-join sizes in limited storage.
PODS ’99, pages 10–20, 1999.

[2] R. Amossen, A. Campagna, and R. Pagh. Better size
estimation for sparse matrix products. Algorithmica,
69(3):741–757, 2014.

[3] M. S. Charikar. Similarity estimation techniques from
rounding algorithms. STOC ’02, pages 380–388, 2002.

[4] S. Metzler and P. Miettinen. On defining SPARQL with
Boolean tensor algebra, 2015. arXiv:1503.00301 [cs.DB].

[5] T. Neumann and G. Moerkotte. Characteristic sets:
Accurate cardinality estimation for RDF queries with
multiple joins. In ICDE ’11, pages 984–994, 2011.

