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* We want to know
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BOOLEAN MATRIX
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DYNAMIC FACTORIZATIONS

» Users keep on liking new webpages
* New users, new webpages, and old users liking old pages

* We want our factorization to adapt to new data

* Problem. Given a binary matrix A, its Boolean factorization
(B, €), and a series of added |s to A, update B and € so that
they define a good approximation of A after any addition




NOTES

* We're only adding |s to the data
* You can't dislike a page
* We're not doing prediction, we're adapting

* Being good at predicting helps adapting, though




FIRST ATTEMPT

* We can re-compute the factorization after every addition
* loo slow

* loo much effort given the minimal change




SECOND AT TEMPT

* We can fold-in the new data: if we add a new column to A,
we keep B fixed and add a new column to €

» Common in IR when new terms/documents appear
* But we're not necessarily adding new rows or columns

* We could still do alternating updates to B and €, except
that the problem i1s NP-hard to even approximate well




THIRD AT TEMPT

* An online algorithm
* Will never remove any |s it has added to factor matrices

* \We consider three cases when a new | arrives
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MAKING UPDATES FAST

» Recognizing the case I1s O(k) with proper index structure
* Selecting the factor in Case 3 Is worst-case O(|B| + |Cl)
» Extending the factor can be very costly

» Computing the fit for every row/column

* We store the historical fits and take an optimistic approach on how much

't could have improved
=VVe only need to consider those rows/columns where the factor could

oive a good fit
I




NON-ONLINE ALGORITHM

* Iteratively update B and € to remove |s from them
* Fix B, update C; ix €, update B; etc.
* The problem is (still) NP-hard — we use a heuristic

- Computationally expensive
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RIME COMPLEXEESS

Sequence length

Online! 561K 420K 281K All

Yes 75 64 33

No HOH:S RIS WO




U TURE WORK

» Adjusting the rank
- Better data structures and analysis
» Paralellization

» Iweaking the base algorithm for better prediction




CONCLUSIONS

* Dynamically updating a Boolean matrix factorization is possible
* SImple idea performs very well and Is reasonably fast

» Can be better and faster than running the off-line algorithm
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