DYNAMIC BOOLEAN
MATRIX FACTORIZATIONS

Paull Miettinen
| 3 December 2012

' l I l I max planck institut
informatik

USERS AND WEBPAGES

» Users “like” webpages

* A bipartite graph

* We want to know
(approximate) bicliques of users
who like similar webpages

USERS AND WEBPAGES

» Users “like” webpages

* A bipartite graph

* We want to know
(approximate) bicliques of users
who like similar webpages

BOOLEAN MATRIX

%
-
<
>
2
<C
e
O U
of:

%
-
<
>
2
<C
e
O U
of:

DYNAMIC FACTORIZATIONS

» Users keep on liking new webpages
* New users, new webpages, and old users liking old pages

* We want our factorization to adapt to new data

* Problem. Given a binary matrix A, its Boolean factorization
(B, €), and a series of added |s to A, update B and € so that
they define a good approximation of A after any addition

NOTES

* We're only adding |s to the data
* You can't dislike a page
* We're not doing prediction, we're adapting

* Being good at predicting helps adapting, though

FIRST ATTEMPT

* We can re-compute the factorization after every addition
* loo slow

* loo much effort given the minimal change

SECOND AT TEMPT

* We can fold-in the new data: if we add a new column to A,
we keep B fixed and add a new column to €

» Common in IR when new terms/documents appear
* But we're not necessarily adding new rows or columns

* We could still do alternating updates to B and €, except
that the problem i1s NP-hard to even approximate well

THIRD AT TEMPT

* An online algorithm
* Will never remove any |s it has added to factor matrices

* \We consider three cases when a new | arrives

1
£
ol
3
<
X
(1)

&
1
T
&
A
1
ad
al
N
D
<
U

&
1
T
&
A
1
ad
al
N
D
<
U

&
1
T
&
A
1
ad
al
N
D
<
U

O
i
£
ad
O
ad
al
O
4
N
L
N
<
U

O
i
£
ad
O
ad
al
O
4
N
L
N
<
U

o8
L (
g
o el
O
ad
al
O
4
N
L]
)
<
U

O
i
£
o
<
~
X
ON
1]
N
<
»,

O
i
£
o
<
~
X
ON
1]
N
<
»,

O
i
£
o
<
~
X
ON
1]
N
<
»,

O
i
£
o
<
~
X
ON
1]
N
<
»,

O
i
£
o
<
~
X
ON
1]
N
<
»,

O
i
£
o
<
~
X
ON
1]
N
<
»,

O
i
£
o
<
~
X
ON
1]
N
<
»,

O
i
£
o
<
~
X
ON
1]
N
<
»,

O
i
£
o
<
~
X
ON
1]
N
<
»,

MAKING UPDATES FAST

» Recognizing the case I1s O(k) with proper index structure
* Selecting the factor in Case 3 Is worst-case O(|B| + |Cl)
» Extending the factor can be very costly

» Computing the fit for every row/column

* We store the historical fits and take an optimistic approach on how much

't could have improved
=VVe only need to consider those rows/columns where the factor could

oive a good fit
I

NON-ONLINE ALGORITHM

* Iteratively update B and € to remove |s from them
* Fix B, update C; ix €, update B; etc.
* The problem is (still) NP-hard — we use a heuristic

- Computationally expensive

©

LS
2
T
ae
]
>
O
e
O
o
e
L1

EOMPEITIVE FAC LGNS

B Online
"~ lterative

1/3 pmese)3 1/3 /2 2/3 1/3 /2 2/3

Delicious LastFM Movielens
[S

EOMPEITIVE FAC LGNS

B Online
B = | lterative

1/3 pmese)3 1/3 /2 2/3 1/3 /2 2/3

Delicious LastFM Movielens
[S

RIME COMPLEXEESS

Sequence length

Online! 561K 420K 281K All

Yes 75 64 33

No HOH:S RIS WO

U TURE WORK

» Adjusting the rank
- Better data structures and analysis
» Paralellization

» Iweaking the base algorithm for better prediction

CONCLUSIONS

* Dynamically updating a Boolean matrix factorization is possible
* SImple idea performs very well and Is reasonably fast

» Can be better and faster than running the off-line algorithm

CONCLUSIONS

* Dynamically updating a Boolean matrix factorization is possible
* SImple idea performs very well and Is reasonably fast

» Can be better and faster than running the off-line algorithm

Tl Vi

