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Matrix factorizations—where a given data matrix is approximated by a product of two or more factor
matrices—are powerful data mining tools. Among other tasks, matrix factorizations are often used to sep-
arate global structure from noise. This, however, requires solving the ‘model order selection problem’ of
determining the proper rank of the factorization, i.e., to answer where fine-grained structure stops, and
where noise starts.

Boolean Matrix Factorization (BMF)—where data, factors, and matrix product are Boolean—has in recent
years received increased attention from the data mining community. The technique has desirable properties,
such as high interpretability and natural sparsity. Yet, so far no method for selecting the correct model
order for BMF has been available. In this paper we propose to use the Minimum Description Length (MDL)
principle for this task. Besides solving the problem, this well-founded approach has numerous benefits, e.g.,
it is automatic, does not require a likelihood function, is fast, and, as experiments show, is highly accurate.

We formulate the description length function for BMF in general—making it applicable for any BMF algo-
rithm. We discuss how to construct an appropriate encoding: starting from a simple and intuitive approach,
we arrive at a highly efficient data-to-model based encoding for BMF. We extend an existing algorithm for
BMF to use MDL to identify the best Boolean matrix factorization, analyze the complexity of the problem,
and perform an extensive experimental evaluation to study its behavior.
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1. INTRODUCTION

A typical task in data mining is to find observations and variables that behave simi-
larly. Consider, for instance, the standard example of supermarket basket data. We are
given transactions over items, and we want to find groups of transactions and groups
of items such that we can (approximately) represent our data in terms of these groups,
instead of the original records. Such a representation is called a low-dimensional repre-
sentation of the data, and is usually obtained using some form of matrix factorization.

In matrix factorizations the input data (represented as a matrix) is decomposed into
two (or more) factor matrices. Usually the aim is to have low-dimensional factor matri-
ces whose product approximates the original matrix well. By imposing different con-
straints, one obtains different factorizations. Perhaps the two best-known factoriza-
tions are Singular Value Decomposition (SVD), closely related to Principal Component
Analysis (PCA), and Non-negative Matrix Factorization (NMF). SVD and PCA restrict
the factor matrices to be orthogonal, while NMF requires the data and the factor ma-
trices to be non-negative.

When the input data is Boolean, (that is, contains only Os and 1s, as is typical with
supermarket basket data), one can apply Boolean Matrix Factorization (BMF). Simi-
larly to NMF, it restricts the factor matrices for added interpretability and sparsity. In
BMF, the factor matrices are required to be Boolean, i.e., contain only 0s and 1s. Also
the matrix product is changed, from normal to Boolean. As a consequence, it is possible
that BMF obtains smaller reconstruction error than SVD for the same decomposition
size—something that NMF, by definition, cannot do [Miettinen 2009]. Furthermore, it
can be shown that for sparse Boolean matrices, there is always a sparse exact factor-
ization [Miettinen 2010].

But no matter what factorization method one applies, one always has to solve the
model order selection problem: what is the correct number of latent dimensions? In
some situations the answer is obvious, for example, if a user wants to have a three-
dimensional representation of the data (say, for visualization). But when the user
wants a good description of the structure in the data, selecting the number of latent di-
mensions comes down to the question: what is the correct rank of the latent structure?
That is, what is structure and what is noise?

Whereas various methods have been proposed to answer this question for non-
Boolean matrix factorizations, varying from statistical methods based on likelihood
scores (such as the Bayesian Information Criterion, BIC [Schwarz 1978]) to subjective
analysis of error (so-called elbow methods), there is no known applicable method for
selecting the model order for BMF (other than visual analysis of errors).

In this paper, we study the model order selection problem in the framework of BMF.
To that end, we merge two orthogonal lines of research, namely those of Boolean matrix
factorizations and Minimum Description Length (MDL) principle [Rissanen 1978]. We
formulate description length functions that can be used for model order selection with
any BMF algorithm. We then extend an existing algorithm for BMF to use MDL in
an effective way, and via extensive experimental evaluation we show that using our
description length formulation, the algorithm is able to identify the correct number of
latent dimensions in synthetic and real-world BMF tasks.

Besides studying how we can apply MDL to the end of model order selection for
BMEF, a specific goal of this paper is to construct a good MDL encoding for BMF. This
is not a trivial task, as there are no known Universal Codes for BMF models; these
are encodings for which the expected lengths of the code words are within a constant
factor of the true probability distribution underlying the data, regardless of what this
distribution actually is [Griunwald 2007]. As such, we will have to device a two-part
MDL encoding that rewards structure and punishes noise. This involves a number of
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choices, which by MDL, we can make in a principled manner: fewer bits are better.
We will start by considering simple and intuitive encodings, which we will incremen-
tally improve through established information theoretic insights. We will empirically
explore the quality of these encodings, and show the necessity of using more refined
insights in order to obtain good model order estimates.

This paper is an extended version of a preliminary conference version [Miettinen and
Vreeken 2011], improving it in a number of ways. First of all, we develop our encodings
further. We introduce two new BMF encodings, that by employing highly efficient data-
to-model codes have superior noise/structure separation quality; which is reflected by
the model order estimate accuracies. Second, we present a proof that optimizing a non-
trivial encoding for BMF is NP-hard. To the best of our knowledge, this is the first proof
showing this kind of hardness results for the use of MDL in pattern mining, or Boolean
matrix factorizations. Third, we provide much more extensive experimental evaluation
of the proposed encodings on both synthetic and real data, as well as a comparison to
two recent proposals, i.e., the PANDA [Lucchese et al. 2010] algorithm and minimum
transfer cost principle [Frank et al. 2011].

The remainder of this paper is organized as follows. First, in Section 2 we discuss
related work. In Section 3 we give the preliminaries and notation used throughout the
paper. Section 4 gives a short primer on both Boolean matrix factorization, as well as
the AsSo algorithm for finding low-error BMF. In Section 5 we give a quick introduc-
tion to the Minimum Description Length principle, develop description length func-
tions for BMF, and subsequently discuss the computational complexity of the proposed
minimisation problem. We empirically evaluate our encodings on real and synthetic
data in Section 6, including a comparison to competing methods. In Section 7 we dis-
cuss our methods, and conclude the paper with Section 8.

2. RELATED WORK

In this section we discuss related work. We start by discussing matrix factorizations in
general, and Boolean matrix factorizations in particular before discussing model order
selection for matrix factorization, as well as earlier applications of MDL in data min-
ing. We end this section with a discussion about pattern mining based summarization.

2.1. Matrix Factorization

Matrix factorization methods such as Singular Value Decomposition (SVD) [Golub and
Van Loan 1996] or Non-negative Matrix Factorization (NMF) [Paatero and Tapper
1994] are ubiquitous in data mining and machine learning. Two of the most popular
uses for matrix factorizations are separating structure and noise, and learning missing
values of matrices. For a comprehensive study of the former, see Skillicorn [Skillicorn
2007] and references therein.

While standard matrix factorization methods expect real-valued data and return
real-valued factor matrices, various other methods either require discrete data, return
discrete factors, or both. Logistic PCA [Schein et al. 2003] is an example of a method of
the first kind: the data is binary, but the factor matrices are continuous, their product
defining a multivariate probability distribution. Semi-discrete decomposition [O’leary
and Peleg 1983] can be seen as an example of the second type, expecting continuous
input data, but restricting the factor matrices so that two of them assume values from
{-1,0,1} while the third is a real-valued diagonal scaling matrix. Binary matrix fac-
torization [Zhang et al. 2010] is an example of a factorization of the third type: both
the input and factor matrices are binary.
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2.2. Boolean Matrix Factorization

The difference between binary matrix factorization and Boolean matrix factorization
(BMF) is that the former operates under the normal algebra while the latter uses the
Boolean algebra. Boolean matrix factorizations have been studied extensively in com-
binatorics (see, e.g., Monson et al. [1995] and references therein). The use of Boolean
factorizations in data mining was proposed by Miettinen et al. [2008], although they
had earlier been used to analyse biological [Nau et al. 1978] and psychometrical
data [De Boeck and Rosenberg 1988]. There exist many data mining problems and
techniques related to BMF. We give an overview below, but refer to Miettinen [2009] for
a more extensive discussion on methods related to BMF. Outside data mining, Boolean
factorizations have found application in, e.g., finding roles for access control [Vaidya
et al. 2007; Streich et al. 2009].

The AsSO algorithm to solve BMF was proposed by Miettinen et al. [2008]. Later,
Lu et al. [2008] proposed a heuristic based on a mixed-integer-programming formula-
tion. Independently, Belohlavek and Vychodil [2010] gave an algorithm for computing
the Boolean rank of a matrix based on solving the Set Cover problem. At worst case
this algorithm can take exponential time but recently it was shown that with certain
sparsity constraints, the algorithm runs in polynomial time and provides a logarithmic
approximation guarantee [Miettinen 2010].

2.3. Model Order Selection

Matrix factorizations have a long history in various fields of science. SVD and its close
relative PCA have been of particular importance. Hence, it is no surprise that many
methods for model order selection for these two decompositions have been proposed.
One of the earliest suggestions was the Guttman—Kaiser criterion, dating back to the
Fifties (see Yeomans and Golder [1982]). In that criterion, one selects those principal
vectors that have corresponding principal value greater than 1. It is perhaps not sur-
prising that this simple criterion has shown to perform poorly [Yeomans and Golder
1982]. Another often-used method is Cattell’s scree test [Cattell 1966], where one se-
lects the point where the ratio between two consecutive singular values (in descending
order) is high. Usually, this is done by visual analysis, but automated methods have
also been proposed (e.g., Zhu and Ghodsi [2006]).

Since these two classical methods, researchers have proposed many alternative ap-
proaches. For example, in a probabilistic framework one can use Bayesian model se-
lection (e.g. Minka [2001]; Schmidt et al. [2009]). For BMF, however, it would be very
hard, if not impossible, to construct a good likelihood function as it is unclear which
probability distribution to use. Yet another approach is to use cross validation. While
this is perhaps mostly used when learning missing values of the matrix, it can also be
applied to the noise removal. The assumption is that when the model order is too high,
the factors start to specialize to noise, and hence, the cross-validation error increases.
Normally, a hold-out set would contain either rows or columns, but not both, and the
test error is computed against using optimal (or as good as possible) combination of
row factors for each row in the test set. This, however, yields to severe over-fitting
problems as there is no penalty associated with having more factors.

To overcome this, Owen and Perry [2009] proposed a method to leave out a sub-
matrix. The method is based on the assumption that the remaining matrix has the
same rank as the original matrix, as this is needed to fit the factors to the test data.
The method of Owen and Perry [2009] unfortunately does not work with BMF, as it
requires operations not available in Boolean matrix algebra.

Recently Frank et al. [2011] proposed a method to apply cross-validation to BMF
(among others) they call Minimum Transfer Cost Principle. In their approach the hold-
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out set consist of rows (or columns) of the data matrix withhold from the algorithm. To
compute the test error, they map each row in the hold-out set into the training data
row that is closest to it and the test error for the row is computed using exactly the
same row factors as were used with the mapped data row.

The concept of intrinsic dimensionality of the data is related to the model order.
While often the intrinsic dimensionality refers to the number of variables needed to
explain the data completely (e.g., the rank of a matrix), also noise-invariant approaches
have been studied [Pestov 2008]. Tatti et al. [2006] defined intrinsic dimensionality to
Boolean data based on fractal dimensions.

2.4. MDL in Data Mining

As discussed by Faloutsos and Megalooikonomou [2007], Kolomogorov Complexity, or
its practical implementation, the Minimum Description Length principle [Rissanen
1978; Griunwald 2007], are powerful, well-founded, and natural approaches to data
mining, as they allows us to clearly identify the most succinct and least redundant
model for a dataset. As such, MDL has been successfully employed for a wide range of
data mining tasks, including, for example, discretization [Fayyad and Irani 1993], im-
putation [Vreeken and Siebes 2008], classification [Quinlan and Rivest 1989], transfer
learning [Shao et al. 2013], and clustering [Cilibrasi and Vitanyi 2005; van Leeuwen
et al. 2009].

2.5. Pattern-based Summarization

Basically, a Boolean matrix factorization returns a group of patterns (the left-hand
matrix), and the occurrences per pattern (the right-hand matrix). As such, BMF es-
sentially describes the data with a set of patterns. Therefore, pattern set mining tech-
niques are related.

2.5.1. Summarizing Pattern Collections. There are two main approaches in pattern set
mining. The first aims at summarizing a collection of patterns. Well known exam-
ples include closed frequent itemsets [Pasquier et al. 1999], maximal frequent item-
sets [Bayardo 1998], non-derivable itemsets [Calders and Goethals 2007], contour pat-
terns [Jin et al. 2009], and margin-closed itemsets [Moerchen et al. 2011].

In BMF the goal is not to summarize a collection of patterns (or, factors), but instead
to find a set of patterns that together summarize the data well—which is the second
main school in pattern set mining.

2.5.2. Summarizing Data. Wang and Karypis [2004] propose to find summary sets, sets
of itemsets such that every transaction is (at least partially) covered by the largest
itemset that is frequent. Chandola and Kumar [2007] extended this approach by al-
lowing wildcards, while taking the information loss of the cover with respect to the
data into account. Different from these approaches, in BMF we do not require every
row to be modeled by at least one factor.

KRIMP [Siebes et al. 2006; Vreeken et al. 2011] employs MDL for identifying that
group of frequent itemsets that describes the data best. The related LESS [Heikin-
heimo et al. 2009] and PACK [Tatti and Vreeken 2008] algorithms follow similar ap-
proaches to describe data in terms of, respectively, low-entropy sets and decision trees.
A major difference with BMF is that these methods only cover rows using subsets of
that row, and approximate matches are not allowed. Further, KRIMP and LESS do not
allow overlap between patterns covering the same row. All typically return more, and
in particular more specific patterns than BMF.

Wang and Parthasarathy [2006] and Mampaey et al. [2012] propose algorithms for
summarizing data with sets of itemsets and frequencies. To this end they construct a
probabilistic model for the rows of the data by the maximum entropy principle, and
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iteratively mine itemsets that maximize the likelihood of the data under the model,
while controlling complexity through BIC or MDL scores. In contrast to BMF, these
methods only consider how often itemset occur in the data, not where; that is, they
ignore the right-hand factor matrix.

2.5.3. Tiling Databases. More closely related to BMF is Tiling [Geerts et al. 2004]. Es-
sentially Tiling is the well known greedy set-cover algorithm, iteratively finding that
itemset that covers the most uncovered 1s in the data. Unlike BMF, however, it covers
the data exactly, and by focusing on area, for sparse data it tends to return full rows
or columns.

Tiling was independently discovered by Xiang et al. [2008], whom later extended
the algorithm to also mine noisy tiles—i.e. allowing Os in the area of the data a tile
covers [Xiang et al. 2010]. To this end, the HYPER algorithm starts by mining a col-
lection of (closed) frequent itemsets, and subsequently iteratively selects that pair of
tiles for which the merger covers the fewest Os of the data. The process stops when
either the user-specified number of % tiles are found, or when the ratio of Os surpasses
a user-specified threshold.

Earlier, [Lakshmanan et al. 2002] defined a method for summarizing a dataset by
means of hyper rectangles, where the method is allowed to ignore w Os in the data.
In our approach, by the MDL principle we define a lossless encoding by encoding the
false positive and false negatives in an error matrix. This allows our method to au-
tomatically decide how many cells to ‘ignore’, as well as to detect differences in the
distributions of false positive and false negatives.

Kontonasios and De Bie [2010] iteratively discover the most interesting ‘noisy tile’,
where they define interestingness through a local MDL score. Unlike our situation, it
does not return a model for the data, but rather orders a given collection of itemsets.

Perhaps closest to our work is the PANDA algorithm proposed by Lucchese et al.
[2010]. PANDA performs Boolean matrix factorization, but instead of minimizing only
the error, it tries to minimize the sum of errors and number of 1s in the factors. There
are few important differences to present work. First, PANDA uses a different approach
towards factorization. Their approach is to start by finding a good core tile, i.e. a sub-
matrix full of 1s. This core is then extended to also include rows and columns that con-
tain Os. After the extension, next core is found, excluding all those 1s already covered
by the previously-found factors. Another difference between PANDA and the present
work is that PANDA uses only very coarse measure of the complexity of the model,
namely, the number of 1s in the factors and in the error—that is, a single error is as
expensive as a 1 in the factor matrices. Our approach differs from this in two major
ways: we count the actual number of bits needed to encode the factors and the error
allowing us to use sophisticated encodings to actually minimize the encoding length!

3. NOTATION

Before we introduce the theory behind our approach, we introduce the notation we will
use throughout the paper.

We identify datasets as Boolean matrices. Matrices are denoted by upper-case bold
letters (A). Vectors are lower-case bold letters (a). If A is an n-by-m Boolean matrix,
|A| denotes the number of 1s in it, i.e., |A| = }_, . a;;. We extend the same notation to
Boolean vectors. The scalar product of two vectors x and y is denoted as (x,y).

If X and Y are two n-by-m Boolean matrices, we have the following element-wise
matrix operations. The Boolean sum X V'Y is the normal matrix sum with addition

1 After the acceptance of this paper, Lucchese et al. [2014] published PANDA* that can also directly mini-
mize the description length.
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defined as 1 + 1 = 1. The Boolean subtraction X © Y is the normal element-wise sub-
traction with 0 — 1 = 0. Notice that this does not define an inverse of Boolean sum, as
141 —1 = 0. The Boolean element-wise product X A'Y is defined as normal element-
wise matrix product. The exclusive or X @ Y is the normal matrix sum with addition
defined as 1 + 1 = 0 (i.e., addition is done over the field Z,).

Let X be n-by-k and Y be k-by-m Boolean matrices (i.e., X and Y take values
from {0,1}). Their Boolean matrix product, X oY, is the Boolean matrix Z with

Zij = \/f=1 Zayij, that is, Boolean matrix product is the normal matrix product using
the Boolean addition.

The Boolean rank of an n-by-m Boolean matrix A, rankg(A), is the least integer k
such that there exists an n-by-k Boolean matrix B and a k-by-m Boolean matrix C for
which A = B o C. Matrices B and C are the factor matrices of A, and the pair (B, C)
is the (exact) Boolean factorization of A. If A # B o C (but the dimensions match), the
factorization is approximate.

Further, all logarithms are of base 2, and we employ the usual convention that
0log0 = 0.

4. BOOLEAN MATRIX FACTORIZATION

In this section we introduce Boolean matrix factorization (BMF) and give a short de-
scription of ASSO, one of the existing algorithms for Boolean matrix factorization.

4.1. BMF, a brief primer

In Boolean matrix factorization, the goal is to (approximately) represent a Boolean
matrix as the Boolean product of two Boolean matrices. The crux is the Boolean prod-
uct: as the product is not over a field, but over semiring (0,1,V,A), Boolean matrix
factorizations have some unique properties. For example, the Boolean rank of a matrix
A can be only a logarithm of the normal matrix rank of A [Monson et al. 1995]. As a
consequence, Boolean factorizations can yield smaller reconstruction error than factor-
izations of same size done under the normal arithmetic. Unfortunately, unlike normal
rank, computing the Boolean rank is NP-hard [Nau et al. 1978], and even approxi-
mation is hard [Miettinen et al. 2008] (although recent work shows that logarithmic
approximations can be obtained by assuming sparsity [Miettinen 2010]).

But even assuming we could compute the Boolean rank efficiently, this is rarely
what we actually want. Similarly to normal rank, one would assume that most of the
real-world data matrices have full or almost full Boolean rank, due to noise; instead,
we often want to have a low-rank approximation of a matrix. Such approximation is
usually interpreted to contain the latent structure of the data, while the error it causes
is regarded as the noise. When the target rank is given, we have the Boolean matrix
factorization problem:

PrROBLEM 1 (BMF). Given n-by-m Boolean matrix A and integer k, find n-by-k
Boolean matrix B and k-by-m Boolean matrix C such that B and C minimize

IA@ (BoC)|. 1)

Example 4.1. Figure 1 shows an approximate Boolean matrix factorization of an
11-by-11 matrix A (left) into 11-by-3 and 3-by-11 matrices B and C (middle), and the
Boolean matrix product B o C (right). Using normal matrix product, BC would be-
come non-binary. For example, row 7, column 6 of BC would be 3, not 1. With this
decomposition the error |[A ® (Bo C)| = 7.

Unsurprisingly, also this optimization problem is NP-hard, and has strong inapprox-
imability results in terms of multiplicative and additive errors (see Miettinen [2009]).
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T2 3 12 3 4 5 6 7 8 9 10 11

A B C BoC

Fig. 1: An approximate Boolean matrix factorization of an 11-by-11 matrix A (left) into
Boolean rank-3 factor matrices B and C (middle), and the Boolean matrix product
B o C (right). The colors denote the different factors; white matrix elements are 0 and
non-white elements are 1.

But there is also another, more fundamental problem: the formulation of the BMF
problem requires us to have a priori knowledge on k, the Boolean rank of the decom-
position. With the structure/noise interpretation above, this means that we have to
have a priori knowledge of the dimensionality of the latent structure—something we
in practice are most likely not to have.

This problem is, by no means, unique to BMF. Indeed, the same issue underlies any
matrix factorization method. And also in clustering, for example, we have to deal with
the same problem, known as the model order selection problem. The main contribution
of this paper is to provide a method to (approximately) solve the model order selection
problem in the BMF framework.

4.2. The Asso Algorithm

Knowing the latent dimensionality of the data is usually not enough—we also want
to know the latent factors, i.e., we want to solve the BMF problem. As the problem
is NP-hard, even to approximate well, we will solve it using a heuristic approach. We
have opted to use an existing algorithm for BMF, called ASSO [Miettinen et al. 2008].
We chose to use ASSO as previous studies have shown it performs reasonably well [Mi-
ettinen et al. 2008; Streich et al. 2009; Miettinen 2010], and because the algorithm
is hierarchical, i.e., the rank-(k — 1) decomposition gives the first £ — 1 columns of B
(and the first £ — 1 rows of C) of rank-k decomposition. The latter property is particu-
larly useful when doing the model order selection, as we will see later. We emphasize,
though, that the proposed model order selection method is not bound to any specific
algorithm for BMF.

For the sake of completeness, we provide a quick overview of how ASSO works.
For more detailed explanation, see Miettinen et al. [2008]. The name of ASSO stems
from the algorithm using pairwise association accuracies to generate so-called can-
didate columns. More precisely, ASSO generates an n-by-n matrix X = (z;;) with
zi; = (a;,a;) / (a;,a;), where a; is the jth row of A. That is, x;; is the association accu-
racy for rule a; = a,. Matrix X is then rounded to have Boolean values. The rounding
is done from a user-specified threshold = € (0, 1].

The columns of B are selected from the columns of X. The selection of columns
of B happens in a greedy fashion: each not-used column of rounded X is tried, and
the selected column is the one that maximizes the gain, defined being the number
of newly-covered 1s of A minus the number of newly-covered Os of A. Element a;;
is newly-covered if (B o C);; = 0 before adding the new column to B. The row of C
corresponding to the column of B is build using the same technique: if the gain of
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Algorithm 1 An algorithm for the BMF using association rules (ASSO)

Input: A matrix A € {0,1}"*™ for data, a positive integer k, and a threshold value 7 € (0, 1].
Output: Matrices B € {0,1}"** and C € {0, 1}**™ such that B o C approximates A.
1: function Asso(A,k, T, w)
20 X =(xi;), iy =1((ai,a;)/(a;,a;) >7)
B+ [],C+« ] > B and C are empty matrices.
fori=1,...,kdo , > Select the k& basis vectors from X.
(i,¢) + argmax{cover(A,[Bx’],[C]) :i € {1,...,n},c € {0,1}'*"}
B« [Bx']
C« [¢]
end for
return B and C
0: end function

[uy

using the new column of B to cover a column of A is positive, then the corresponding
element of the new row of C is set to 1; otherwise it is 0. The gain is computed by the
function cover:

cover(A,B,C) = [{(i,j) : aij = LA (B o C)y; =1} = {(i,j) : aij =0A (Bo C);; = 1}].
(2)

The pseudo code for ASSO is given in Algorithm 1.

As ASSO never tracks back its decisions, it clearly has the desired hierarchical prop-
erty. But ASSO also requires the user to set an extra parameter: the rounding threshold
7. Selecting this parameter can be daunting, as it is hard to anticipate the difference it
makes to the factorization. To solve this problem, we will use our model order selection
mechanism to slightly larger question of model selection and in addition to selecting
the best k, we also select the best 7.

5. MDL FOR BMF

In this section we give our approach for selecting model orders for BMF by the Mini-
mum Description Length principle.

5.1. MDL, a brief primer

The MDL (Minimum Description Length) [Rissanen 1978; Griinwald 2007] principle,

like its close cousin MML (Minimum Message Length) [Wallace 2005], is a practical

version of Kolmogorov complexity [Li and Vitanyi 1993]. All three embrace the slogan

Induction by Compression. For MDL, this principle can be roughly described as follows.
Given a set of models? H, the best model H € H is the one that minimizes

L(H)+ L(D | H)

in which L(H) is the length, in bits, of the description of H, and L(D | H) is the length,
in bits, of the description of the data when encoded with H.

This is called two-part MDL, or crude MDL. As opposed to refined MDL, where model
and data are encoded together [Grinwald 2007]. We use two-part MDL because we are
specifically interested in the compressor: the factorization that yields the best compres-
sion. Further, although refined MDL has stronger theoretical foundations, it cannot be
computed except for some special cases. Note that MDL requires the compression to
be lossless in order to allow for fair comparison between different H € H.

To use MDL, we have to define what our models H are, how a H € H describes a
database, and how all of this is encoded in bits.

2MDL-theorists talk about Aypothesis in this context, hence the #.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January 2014.



A:10 P. Miettinen and J. Vreeken

.
[

‘
2
:
4
m
6
7
8
;

12 3 4 5 6 7 8 9 10 11

A BoC E

12 3 4 5 6 7 8 9 10 11

Fig. 2: Example of a Boolean matrix A, and a lossless representation thereof by the
exclusive-OR between an approximation of A by the Boolean product of two factor
matrices, BoC, and the error matrix or residual E. Note that E consists of both additive
and subtractive errors, resp. 1s that exist in A, but not in B o C, and vice-versa.

Note, that with MDL we are only interested in the length of the description, not in
the encoded data itself. That is, we are only concerned with optimal code lengths—not
with their length of actual materialized codes. Following, in order to keep maximal
differentiability between models we should not round up code lengths: this is only
required when actual codes have to be constructed. Moreover, in practice this rounding
can also be avoided by using Arithmetic Coding [Cover and Thomas 2006].

5.2. Encoding BMF

We now proceed to define how we can use MDL to identify the best Boolean factoriza-
tion (B, C) for a given dataset A.

Recall that an essential requirement of MDL is that the encoding is lossless. That
is, whether or not a factorization (B,C) € A for A is exact, we need to be able to
reconstruct A without loss. We do this by explicitly encoding the difference, or error,
between the original data A and its approximation as given by the Boolean product of
its factor matrices B and C, i.e., B o C. That is, we define error matrix E for A, B, and
C, to be the unique Boolean matrix of dimensions n-by-m such that

E=A®(BoC). 3)

Vice versa, when we are given matrices B, C, and E we can reconstruct A without
loss.

Example 5.1. Figure 2 shows matrix E for the example Boolean matrix factoriza-
tion we discussed in Example 4.1. From left to right, we have our Boolean matrix A,
the Boolean product of two factor matrices B o C, and the resulting error matrix E. If
we transmit B, C, and E, the recipient can reconstruct A without loss by taking the
exclusive-OR between B o C and E.

The approximation of A by our example factorization leads to 7 errors. Four of these
errors are subtractive, ones covered by the approximation but not present in A; the
black squares in E within the grey outline of B o C. The remaining three errors are
additive, ones in A that are not covered by the approximation.

Now, we can define the total compressed size L(A, H), in bits, for a Boolean dataset
A and a Boolean matrix factorization H = (B, C), with H € #, as

L(A,H) = L(H) + L(E), (4)

where E follows from A and H, using Eq. 3. Following the MDL principle, the best
factorization for A is found by minimizing Eq. 4. As we will discuss later, this is not
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as simple as it sounds. But let us first discuss how we encode H and E, or most impor-
tantly, how many bits this requires.

We start by defining how to compute the number of bits required for a factorization
H = (B, C), of dimensions n-by-k and k-by-m, for B and C respectively, as

L(H) = Ly(n) + Lu(m) + L(k) + L(B) + L(C). 5)

That is, we encode the dimensions n, m, k, and then the content of the two factor
matrices. By explicitly encoding the dimensions of the matrices, we can subsequently
encode matrices B and C using an optimal prefix code [Cover and Thomas 2006].

To encode m and n, we use Ly, the MDL optimal Universal code for integers [Ris-
sanen 1983]. A Universal code is a code that can be decoded unambiguously with-
out requiring the decoder to have any background information, but for which the
expected length of the code words are within a constant factor of the true optimal
code [Grunwald 2007]. With this encoding, Ly, the number of bits required to encode
an integer n > 1 is defined as

Ly(n) =log"(n) + log(co) , (6)

where log” is defined as log*(n) = log(n) + loglog(n) + - - -, where only the positive
terms are included in the sum. To make Ly a valid encoding, ¢y is chosen as ¢y =
> i1 2~ () & 2.865064 such that the Kraft inequality is satisfied—i.e., ensure that
this is a valid encoding by having all probabilities sum to 1.

Note that, as desired, Ly(n)+Ln(m) is constant between any (B, C) € H with BoC of
dimensions n-by-m. (Which is the case when we regard Boolean matrix factorizations
of an n-by-m matrix A.)

As we want the selection for the best factorization to depend strictly on the structure
of the factorization and the error it introduces —and do not want to introduce any bias
to small k£ by how we encode its value—we do not encode k using Ly (Eq. 6). Instead,
we use a fixed number of bits, i.e., block-encoding, which gives us

L(k) = log(min(m,n)) . (7

This gives us a number of bits in which we can encode values for k& up to the minimum
of m and n. Note that larger values do not make sense in BMF, as for ¥ = min(m, n)
there already is a trivial factorization (B,C) of A with B = A and C the identity-
matrix, or vice-versa.

With the dimensions encoded, we continue by encoding the factor matrices B and C.
To not introduce bias between different factors, these are encoded per factor. That is,
we encode B per column and C per row. For transmitting the Boolean values of each
factor we use an optimal prefix code, for which Shannon entropy, — log P(z), gives us
the optimal code lengths. In order to use this optimal code, we need to first encode
the probability p?* = P(1 | b;) = |by|/n of encountering 1 in column i of B. As the
maximum number of 1s in a column of B is n, we need k times log(n) bits to encode
these probabilities. This gives us, for B of n-by-,

k
L(B) = Klog(n) + Y (bili}* + (n — i )it") ®)
i=1

in which klog(n) is the number of bits to transmit the number of 1s in each column
vector b;, and

) ) bi ) ) n — bi
I = —log(p}") = —log (|n|) and Ig* = —log(pp’) = —log (n| |>

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January 2014.



A:12 P. Miettinen and J. Vreeken

are the optimal prefix code lengths for 1 and 0, respectively, for vector b; corresponding
to the ith column of B.
Analogously, we encode the k-by-m matrix C per row and have

k
L(C) = klog(m) + Y _ (Ie;[157 + (m — |e;])Ig) C)
=1
with

i i lcj| i y m — |c|
Iy = —log(py’) = —log <TTJL and [’ = —log(py') = —log TJ

where c; corresponds the jth row of C.

With the above definitions we now have all elements to calculate L(H). By H, the
receiver knows B and C, and only needs E to be able to lossless reconstruct A. We will
now discuss four increasingly involved alternatives for encoding E; we will explore
their quality experimentally in Section 6.

Example 5.2. As an example, let us compute L(H) for the factor matrices B and
C of Examples 4.1 and 5.1. Encoding the values of n and m, here 11 for both, takes
Ly(n) = Ly(m) = 6.09 + 1.519 = 7.609 bits each. To encode k, we use L(k) =
log(min(m, n)) = log(11) = 3.459 bits.

Next, we consider L(B). To encode the number of 1s in each of the factors we require
klog(n) = 3log 11 = 10.378 bits. The first column of B consists of seven 1s and four Os.
Hence, as probabilities we resp. have plfl = 7/11, and pgl = 4/11. The corresponding
code lengths to encode a value then resp. are l'fl = — log(pll)l) = 0.652 bits, and l(‘?1 =
1.459 bits. Encoding the values of the first column of B hence takes 7 x 0.652 + 4 x
1.459 = 10.40 bits. Skipping the details for the second and third column, we have for B
a description length of L(B) = 42.65 bits. For L(C) we arrive at 43.18 bits.

In total, for our example, the encoded cost of the model is L(H) = 2 x 7.609 + 3.459 +
42.65 + 43.18 = 104.51 bits.

5.2.1. Encoding E: Naive Factors. As we are scoring Boolean matrix factorizations, it
would be natural to also encode the entries of E as a factorization, e.g., such that
E = F o G. Of course, we have to keep in mind that B and C encode the structure in
A, whereas E encodes the noise, and noise by definition is unstructured. Hence, we
should not encode full rows or columns of E into one factor—as then we are assuming
structure. Instead, we have to encode each 1 in E in a separate factor, i.e., separate
columns/rows in F and G. The amount of bits this requires is given by

Lus(B) = log(mn) + [B| ( ~ (n — 1)log (TL;I> e (’11>

— (m—1)log <mml> “log (7711))

in which we essentially use the same encoding for the factors as in (8) and (9) (but
with the extra knowledge that every row (resp., column) in the factor matrices contains
exactly one 1). We refer to this encoding as the Naive Factors encoding for E, or NF for
short.

(10)

Example 5.3. Continuing from Example 5.2, we here encode E using NF. There are
seven errors to be encoded. Each error requires us to describe a factor in F and one in
G, each of which we know contains exactly one 1. Using the above encoding, encoding
one such factor of length 11 in which only one 1 occurs, requires (10 x 0.137) + (1 x
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3.459) = 4.834 bits. For Lyr(E) we then have log(11 x11)+7(2x 4.834) = 6.919+67.676 =
74.595 bits. Putting this together with the L(H) as we obtained in Example 5.2, for the
NF error encoding we have a total encoded size, L(A, H) of 179.11 bits.

Quick analysis of this encoding tells us it is monotonically increasing for larger error,
which is good, but also that we are spending too many bits, as we essentially encode
full rows and columns, whereas we only want to transmit the locations of the 1s in E.

5.2.2. Encoding E: Naive Indices. This observation suggests that we should simply
transmit the coordinates of the 1s in E. Clearly, this takes logm + logn bits per en-
try. Then,

Lxi(E) = log(mn) + |E| (logm + logn) , (11)

gives us the total cost for transmitting E. We refer to this encoding as NI, for Naive
Indices.

Example 5.4. Continuing from Example 5.3, we here encode E using NI. Encoding
one error, one 1 in E, takes log 11 +1log 11 = 6.919 bits. For Ly;(E) we then have log(11 x
11)+7(6.919) = 8(6.919) = 55.35. Putting this together with the L(H) as we obtained in
Example 5.2, for Naive Indices we have a total encoded size, L(A, H) of 159.86 bits—
which is much cheaper than we obtained using Naive Factors in Example 5.3.

NI saves bits compared to NF and hence by MDL it is a better encoding. Further, it
is monotonically increasing with the amount of 1s in E.

5.2.3. Encoding E: Naive Exclusive-Or. Although perhaps counter-intuitive, we can en-
code E more efficiently, more succinctly, if we transmit the whole matrix instead of just
the 1s. That is, we can save bits by transmitting, in a fixed order, and using an optimal
prefix code, not only the 1s but also the 0Os.

We do this by first transmitting the number of 1s in E, i.e., |E|, in log mn bits, which
allows the receiver to calculate the probability p¥ = [El/mn», and hence, the optimal
prefix codes for 1 and 0. Then, using these codes, and in a fixed order, we transmit the
value of every cell of E. The total number of bits required by this approach, which we
refer to as NX for Naive XOR, is given by

Lyx(E) = log(mn) + |E|l; + (mn — |E|){o , (12)
where the lengths of the codes for 1 and 0 respectively are
I, = —logp® and Iy = —log(l —pP).

By this approach, we consider every cell in E independently, yet, importantly, with
regard to pP. This means that L,, is not strictly monotonic with regard to the number
of 1sin E, as once p¥ > (1 —pF), adding 1s to E decreases its cost. In practice, however,
this is not a problem, as it only occurs if A is both extremely large and extremely
dense, yet contains so little structure that encoding it in factors costs more bits than
one gains. Besides a pathological case, this situation could be avoided by spending
1 extra bit to indicate whether we are encoding E or its complement—a cost that is
dwarfed by the total number of bits to describe E. We will refer to this encoding as NX.

Example 5.5. Continuing from Example 5.4, we here instead encode E using NX.
The code length for a 1 in E is —log(7/121) = 4.11 bits, while encoding a 0 only takes
0.09 bits. For Lyx(E) we then have log(11 x 11) + 7 x 4.11 + 114 x 0.09 = 45.50. Putting
this together with the L(H) as we obtained in Example 5.2, for Naive XOR we have a
total encoded size, L(A, H) of 150.01 bits—which in turn is cheaper than with NI.

In general, the gain of NX over NF and NI is substantial.
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5.2.4. Encoding E: Typed Exclusive-Or. Our final refinement in what to encode, is to dif-
ferentiate between noise in the part of E that falls within the modeled part of A, i.e.,
the 1s we have modeled but do not occur in A, E- = E A (B o C), and those 1s that are
part of A but not included in the model, i.e., ET = E © (B o C). Trivially, this gives us
E = ET v E~. We refer to this approach as TX.

We encode each of these two parts analogously to NX, but can transmit the number of
1s in the additive and subtractive parts in respectively log(mn—|B o C|) and log |B o C|
bits.

We define the probability of a 1 in E* as p = |ET|/(mn — |Bo C|), and similarly
for E-, p; = |E~|/|B o C|. When we combine this, we can calculate the number of bits
required to encode E by the Typed XOR encoding as

Lyx(E) = Lyx(E") + Lix(E7) (13)
where
Lx(ET) = log(mn — [Bo C|) + [ET| I
4 (mn— [BoC| - [E*)i
and

Lix(E7) =log(|Bo C|)+ |E™ |y + (IBoC|— |E7|)l

respectively give the number of bits to encode the additive and subtractive parts of E.
We calculate [, 7, ], [; analogous to how we calculate [ for NX.

Example 5.6. Continuing from Example 5.5, we here encode E using TX. In Fig-
ure 2 the area of E corresponding to ET is depicted in grey, while the area of E~ has a
white background.

As the calculation of the encoded lengths for respectively ET and E~ follow that of
NX, we skip the details. In total, for encoding E by TX we require L.x(E) = 49.89 bits.
Note that this is more than NX; this is because the distribution of errors within ET and
E~ here are very similar. As such, TX cannot gain much by encoding these separately,
while having the additional cost of encoding the number of errors within each part.
As we will see in the experiments, in practice these distributions typically do strongly
vary, and TX obtains large gains over NX. For TX, we here have a total encoded size,
L(A, H) of 154.4 bits.

Like NX, in general this encoding is monotonically increasing for larger error |E|.
However, it is more efficient than its naive cousin when the noise is not uniformly
distributed over the modeled and not modeled parts of A. That is, when the probability
of a 1 being part of a true pattern being recorded as a 0 is not equal to the probability
of a true 0 being recorded as a 1. Clearly, in many situations this will be the case.

5.2.5. Encoding by Data to Model Codes. Although increasingly involved, so far, the tech-
niques we proposed to encode B, C, and E are fairly straightforward: we use explicit
codes for the individual values. By using optimal prefix codes, we know the encoded
lengths of the entries follow the observed empirical probability distributions. However,
it is important to note this style of encoding is only optimal for encoding a random en-
try drawn from that distribution. When encoding a stream of unknown length, and of
fixed distribution, that is naturally satisfied, and hence these codes are optimal.

However, in our setting, we know more: the total number of entries we will have
to decode. Armed with this knowledge, we do not have to use fixed code lengths per
entry, as we did above. Instead, we know the number of 1s and 0s we will receive,
we can derive the codes optimal for the next entry. After receiving that code, we can
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unambiguously decode it. Moreover, we know we can decrease the number of codes
we will receive for that value; by which we obtain a new coding distribution, which is
optimal for the new situation. This is called adaptive coding [Grinwald 2007].

Instead of calculating new codes at every step, but using the same rationale and
obtaining the same total encoded length, we can encode all entries in one code. This is
called a data-to-model (DtM) encoding [Vereshchagin and Vitanyi 2004]. The basic idea
is that, in an abstract way, we can enumerate all possible strings that satisfy the given
information. Assuming each of these strings in the enumeration are equally likely, we
can identify an individual string by its index in the enumeration. The encoded length
of this index is then simply log |D|, where D is the number of possible data strings.

In our case, the enumeration consists of all possible binary strings of a particular
length, and a given number of 1s that occur in it. The number of possible strings can be
calculated by the binomial ("), where v is the length of the string, and w the number
of 1s (or Os, as it is symmetric). Following, the encoded length of an index over this
enumeration is log () bits.

Next, we formalize a data-to-model encoding for the factor matrices, and the error
matrix. We start with the factor matrices. As above, we assume independence between
factors, and hence will encode the factors independently of each other. This gives us

Ldtm(B) = klog(n) + ilog ( ) )
|b|

i=1
and

L4 (C) = klog(m) + i}log ( : )

|c;

for the B and C factor matrices respectively. We will use this encoding for both of the
two strategies for encoding E.

Example 5.7. Continuing from Example 5.6, we now calculate the description
length of our running example model H by the data-to-model approach, i.e. L™ (H).

For B, we identify how many 1s each factor contains, taking log11 bits each. For
the first factor, there are (171) = 330 ways to distribute seven 1s over eleven (n) loca-
tions. Identifying one takes log 330 = 8.37 bits. Analog for the other factors, we need
L4m(B) = 36.45 bits to describe B. Analog for C, we require L%™(C) = 36.93 bits.
Wrapping things up, we have L(H) = 92.06 when using the data-to-model encoding for
the factors. This is more than 12 bits cheaper than we needed using the straightfor-
ward individual-codes encoding L(H) as used in Example 5.2.

For the error matrix E we construct encodings alike to the Exclusive-Or encodings
above, by which we have

Lo (E) = log(mn) + log (ﬂéﬂ)

for the Data-to-Model equivalent of NX. We will refer to this encoding as NXD for Naive
XOR DtM.

Next, for the Typed Exclusive-Or encoding, when we follow a data-to-model ap-
proach, we have

LTXD (E) = LTXD (E+) + LTXD (E_)
where

—|B
Lyxp(ET) = log(mn — |B o C|) + log (mn | oC)

B
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and

BoC
Loso(E") = log([B o C) + log (' o ) .

We refer to this encoding as TXD for Typed XOR DtM.

Example 5.8. Continuing from Example 5.7, we can now calculate for our running
example the encoded size of E using NXD and TXD. For Lyxp(E) we arrive at a cost of
42.80 bits, and for TXD we require Lixp(E) = 45.47 bits.

For the total encoded sizes, L(A, H), using the data-to-model encoding for H, we
then require 134.86 and 137.54 bits for NXD and TXD, respectively.

We see that even in this toy example the DtM encodings are much more efficient
than their standard XOR counterparts. Here, the difference is already ~ 15 bits, over
10%, for encoding exactly the same model. This means the DtM encodings make much
better use of the provided information, and hence that by these encodings we are much
better able to measure small differences between different models.

Like in Example 5.6 we see that for our running example the typed encoding does
not provide a gain, although the difference between NXD and TXD is already smaller.
As we will see in the experiments, for real data TXD does obtain a strong lead over
NXD.

By making a choice for one of the six above encoding strategies, we can now calculate
the total compressed size L(A, H) for a dataset A and its factorization. As out of the
six strategies, TXD is the most efficient approach for encoding both the model H and
error matrix E given the available information, we expect it to be the best choice for
identifying the correct model order. In Section 6 we will empirically evaluate perfor-
mance, but first we discuss the complexity of finding the factorization that minimizes
L(A,H).

5.3. Computational Complexity

Finding the minimum description length Boolean matrix factorization is a computa-
tionally hard task. To start with, the shortest encoding corresponds to the Kolmogorov
complexity, which is non-computable. But even when we try to minimize some given
encoding, like one of the above, the problem does not necessarily become easy. In par-
ticular, we cannot have a polynomial-time algorithm that minimizes the description
length in any given encoding.

PROPOSITION 5.9. Unless P = NP, there exists no polynomial-time algorithm that,
given an encoding length function L and an n-by-m Boolean matrix A, finds Boolean
matrices B and C such that L(A, (B, C)) is minimized.

Proving proposition 5.9 is straightforward: we only need to note that if L is such
that encoding even a single bit of error takes more space than any possible factoriza-
tion and any factorization with % factors is always cheaper than any other factorization
with k& + 1 factors, provided they cause the same amount of error, then any decomposi-
tion minimizing L must find exact decomposition with least number of factors. As such
encoding length functions obviously exist, and minimizing them is equivalent to find-
ing the Boolean rank of the input matrix—an NP-complete problem—Proposition 5.9
must hold.

This, however, does not answer to the question whether the practical encodings are
hard, or are all of the hard cases just some specially-crafted tautological examples one
would not use in any case. We answer this problem, at least partially, by showing that
the Naive Indices encoding (Section 5.2.2) is indeed NP-hard to minimize when one
factor matrix is given. For that, we need the following result:
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THEOREM 5.10 ([MIETTINEN 2008, 2009]). Given an n-by-m Boolean matrix A
and an n-by-k Boolean matrix B, it is NP-hard to find a k-by-m Boolean matrix C such
that |A & (B o C)| is minimized.

We can now prove the following theorem.

THEOREM 5.11. Given an n-by-m Boolean matrix A and an n-by-k Boolean matrix
B, it is NP-hard to find a k-by-m Boolean matrix C such that the Naive Indices encoding
length (Section 5.2.2) is minimized.

PROOF. We reduce the problem of finding C that minimizes the error to that of
finding C that minimizes the encoding length (under the NI encoding scheme). Assume
we are given n-by-m and n-by-k Boolean matrices A and B as in Theorem 5.10. For the
reduction, we construct new Boolean matrices, A, and B,, as follows. Matrix A, is
an-by-m and matrix B, is an-by-k, where « is a non-negative integer to be decided
later. Matrix A, simply contains « copies of A stacked on top of each other, and B, is
build similarly with copies of B.

We now claim that any k-by-m Boolean matrix C* that minimizes the NI encoding
of decomposition A, ~ B, o C* also minimizes the error |A © (B o C*)|. To that end,
notice first that any C that minimizes the error |A, @ (B, o C)| minimizes also the
error |[A & (B o C)| (specifically, |A, & (B, o C)| = a|A & (B o C)|). Hence, it suffices to
show that C* minimizes the error with A, and B,..

Consider the difference between the maximum and minimum encoding lengths of
C, argmaxgegg,1ykxm L(C) —argmingegg 136xm L(C). The minimum is obtained when C
is monochromatic (full of 1s or 0s), while the maximum happens when each row of C
contains exactly %3 1s. The difference between these two is

argmax L(C)— argmin L(C)
CG{O 1}k'><m CE{O 1}k'><m

k k
= klog(m) + »_ (=m/2log(1/2) — m/2log(1/2)) — | klog(m) + > (~0log0 — 0log 1)
j=1 j=1

=km .

(14)

Now, let & = km. As NI spends log(an) + log(m) bits for each error in A,, and as
every error C* does in one copy of A is multiplied « times in A, each error C* does
increases the encoding length by a(log(an)+1log(m)) = km(log(kmn)+1log(m)). But this
is more than the largest possible increase in the encoding length and so reducing the
error always reduces the encoding length. Therefore, for C* to minimize the encoding
length, it must minimize the error, concluding the proof. O

The above proof is based on construction where minimizing the error is equivalent
on minimizing the MDL cost. While this is not true in general, we consider the mini-
mization of error a good heuristic to minimizing the MDL cost, essentially ignoring the
cost of the model when building the factorization. When evaluating the factorization,
we naturally compute the full MDL cost.

5.4. Merging MDL and Asso

The most straightforward way to decide the model order, given an encoding method, is
to compute the BMF for each value of k, and to report the k at which L(A, H) was found
to be minimal. This naive strategy, however, may be very slow in practice, as, if we do
not set a maximum k ourselves, we would have to re-start min(n, m) times—with n and
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m in the order of thousands, this would mean a significant computational task. But
here the hierarchical nature of ASSO comes to good use: instead of having to re-start
every time, we can start by computing the first factor, compute its description length,
add the second factor, compute the new encoded length, and so on. To compute L(A, H),
we can use the fact that at any point we know the cost of encoding the previous k£ — 1
factors, and thus only have to compute the cost for the new factor. Further, as ASSO
calculates per step how much it reduces the error, we can use this information when
encoding the error matrix.

As we minimize the error, we cannot guarantee that the description length is a con-
vex function with respect to k. Nevertheless, if we assume the cost to be approximately
convex we can implement an early-stopping criterion: stop the algorithm if compres-
sion has not improved during the last c steps.

The benefits of using MDL with ASSO are not restricted to only selecting the model
order. Recall that ASSO requires a user-provided parameter = to generate the candi-
date factors. Selecting the value for this parameter can be a daunting task. Here MDL
also helps: by computing the decompositions for different values of 7, we can select
the pair (k, 7) that minimizes the total description length. Hence, we can use MDL not
only for BMF model order selection in general, but also for BMF model selection.

6. EXPERIMENTS

In this section we experimentally evaluate how well our description length functions
identify the correct model orders. We first investigate how well our encodings identify
correct model orders with ASSO on synthetic data. Second, on the same data, we com-
pare to alternative scoring and factorization methods. Third, we evaluate performance
on real datasets.

While, naturally, we will investigate the factors discovered at the identified model
orders, note that a qualitative evaluation of factor extraction is not specifically the
topic of this paper; as opposed to evaluating the performance of ASSO in extracting
correct factors, our main concern here is identifying the correct model order.

We implemented the ASSO algorithm and our scoring models in Matlab/C, and pro-
vide the source code for research purposes together with the generator for the synthetic
data? For PANDA, we used the publicly available implementation by Lucchese et al.
[2010] and the implementation of Transfer Cost was provided to us by the authors
of Frank et al. [2011].

6.1. Comparing Encodings

Before comparing between different methods, we first investigate whether our encod-
ings work at all for identifying correct model orders—and whether we can identify
which encoding works best to this end. Therefore, we here restrict ourselves to ASSO,
and use synthetic data.

We perform three different experiments. First, we evaluate the detection of the cor-
rect model order under noise. Second, we consider different model orders, while keep-
ing the data density equal. Third, we consider data of varying model orders, where we
vary the data density. For each experiment, we report the averaged results over five
independent runs.

For each of these settings, we generate binary 8000-by-100 matrices, in which we
randomly plant k itemsets, and apply both additive noise (flipping 0s into 1s) as well
as subtractive noise (flipping 1s into 0s), with respective probabilities n* and n~.

Varying Model Orders. We first investigate the detection of different model or-
ders. To this end, we generate data in which we respectively plant &k = 2, 5, 10, 15,

Shttp://people.mpi-inf.mpg.de/~pmiettin/mdl4bmf/
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Fig. 3: Comparing between encodings. Model order estimates for varying true
model orders, averaged over five independently generated datasets. For all datasets,
width and frequencies of the planted itemsets are equal on expectation. The bars rep-
resent the estimates obtained when using ASSO with, from left to right, TXD, NXD, TX,
NX, NI, and NF.

or 20 random itemsets of random uniform cardinality [2,10], and of random uniform
frequencies between 10% and 40%. We keep the amounts of additive and subtractive
noise fixed to nt = 10%, and n~ = 5%. We refer to this set-up as Setting 1.

We run ASSO on each dataset, sweeping for k over 1 to 100, and for 7 from 0.1 to
0.9 in increments of 0.025. For each of the 100 x 33 = 3300 returned factorizations
per dataset, we calculate L(A, H) for each encoding, and we record those values for k
associated with the discovered minimal description lengths.

We plot the averaged model order estimates in Figure 3. We see that the Factor
and Indices encodings strongly overestimate. The more efficient XOR encodings, on
the other hand, consistently give good estimates. Only for 20 planted itemsets we see
a slight under-estimation, of which inspection shows is due to overlap: due to chance,
and the small number of columns, i.e., 100, many of the planted itemsets overlap and
co-occur. By it’s greedy strategy, ASSO groups some of these together. For £ = 10, we
note that NI and NF are either correct or strongly overestimate—for all other settings
the standard deviations are very small.

Next, we evaluate a highly similar setting, which we will refer to as Setting 2. In-
stead of generating more and more dense data at higher values of k, we now aim at
keeping the density the same, on expectation, to that of the £ = 10 setting. That is,
for k < 10 we generate itemsets of higher cardinality, and at k£ > 10 of lower cardinal-
ity. Specifically, we generate itemsets with cardinalities randomly drawn from [10, 40],
[5,15], [2, 5], and [2, 3] for k = 2,5, 15, 20, respectively. For the rest, we proceed as above.

Figure 4 shows the results. For values of k£ below 10, performance is virtually equal
to that of Figure 3. Clearly, ASSO has no problem in identifying the correct factors
at k£ < 10. For high values of k, corresponding to many small itemsets, ASSO does
not consider the correct model. The efficient XOR encodings all work as intended; as
desired, overfitting is punished. The DtM variants slightly outperform the standard
XOR encodings, and overall TXD works best by a small margin.
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Fig. 4: Comparing between encodings. Model order estimates for varying true
model orders, averaged over five independently generated datasets. Average density
of the datasets kept equal on expectation, by changing the width of the planted item-
sets, i.e., higher number of planted itemsets corresponds to smaller itemsets. The bars
represent the estimates obtained when using ASSO with, from left to right, TXD, NXD,
TX, NX, NI, and NF.

While under-estimation is clearly preferred to over-estimation—we do not want to
model noise—it does raise the question whether this is due to the search or the scor-
ing function; by iteratively minimizing error, ASSO may simply not consider any H of
correct k£ that remotely resemble the true model, and hence, making it impossible to
detect the correct model order.

To see what is the case, we manually compare the encoded sizes of the true model to
that of the best model found by ASSO. The results are clear: for low noise, ASSO finds
models that compress as well as the true model, sometimes even better, e.g., by not to
modeling damaged parts of a structure. Unsurprisingly, the discovered itemsets match
the underlying model very well. For high noise levels, on the other hand, we see that
ASSO returns models that compress much worse, typically requiring 10% more bits
than the generating model. The itemsets ASSO discovers in these settings, however,
do consist of combinations of the true itemsets; specifically those with relatively large
overlap in items and rows. So, while the true itemsets are in fact detected, by the
iterative minimization of error, ASSO does not report them separately. As such, the
scoring functions perform rather well; even for the highest levels of noise, the true
model compresses much better, and hence, if it (or any model remotely resembling it)
would be considered, the model order would be identified correctly.

Varying Noise Levels. Last, we investigate sensitivity to noise. We generate data
varying n™ from 5% to 25% in steps of 5%, and in each dataset we plant k¥ = 10 ran-
domly generated itemsets, each of cardinality uniformly randomly drawn from [4, 6],
with random frequency drawn from [10%, 40%]. We fix n~ to 5%. As such, for values of
nt above 12.5%, there are more 1s in the data due to noise than to structure—at 20
and 25% even twice as many. We will refer to this data setting as Setting 3.

We proceed as above, and run ASSO on each dataset, scoring every factorization by
each of our encodings. We plot average estimated model orders in Figure 5. The bar
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Fig. 5: Comparing between encodings. Model order estimates for varying amounts
of additive noise (true k£ = 10), averaged over five independently generated datasets.
The bars represent the estimates obtained when using ASSO with, from left to right,
TXD, NXD, TX, NX, NI, and NF. The y-axis has logarithmic scale. All values averaged
over 5 datasets. Note that beyond 12.5% noise there are more 1s in the data due to
noise than to structure.

plot shows us that both NF and NI over-estimate k& strongly. The XOR encodings all
perform highly similar, and provide very good estimates: exact at 5% and 10%, start
to underestimate when the majority of 1s are due to noise, yet still perform very well
at 15%. Overall, the Typed XOR variants slightly outperform the Naive variants, with
TXD as the overal best performer.

These three experiments show that the XOR encodings provide highly accurate BMF
model order estimates, as well as graceful degradation at very large amounts of noise
and for densely populated matrices. The sub-par performance of the NF and NI encod-
ings show the need of balancing the encoding of the model and error. Overall, TXD and
NXD perform best, and we will use these for the remainder of this section.

6.2. Comparing between Methods

Next, we compare to the model order selection performance on our synthetic data of
three alternative methods: Cross Validation, Transfer Cost, and PANDA.

Cross Validation, or CV for short, is perhaps the most well-known and commonly
used approach for automatically tuning parameters. As our goal is to validate the dis-
covered factors, instead of trying to predict missing values, we use columns of the
original data as hold-out data.

As we briefly discussed in Section 1, while CV is an appealing and simple approach,
it has one major drawback in the context of BMF': generalizing the column factors
to the hold-out data is NP-hard. That is, finding the best possible way to express a
given column by the provided factors is called Basis Usage Problem. This problem
is known to be NP-hard, even for to be approximated within a super-polylogarithmic
factor [Miettinen 2009]. As a practical solution, we here use the same greedy process
as employed by ASSO (see Section 4.2). We average the overall error for each & and ¢
over the 10 folds, and select that combination of parameters for which we observe the
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Fig. 6: Comparing between methods. Error in model order estimates, averaged over
five independently generated datasets, for varying true model orders. For all datasets,
width and frequencies of the planted itemsets are equal on expectation. The bars rep-
resent the estimates obtained with, from left to right, using ASSO with resp. TXD, NXD,
and T-Cost; and PANDA.

smallest average error. Note that we cannot use Owen and Perry’s [2009] bi-cross-val-
idation approach, as their method to generalize learned factors to the test data does
not apply to BMF.

Transfer Cost (T-Cost) in essence is a more practical variant of cross-validation, as
it provides a way to score how well factors generalize the data. As such, it is a direct
alternative to our MDL approach. We apply T-Cost to score the factorizations of ASSO.
With PANDA, we also compare to a different algorithm for extracting factors, as well
as automatically identifying the model order. As discussed in Section 2, while PANDA
takes cues from MDL it employs a lossy and rather crude encoding.

We compare the performance of these methods in detecting model orders to ASSO
in detail using the same synthetic data as above. We run each of the methods, and
record the reported model order estimates, for each of the datasets of both settings. As
above, all results are averaged over five independently generated sets of databases. We
observe that cross-validation always estimates k to full-rank, and therefore conclude
that ‘vanilla’ CV is not a good choice for model order selection in BMF, and do not
further report on it. We do provide a discussion of why CV fails in Section 7.

We start by considering Settings 1 and 2, in which we consider different true model
orders. Figures 6 and 7 show the corresponding bar plots of the relative error of the
model order estimates. Both show the same trend. Overall PANDA suffers from severe
over-estimation, finding hundreds of factors instead of tens. ASSO with TXD, NXD or
T-Cost, on the other hand, provides good estimates. For T-Cost the estimates do dete-
riorate towards over estimation for higher k, whereas our MDL score tend to slightly
underestimate. For brevity, we forgo detailed discussion of Setting 3, besides remark-
ing that ASSO with either NXD, TXD, or T-Cost all provide correct estimates at the noise
levels up to 15%, and then deteriorate. As above, PANDA strongly over-estimates.
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Fig. 7. Comparing between methods. Error in model order estimates, averaged over
five independently generated datasets, for varying true model orders. Average density
of the datasets kept equal on expectation, by changing the width of the planted item-
sets, i.e., higher number of planted itemsets corresponds to smaller itemsets. The bars
represent the estimates obtained with, from left to right, using ASSO with TXD, NXD,
and T-Cost; and PANDA.

6.3. Real Data

Next, we consider 8 real datasets, most of which are publicly available. Below we give
a short description per dataset, and an overview in Table I.

Abstracts represents the words for all abstracts of the accepted papers at the ICDM
conference up to 2007, where the words have been stemmed and stop words removed*
[De Bie 2011].

DBLP contains records of in which of the 19 conferences the 6980 authors had pub-
lished. The dataset is collected from the DBLP database® and it is pre-processed as by
Miettinen [2009].

Dialect contains presence data of dialectical linguistic properties in 506 Finnish mu-
nicipalities [Embleton and Wheeler 1997, 2000].

DNA Amplification contains information on DNA copy number amplifications. Such
copies activate oncogenes and are hallmarks of nearly all advanced tumors [Myllykan-
gas et al. 2006]. Amplified genes represent attractive targets for therapy, diagnostics
and prognostics. This dataset exhibits a banded structure [Garriga et al. 2011].

Mammals consists of presence data® consists of presence records of European mam-
mals within geographical areas of 50 x 50 kilometers [Mitchell-Jones et al. 1999].

Mushroom is a standard benchmark dataset from the UCI repository [Frank and
Asuncion 2010], and consists of properties of edible and poisonous mushrooms.

4 Available upon request from the author De Bie [2011]

Shttp://www.informatik.uni-trier.de/~ley/db/

6Available for research purposes from the Societas Europaea Mammalogica at http://www.
european-mammals.org
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Table I: Dataset overview. Shown are, per dataset, the number of rows, n, and the
number of columns, m, as well as the density of the matrix, the relative number of
1s. Further, for AssO with T-Cost, PANDA, and ASSO with TXD, the model order esti-
mates.

Base Statistics T-Cost PANDA ASso
Dataset n m %1s k k k
Abstracts 859 3933 1.2 - 168 19
DBLP 6980 19 13.0 19 15 4
Dialect 1334 506 16.1 389 56 37
DNA Amp. 4590 392 1.5 365 39 54
Mammals 2183 124 20.5 122 50 13
Mushroom 8192 112 19.3 112 175 59
Newsgroups 400 800 3.5 398 17 17
NSF Abstracts 12 841 4894 0.9 - 1835 2098
Paleo 501 139 5.1 46 96 19

Newsgroups is a subset of the well-known 20Newsgroups dataset, containing, for
400 posts from 4 newsgroups®, the usage of 800 words.

NSF Abstracts contains the occurrence of terms in abstracts of successful NSF grant
applications? The pre-processing follows Miettinen [2009]. The resulting data is ex-
tremely sparse (0.9% of elements are 1s).

Last, Paleo consists of fossil records per location?

We ran each method on these datasets, and give the returned model orders in Table 1.
Transfer cost is computationally rather expensive, in particular for the larger and more
sparse datasets, and did not finish within reasonable time for Abstracts and NSF.

When we investigate the model orders, we see an interesting reversal compared
to the synthetic data. Here, PANDA does not strongly overestimate, but T-Cost does:
many of the estimates obtained by T-Cost are full-rank, or close to it. While for these
datasets there is no ground truth, these scores are beyond what would be inspectable
by hand.

The estimates provided by PANDA, on the other hand, seem more realistic. For Ab-
stracts, Mammals, and Mushroom, however, PANDA estimates the model order much
higher than ASSo.

For Asso, with the exception of NSF, the factorisations of the identified model orders
are all such that a data analyst can inspect by hand. We discuss the results of ASSO in
closer detail below.

First, however, we investigate the sensitivity to ASSO’s parameter 7 for the model
order estimates on real data. In Figure 8, we plot two typical examples of total encoded
lengths, L(A, H), for ASSO with TXD and using different values of k£ and 7. In the
left figure, for the DNA data, we see the landscape to be a valley, with extreme high
values for overly complex and overly simplistic models. The value of £ at which ASso
minimizes L(A, H) is found in the distinct valley, at ¥ = 54. The shape of the valley

"http://people.csail.mit.edu/jrennie/20Newsgroups/

8The authors are grateful to Ata Kaban for pre-processing the data. The exact pre-processing is detailed
in [Miettinen 2009].

9http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html

1ONOW public release 030717, available from http://www.helsinki.fi/science/now/ [Fortelius et al.
2003].
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Fig. 8: 3D plots of the number of bits (y-axis), for varying values of & (z-axis) and 7
(z-axis) for AssO with Typed XOR DtM encoding. (left) The DNA dataset. Minimal
description length attained at ¥ = 54 and 7 = 0.35. (right) The Mammals dataset.
Minimal description length attained at k = 13 and = = 0.65.

tells us that for this relatively structured and dense dataset, the value chosen for
parameter 7 does not (strongly) influence the detected model order k.

In the right plot of Figure 8, we show the total encoded lengths obtained by ASSO on
the Mammals dataset. Although slightly less well expressed, we observe the same gen-
eral behavior as for DNA; high values for k lead to overly complex models, and hence
overly long total encoded lengths. We again observe the distinct peak at high k and low
7, settings at which ASSO is allowed to find highly noisy factors. The landscape shows
a distinct local valley, or ‘pit’, around & € [10,15] and 7 € [0.6,0.85], at which the en-
coded lengths are noticeably lower than elsewhere. The minimal observed description
length attained at £ = 13 and 7 = 0.65, is found in this local valley.

Over all other considered datasets the landscapes are of similar shape, with the
exception of the highly noisy synthetic data. This shows that in practice we can sweep
over T in coarse steps, possibly with local optimization. Next, we discuss the near-
convexity over values of k.

In Figure 9 we show, for each of the datasets, the total encoded size per k, fixing 7 to
the value at which the minimum description length was found. The identified model
orders (i.e., values for k£ at which the minimum was reached) are given in each figure.
As the plots show, our description length function is close-to-convex for ASSO’s greedy
heuristic search. This means that the early-stop criterion ¢ can validly be employed. It
also suggests that binary search might be a valid search strategy for non-hierarchical
algorithms.

As mentioned above, the purpose of these experiments is to assess the quality of
our model-order selection approach, not that of BMF or ASSO per se. Nevertheless, we
need to analyze whether the selected model orders indeed make sense, and can best do
this by investigating the factors ASSO discovers at the identified model orders.

For the DBLP dataset, our method proposes & = 4. This yields four disjoint sets of
conferences as row factors: (1) SIGMOD, VLDB, ICDE, (2) SODA, FOCS, STOC, (3) KDD,
PKDD, ICDM, and (4) ICML, ECML. These four factors clearly correspond to four differ-
ent fields of computer science, namely (1) databases, (2) theoretical computer science,
(3) data mining, and (4) machine learning.

The suggested number of factors for Newsgroups, 17, might seem high given that the
data is on only four newsgroups. However, it would be overly simplistic to assume that
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Fig. 9: MDL score per k obtained by ASSO for 8 datasets. Value for 7 fixed per dataset
to the value at which the minimal description length is found over all  and k. For all
datasets we considered values for k up to the data dimensions, with 400 as maximum.

each newsgroup could be represented well by just one (or even two) topic(s). Instead,
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there are some general topics (i.e., factors containing words appearing across the data,
such as ‘question’), and three to four subtopics per newsgroup.

The estimate for DNA, k = 54, returns factors that model the known chromosomal
regions (or bands [Garriga et al. 2011]) of interest very well, only missing some of the
smallest itemsets [Myllykangas et al. 2006].

For the paleontological data, Paleo, we identify k& = 19 as the best model order. In-
terestingly, Tatti et al. [2006] computed the normalized correlation dimension for this
data to be 15. While this normalized correlation dimension has no direct connection to
BMF, we consider it interesting that these two methods designed for Boolean data give
rather similar results. Even more so, as Tatti et al. [2006] report that explaining 90%
of the variance with PCA requires 79 factors.

We also checked the error curves for these data sets. In most of the cases, error
decreases smoothly as k increases, and hence we cannot find any ‘elbow’ that would
suggest the model order.

Further, note that for some datasets, such as Abstracts and Dialect, there is a range
of k that could be considered as the ‘correct’ model order. This is not surprising, as
these datasets are very sparse, and hence factorizations of slightly varying complexity
and error may exist that model the data equally well. Also, due to the heuristic search
of ASSO, it cannot be guaranteed that the best factorization out of all valid Boolean
matrix factorizations is actually considered.

For NSF, our model selection procedure resulted in values of 7 = 0.8 and k& = 2098.
This is one of the few datasets where Panda returned a lower estimate, of 1835 factors.
In both cases, the returned values for k are of course too large for humans to manually
interpret the factors. Yet, it seems that the data indeed requires quite large k, as the
model cost decreases steeply when £ is increased—as is clear from the plot in Figure 9.
Furthermore, using PCA, 1848 factors explain only about 69% of the variance, and in
order to explain at least 90% of the variance, PCA needs 3399 factors. While these num-
bers are not directly comparable, they do indicate that the data has a very fine-grained
structure (i.e., very little overlap between the rows, many words that (co-)occur only in
few documents). This, at least partly, explains the need for high ¥ when factorizing the
data by BMF.

Last, though we introduce a model selection criterion, and not a new algorithm,
we remark on the recorded runtimes. On the data we consider here, PANDA finishes
within minutes, while for a full sweep over k and ¢t ASSO requires between minutes and
hours—depending mostly on the density of the data, see Miettinen et al. [2008] for a
discussion. Standard ASSO returns all counts our scores require, and hence calculating
the score is trivial. The evaluation of T-Cost, on the other hand is computationally
costly, and takes up to a few days for a full sweep over k£ and ¢ for one dataset.

7. DISCUSSION

The experiments show our approach to solve the BMF model order selection problem
by MDL works very well. By the MDL principle, and hence by employing the most
efficient encoding for the error matrix, TXD, we find highly accurate estimates.

Our approach compares favorably to PANDA and T-Cost. While the former is fast, for
more dense data it severely over-estimates the model order. This was particularly ap-
parent in the synthetic data, but similar behavior was observed for the Mammals and
Mushroom datasets. T-Cost is a powerful mechanism, and provides very good model
order estimates on the synthetic data. On real data, however, it returns very high
model order estimates. Moreover, computing the generalization of a factorization is
computationally highly taxing.

We also applied cross-validation. While intuitively appealing, it failed to produce
any reasonable results. Why was that? There are (at least) two possible reasons. First,
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generalizing the learned factors to new columns is a hard problem, as we already men-
tioned. But it might be that cross-validation fails even if we could generalize in an
optimal way. The problem is that when we generalize to new columns (or rows), we
do not have to use all factors. The consequence is most obvious in hierarchical decom-
positions, such as those returned by ASSO: adding a new factor reduces the error on
training data, but it will never increase the error on test data (if it would, we would
not use it to explain the test data). This is not special to Boolean matrix factorizations,
as similar behavior has been reported with PCA [dos S. Dias and Krzanowski 2003].

Of our error matrix encoding strategies, the inefficient NF and NI do not work well
in practice—except when noise is low and a model closely resembling the true model
is offered. The XOR encoding variants, on the other hand, consistently provide highly
accurate model order estimates. Neither overestimate model complexity, and naturally
provide underestimation in high-noise situations; highly desirable properties for model
(order) selection. As it is the most efficient encoding, our overall recommendation is to
use TXD to encode E.

Experiments on real data show that meaningful factors are discovered at the se-
lected model orders, as well as that the score is near-convex. This means that, even
for the heuristic BMF algorithm we employed in our experiments, we can confidently
employ a greedy early-stopping criterion. Further, it suggests binary-search strategy
might make a viable strategy for selecting the correct model order if non-hierarchical
algorithms are used.

In this paper we proposed to use MDL for identifying the model order in Boolean
matrix factorization. To this end, we developed MDL objective functions that can be
used to evaluate the complexity of any Boolean matrix factorization—and are hence
applicable to any BMF algorithm. As such, contrary to most data mining papers, we
did not introduce a novel algorithm.

In order to evaluate the performance of our scores, we applied them to identify the
best out of the factorizations discovered by ASS0O. The empirical evaluation shows that
our scores, and TXD in particular, provide very high accuracy model order estimates. It
is important to note that ASSO is an existing algorithm for heuristically mining error-
minimizing BMF. Though error minimization and entropy minimization are intuitively
linked in this setting, it would be informative if this link can be formally established:
under what circumstances and what encoding is the minimum error BMF also the
minimum description length BMF?

Though ASSO gives good results, the development of an efficient BMF algorithm
directly optimizing our MDL score will make for important future research—given the
complexity of the BMF problem in general, and in particular the non-linear behaviour
of the TXD score, smart heuristics will be required. Cues may be taken from recent
developments in pattern set mining, where algorithms have been proposed that can
mine high-quality results directly from data [Smets and Vreeken 2012; Akoglu et al.
2012; Mampaey et al. 2012].

Finally, we note that our encoding length functions are easily adaptable for differ-
ent variations of BMF, such as Boolean column subset-selection [Miettinen 2009] and
dominated BMF [Miettinen 2010]. Indeed, after the publication of the preliminary ver-
sion of this paper, the proposed encoding length functions have already been adapted
to find model orders in joint subspace Boolean matrix factorization [Miettinen 2012]
and dynamic BMF [Miettinen 2013]. Furthermore, extending our encoding methods to
other models for representing binary matrices as a product of binary factor matrices is
straightforward. An example of such model is the binary matrix factorization [Zhang
et al. 2010] that uses normal arithmetic instead of the Boolean one. The factor matri-
ces can be encoded using exactly the same techniques as presented here, but as the
representation is not limited to binary matrices, the error matrix needs to encode not
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just the location of the errors, but also the correct value. Of the presented encoding
schemes, the NI encoding, for example, would require some modifications, but the TXD
encoding would work essentially as is. It would be interesting to study how well these
encodings would work on these different scenarios.

8. CONCLUSION

We proposed a general solution to the model order selection problem for Boolean ma-
trix factorization. By the Minimum Description Length principle, we formulate the
number of bits required to lossless encode the model and the error it introduces, and
report the order of the model for which this sum is minimized. We discussed how to con-
struct an appropriate encoding for BMF, starting by introducing simple and intuitive
approaches, and progressing to a highly efficient typed data-to-model based encoding.
We showed that minimizing the MDL score is already NP-hard for the relatively sim-
ple NI encoding.

We empirically evaluated its performance in combination with the Asso BMF algo-
rithm. The experiments show that the correct model orders are reliably selected for
varying amounts of noise and model orders, and moreover, that the models at which
the MDL score is minimized consist of meaningful factors.

Future work includes the development of good heuristics that optimize the MDL
score directly, instead of the error, when finding Boolean matrix factorizations of a
given rank, as well as further analysis of the complexity of problem.
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