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Abstract—Computational complexity of various maximal pat-
tern mining problems, including maximal frequent items, max-
imal frequent subgraphs in labelled graphs, and maximal sub-
sequences with no repetitions, is studied, and the complexities
are found to be equivalent under novel constrained reductions.
The results extend those of Kimelfeld and Kolaitis [ACM TODS,
2014].

I. INTRODUCTION

The computational complexity of central data mining prob-
lems is surprisingly little studied. This is especially true for the
frequency-based problems, that is, for problems where the goal
is to enumerate all sufficiently frequent patterns (that admit
other possible constraints). Problems such as frequent itemset,
subgraph, or subsequence mining all belong to this family of
problems. Often the only computational complexity argument
for these problems is that the output can be exponentially
large w.r.t. the input, and hence any algorithm might need
exponential time to enumerate the results.

This view is too limited for two reasons. First, there are
more fine-grained models of complexity than just the running
time as a function of the input. For enumeration problems we
can use the framework of Johnson et al. [1]: instead of studying
the total running time w.r.t. the input size, we consider it as
a function of the total size of input and output, or study the
time it takes to create a new pattern when a set of patterns is
already known (see Section III for details). This allows us to
argue about the time complexity of enumeration problems with
potentially exponential output sizes. Another approach is the
counting complexity framework of Valiant [2] (see Section III).

The second reason why we argue that the “output is
exponential” is a too limited view for the computational
complexity is that we also want to explore the relationships
between the problems, that is, questions like “can we solve
problem X efficiently if we can solve problem Y efficiently?”
The main tool for answering such questions are reductions
between problems. In this work, we introduce a new type of
reduction between frequency-based problems called maximality-
preserving reduction (see Section IV). Our reduction maps the
maximal patterns of one problem to the maximal patterns of the
other problem, thus allowing us to study questions like “can we
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find the maximal frequent subgraphs on labelled graphs using
maximal frequent itemset mining algorithms?” Surprisingly,
the answer to this question is positive, although it requires that
we consider specially constrained maximal frequent pattern
mining problems; we call the general class of such problems
feasible frequency-based problems (see Section V).

Our Contributions: We study a number of maximal
pattern mining problems, including maximal subgraph mining
in labelled graphs, maximal frequent itemset mining, and
maximal subsequence mining with no repetitions (see Section II
for definitions). Figure 1 summarizes our results: the arrows
show which problem can be reduced to which other problem
either using non-constraining reductions (black and red lines),
or with constraints on the feasible solutions (dashed lines).
The figure shows that all problems can be reduced to each
other (potentially with constraints). Given that the constrained
reductions are transitive (Lemma 5), we obtain our main result:

Theorem 1 (Informal). Maximal subgraph mining in labelled
graphs, maximal frequent itemset mining, and maximal subse-
quence mining with no repetitions are equally hard problems
when we are allowed to constrain the pattern space.

In some sense, our results unify all existing hardness results
for frequency-based problems by putting them into a general
framework using maximality-preserving reductions. These
reductions preserve all interesting theoretical aspects like NP-
or #P-hardness, but are still restricted enough to maintain the
special properties of the transactions.

Due to space constraints, some proofs and empirical evalua-
tion are postponed to the complete technical report [3].

II. PRELIMINARIES

We define frequency-based problems, enumeration problems,
and counting complexity. We further present the problems we
consider in the paper.

Frequency-based Problems: A frequency-based problem
P consists of: (1) A set of labels L; for example, L =
{1, . . . , n}. (2) A set trans(P) consisting of possible trans-
actions over the labels L. (3) A set patterns(P) ⊆ trans(P)
of possible patterns over the labels L. (4) A partial order v
over trans(P). A similar definition was given by Gunopulos
et al. [4].
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Fig. 1. The hierarchy of maximal frequency-based problems with this paper’s results. Arrows point from the “easier” to the “harder” problem. See Section II
for the abbreviated problem names. Maximality-preserving reductions are defined in Section IV; feasible frequency-based problems are defined in Section V.

Given a frequency-based problem P , a database DP is a
finite multiset of elements from trans(P). For a database DP
and a support threshold τ , a pattern p ∈ patterns(P) is called
τ -frequent if supp(p,DP) := |{t ∈ DP : p v t}| ≥ τ . In
other words, a pattern p is frequent if it appears in at least τ
transactions of the database. When τ is clear from the context,
we will call p only frequent. A pattern p ∈ patterns(P) is
a maximal frequent pattern if p is frequent and all patterns
q ∈ patterns(P) with p @ q are not frequent. Given a database
DP , we denote the set of all maximal frequent patterns
by MAX(DP , τ), i.e., MAX(DP , τ) = {p ∈ patterns(P) :
p is a maximal τ -frequent pattern in DP}.

When the parameter τ is not part of the input but fixed to
some integer, we write Pτ to denote the resulting problem.

Enumeration Problems: An enumeration relation R is
a set of strings R = {(x, y)} ⊂ {0, 1}∗ × {0, 1}∗ s.t. the set
R(x) := {y ∈ {0, 1}∗ : (x, y) ∈ R} is finite for every x. A
string y ∈ R(x) is called a witness for x. We call R an NP-
relation if (1) there exists a polynomial p such that |y| ≤ p(|x|)
for all (x, y) ∈ R, and (2) there exists a polynomial-time
algorithm deciding if (x, y) ∈ R for any given pair (x, y).

Following [5], we define the following problems for an
enumeration relation R:
• R-ENUMERATE: The input is a string x. The task is to

output the set R(x) without repetitions.
• R-EXTEND: The input is a string x and a set Y ⊆ R(x).

The task is to compute a string y such that y ∈ R(x) \ Y
or to output that no such element exists.

• R-EXTENDIBLE: The input is a string x and a set Y ⊆
R(x). The task is to decide whether R(x) \ Y 6= ∅.

• R-EXTENDIBLE〈k〉: The input is a string x and a set
Y ⊆ R(x) with the restriction that |Y | < k. The task is
to decide whether R(x) \ Y 6= ∅.

R-EXTEND is the decision version of R-EXTEND. Repeatedly
running an algorithm for R-EXTEND solves R-ENUMERATE.
An algorithm solving R-EXTEND solves R-EXTENDIBLE.

Enumeration Complexity: Johnson et al. [1] introduced
different notions for the complexity of enumeration problems.
Let R be an enumeration relation. An algorithm solving
R-ENUMERATE is called an enumeration algorithm.

For enumeration problems it might be the case that the
output R(x) is exponentially larger than the input x. Due to
this, measuring the running time of an enumeration algorithm
only as a function of |x| can be too restrictive; instead, one
can include the size of R(x) in the complexity analysis. Then
the running time of an algorithm is measured as function of
|x|+ |R(x)|. This gives rise to the following definitions.

Let A be an enumeration algorithm. A runs in total
polynomial time if its running time is polynomial in |x|+|R(x)|.
A has polynomial delay if the time spent between outputting
two consecutive witnesses of R(x) is always polynomial in
|x|. A runs in incremental polynomial time if on input x and
after outputting a set Y ⊆ R(x) it takes time polynomial in
|x|+ |Y | to produce the next witness from R(x) \ Y .

Note that R-ENUMERATE is in incremental polynomial time
iff R-EXTEND is in polynomial time. Further, a polynomial
total time algorithm can be used to decide if R(x) 6= ∅.

Relationship to Frequency-Based Problems: We note that
frequency-based problems are special cases of enumeration
problems. Let P be a frequency-based problem. We define the
enumeration relation R corresponding to P by setting R =
{(x, y) : x = (DP , τ), y ∈ MAX(DP , τ)}, i.e., R consists
of all possible databases DP , support thresholds τ and all
maximal frequent patterns y for the tuples (DP , τ).

Observe thatR(x) = R(DP , τ) = MAX(DP , τ) and, hence,
the problem R-ENUMERATE is exactly the same problem as
outputting all maximal frequent patterns in MAX(DP , τ). The
problem R-EXTEND is to output a maximal frequent pattern
in MAX(DP , τ) \ Y for a given set of maximal patterns Y .
The problemsR-EXTENDIBLE andR-EXTENDIBLE〈k〉 are the
corresponding decision versions of the problems.

As R and P yield the same enumeration problems,
we write P -ENUMERATE, P -EXTENDIBLE, P -EXTEND,
P -EXTENDIBLE〈k〉. We write P to denote P -ENUMERATE.

Counting Complexity: For an enumeration relation R, the
function #R : {0, 1}∗ → N returns the number of witnesses
for a given string, i.e., #R(x) = |R(x)| for x ∈ {0, 1}∗.
The complexity class #P (pronounced “sharp P”) contains all
functions #R for which R is an NP-relation; it was introduced
by Valiant [2]. A function F : {0, 1}∗ → N is #P-hard if there



exists a Turing reduction from every function in #P to F .
For two NP-relations R,Q : {0, 1}∗ → N, a parsimonious

reduction from #R to #Q is a polynomial-time computable
function f : {0, 1}∗ → {0, 1}∗ such that #R(x) = #Q(f(x))
for all x ∈ {0, 1}∗. Note that a parsimonious reduction from a
#P-hard problem R to a problem Q implies that Q is #P-hard.

Observe that an algorithm solving R-ENUMERATE can solve
#R by counting the number of witnesses in its output.

Problems Considered in This Paper: All problems con-
sidered in this paper are frequency-based problems where the
goal is to enumerate all maximal patterns of the data. For
brevity, we only define L, trans(·), patterns(·), and v for each
problem (see, e.g., [6] for more thorough definitions).

The maximal frequent itemset mining problem, denoted
MAXFIS, is as follows: We have n labels L = {1, . . . , n};
trans(MAXFIS) and patterns(MAXFIS) are given by 2L; v
is the standard subset relationship ⊆.

The maximal frequent subsequence mining problem, denoted
MAXSQS: L = {1, . . . , n} is the set of labels. A sequence
S = 〈S1, . . . , Sm〉 of length m consists of events Si with
Si ∈ L; we require that each label appears at most once per
sequence. We set trans(MAXSQS) and patterns(MAXSQS) to
the sets consisting of all sequences of arbitrary lengths. For two
sequences S = 〈S1, . . . Sr〉 and T = 〈T1, . . . , Tk〉, we have
T v S if k ≤ r and there exist indices 1 ≤ i1 ≤ · · · ≤ ik ≤ r
s.t. Tj = Sij for each j = 1, . . . , k.

Let G be a class of vertex-labelled graphs, which contain
each label at most once. The maximal frequent subgraph
mining problem, MAXFS(G), is as follows: We have n labels
L = {1, . . . , n}; trans(MAXFS(G)) and patterns(MAXFS(G))
are given by all labelled graphs in G with labels from L;
v is the standard subgraph relationship for labelled graphs
(i.e., we consider arbitrary subgraphs, not necessarily induced
subgraphs).

In this paper we consider the following graph classes, all
of which are labelled and connected: undirected trees (T);
undirected graphs of bounded degree ≤ b (BDGb); undirected
graphs of bounded treewidth ≤ w (BTWw); undirected planar
graphs (PLN); general undirected graphs (G); directed acyclic
graphs (DAG); and directed graphs (DirG).

We only consider labelled graphs in which each label appears
at most once. In this setting, the subgraph isomorphism problem
can be solved in polynomial-time. This a necessary since
Kimelfeld and Kolaitis [7, Prop. 3.4] showed that for certain
unlabelled graph classes G, MAXFS(G) is not an NP-relation.

III. RELATED WORK

Counting Complexity: The study of counting problems
was initiated when Valiant [2] introduced #P. Provan and
Ball [8] showed #P-hardness for many graph problems. Later,
more #P-hardness results were obtained [9], [10].

Johnson et al. [1] introduced polynomial total time, polyno-
mial delay, and incremental polynomial time to obtain a better
understanding of the complexity of enumeration problems.

Computational Complexity of Data Mining Problems:
Gunopulos et al. [4] introduced a class of problems similar
to frequency-based problems. For these problems they proved
#P-hardness for mining frequent patterns, and provided an
algorithm to mine maximal frequent sets.

Yang [11] proved that the following problems are #P-
complete: MAXFIS, MAXFS(T), MAXFS(G), MAXSQS.

Boros et al. [12] showed that MAXFIS-EXTENDIBLE and
MAXFIS-EXTEND are NP-complete.

Kimelfeld and Kolaitis [7] considered mining maximal
frequent subgraphs from certain graph classes; their results
distinguish the computational complexities of several graph
mining problems. They proved the following results, which
are also depicted in Figure 1: (1) For fixed k, the problem
MAXFS(T)-EXTENDIBLE〈k〉 can be solved in polynomial
time. (2) For fixed τ , the problem MAXFSτ (G)-ENUMERATE
can be solved in polynomial time for any class of graphs G from
Section II. (3) The following problems are NP-complete: (a)
MAXFS(G)-EXTENDIBLE for G ∈ {G,PLN,BDGb,BTWw}
with w ≥ 1 and b ≥ 3; (b) MAXFS(G)-EXTENDIBLE〈k〉 for
G ∈ {G,PLN,BDGb,BTWw} with w > 1, b > 2, k > 2.

In [5], Kimelfeld and Kolaitis give computational hardness
results for subgraph mining problems in which the set patterns()
is a subset of trans().

Mining Maximal Frequent Patterns: Many algorithms
were proposed to mine maximal frequent patterns from different
types of data such as itemsets [13]–[15], subsequences [16],
trees [17], [18], and general graphs [19]. However, the main
focus of those papers was not to investigate the computational
complexity of these problems. See (for example) the book by
Aggarwal [6] for more references to algorithms for computing
maximal frequent patterns.

Constraint-based Pattern Mining: Many algorithms were
proposed to mine frequent patterns with constraints [20]–[26].
We refer to Han et al. [27] for details. Greco et al. [28] explored
mining taxonomies of process models; this can be viewed
as constraint-based pattern mining. The work on constraint
programming for itemset mining by Raedt et al. [29], [30] can
be used to mine frequency-based problems with constraints.

IV. MAXIMALITY-PRESERVING REDUCTIONS

We introduce maximality-preserving reductions and state
some of their properties. We further prove reductions between
the problems MAXFIS, MAXSQS, and MAXFS(G) for G ∈
{T,BDG3,G}. Combining our reductions with the statements
from Section III, we obtain the following theorem.

Theorem 2. Fix natural numbers k, τ .
1) MAXFIS-EXTENDIBLE〈k〉 is in polynomial time.
2) MAXFISτ -ENUMERATE is in polynomial time.
3) MAXFS(G) and MAXFS(BDG3) have the same enu-

meration and counting complexities. More concretely, let
P ∈ {MAXFS(G),MAXFS(BDG3)}. Then:
• P -ENUMERATE is #P-hard.
• P -EXTENDIBLE is NP-hard.
• For k > 2, P -EXTENDIBLE〈k〉 is NP-hard.
• Pτ -ENUMERATE is solvable in polynomial time.



A. Definition and Properties

We define maximality-preserving reductions to make explicit
which properties are required by reductions in order to be useful
for understanding the complexity of frequency-based problems.

Definition 1. Let P,Q be two frequency-based problems.
Let (DP , τ) be an instance for P . A maximality-preserving
reduction from P to Q defines an instance (DQ, τ) using a
polynomial-time computable injective function f : trans(P)→
trans(Q) with the following properties:

1) f(patterns(P)) ⊆ patterns(Q).
2) For p, p′ ∈ trans(P), p vP p′ iff f(p) vQ f(p′).
3) The inverse f−1 : trans(Q) → trans(P) of f can be

computed in polynomial time.
4) p ∈ MAX(DP , τ) iff f(p) ∈ MAX(DQ, τ), where

DQ = f(DP) = {f(t) : t ∈ DP}. Additionally, for
all q ∈ MAX(DQ, τ), f−1(q) exists.

The properties can be interpreted as follows: Property 1
asserts that f maintains validity of patterns; this condition is
necessary when patterns(Q) ( trans(Q). Property 2 asserts
that f maintains subset properties. Property 3 is necessary
to recover patterns in P from those found in Q. Property 4
requires that the maximal frequent patterns in DP are the same
as those in DQ under the mapping f ; here, the database DQ
is given by applying the function f to each transaction in DP .

Properties: Property 4 implies that there exists a bijective
relationship between the maximal frequent patterns in DP
and in DQ. Hence, |MAX(DP , τ)| = |MAX(DQ, τ)|. This
shows that maximality-preserving reductions are parsimonious
reductions and that they preserve #P-hardness.

In fact, maximality-preserving reductions are slightly
stronger than parsimonious reductions. They do not only pre-
serve the number of maximal frequent patterns, but they enable
us to recover the maximal frequent patterns in DP from those in
DQ: By injectivity of f and due to Property 4, MAX(DP , τ)
can be reconstruct in polynomial time from MAX(DQ, τ).
Hence, maximality-preserving reductions preserve properties
of extendibility problems as discussed in Section II.

Further, by Property 2, the support of a pattern p in DP is
a lower bound on the support of f(p) in DQ (since for each
transaction t ∈ DP with p v t, f(p) v f(t)).

However, although the number of transactions and maximal
frequent patterns in both databases remains the same, the
number of frequent patterns in DQ might be exponentially
larger than the number of frequent patterns in DP .

B. Reductions

We present maximality-preserving reductions, some of which
are similar to ones presented in, e.g., [5], [11]. We only prove
Property 4 of maximality-preserving reductions. The proofs of
Properties 1–3 follow from the definitions of f .

Lemma 3. There exist maximality-preserving reductions
between the following problems: (1) From MAXFIS to
MAXFS(T). (2) From MAXFIS to MAXSQS. (3) From
MAXFS(G) to MAXFS(BDG3).

Note that (3) is the tightest result we could hope for, since
graphs with degree bounded by 2 are simply cycles or line
graphs. In this short version of the paper, we only prove
point (3); see the technical report [3] for the remaining proofs.

Proof. Construction of f . Let G = (V,E) be a graph with
unbounded degree of the vertices over labels L = {1, . . . , n}.
Denote the label of a vertex v ∈ V by label(v). We construct
a graph G′ = (V ′, E′) with bounded degree 3 over the set of
labels L′ = {1, . . . , n}2.

Intuitively, the construction of f is picked such that every
original vertex v ∈ V is split into a line graph consisting of n
vertices vi, where each vi has an additional non-line-graph-edge
in G′ iff vertices v and i share an edge in G.

Formally, for each vertex v ∈ V , we insert vertices
v1, . . . , vn into V ′ with edges (vi, vi+1) for i = 1, . . . , n− 1.
Each vertex vi is labeled by (label(v), i). For each edge
(u, v) ∈ E, we insert an edge (ulabel(v), vlabel(u)) into G′.

Observe that the resulting graph G′ = f(G) indeed has
bounded degree 3: Consider any vertex vi ∈ V ′. The vertex
has at most 2 neighbors from the line graph (v1, . . . , vn). The
only additional edge it could have is to vertex ilabel(v).

Maximality-preserving. Let p ∈ MAX(DMAXFS(G), τ).
We need to show that f(p) ∈ MAX(DMAXFS(BDG3), τ).
By construction of f , supp(f(p), DMAXFS(BDG3)) =
supp(p,DMAXFS(G)); hence, f(p) is frequent in DMAXFS(BDG3).
It remains to show that f(p) is maximal. For contradiction,
suppose there is a maximal frequent pattern q with f(p) @ q
in DMAXFS(BDG3). Then q contains an edge (ui, vj) with
i = label(v), j = label(u), which is not contained in f(p).

Case 1: ui ∈ f(p) and vj ∈ f(p). Consider the graph
q′ = f(p)∪ (ui, vj). Then f−1(q′) exists and must be frequent
in DMAXFS(G) by Property 2. Contradiction.

Case 2: Assume w.l.o.g. that ui ∈ f(p) and vj 6∈ f(p). Since
q is maximal and by construction of f and DMAXFS(BDG3), q
must contain the line graph L with vertices v1, . . . , vn. Consider
the graph q′ = f(p) ∪ (ui, vj) ∪ L. By construction of f
and DMAXFS(BDG3), q′ has a preimage p′ = f−1(q′) which is
frequent and satisfies p @ p′. Contradiction.

Case 3: ui 6∈ f(p) and vj 6∈ f(p). Since q is connected and
f(p) @ q, we only need to consider the first two cases.

The second part of Property 4 is implied by the previous
case distinctions. Proving that f(p) ∈ MAX(DMAXFS(BDG3), τ)
implies p ∈ MAX(DMAXFS(G), τ) is similar.

V. CONSTRAINING THE SET OF PATTERNS

We generalize frequency-based problems by allowing to
constrain the set of patterns using a feasibility function. We
introduce maximality-preserving reductions for this problem
class and prove that all problems discussed in this paper exhibit
the same hardness after introducing the feasibility function.

A. Feasible Frequency-Based Problems

A feasible frequency-based problem (FFBP) P is a frequency-
based problem with an additional polynomial-time computable
operation φ : patterns(P) → {0, 1} which can be described
using constant space. The operation φ is part of the input;



this is the reason for restricting the description length of the
function to constant size. We call φ the feasibility function.

Given a feasible frequency-based problem P , p ∈
patterns(P) is a feasible frequent pattern (FFP) if p is frequent
and φ(p) = 1. The goal is to find all maximal FFPs; we denote
the set of all FFPs by MAX(DP , τ, φP). We define MAXFFIS,
MAXFSQS, and MAXFFS(G) for a graph class G as before
for maximal frequency-based problems.

FFBPs are generalizations of frequency-based problems since
setting φP ≡ 1 gives the underlying frequency-based problem.

The main result of this section is given in the following
theorem, which follows from the reductions presented later in
this section and the results from Section III.

Theorem 4. The FFBP-version of all problems discussed in this
paper have the same enumeration and counting complexities.
More concretely, for any FFBP-problem P discussed in this
paper:
• P -ENUMERATE is #P-hard.
• P -EXTENDIBLE is NP-hard.
• For k > 2, the problem P -EXTENDIBLE〈k〉 is NP-hard.
• For fixed τ , the problem Pτ -ENUMERATE is solvable in

polynomial time.

Theorem 4 shows that the hierarchy given in Figure 1 for
frequency-based problems collapses when a feasibility function
is introduced. Since many practical algorithms (like the Apriori
algorithm) for finding maximal frequent patterns allow to add
such a feasibility function, our reductions give a theoretical
justification why many such algorithms can be extended to a
broader range of problems.

B. Maximality-Preserving Reductions for FFPPs

Definition 2. Let P,Q be two FFBPs. Let (DP , τ, φP) be an
instance for P . A maximality-preserving reduction from P to
Q defines an instance (DQ, τ, φQ) using a polynomial-time
computable injective function f : trans(P) → trans(Q) with
the following properties:

1) f(patterns(P)) ⊆ patterns(Q).
2) For p, p′ ∈ trans(P), p vP p′ iff f(p) vQ f(p′).
3) The inverse f−1 : trans(Q) → trans(P) of f can be

computed in polynomial time.
4) p ∈ MAX(DP , τ, φP) iff f(p) ∈ MAX(DQ, τ, φQ),

where DQ = f(DP) = {f(t) : t ∈ DP}. Additionally,
for all q ∈ MAX(DQ, τ, φQ), f−1(q) exists.

Compared to Definition 1 we only changed Property 4 to
assert that the maximal patterns are feasible. In general, the
constructed function φQ will depend on φP , f and f−1.

Properties: We show that maximality-preserving reduc-
tions for FFBPs are transitive, which is the crucial property to
argue that multiple reductions can be used in a row. We also
show that if for two frequency-based problems P and Q there
exists a maximality-preserving reduction from P to Q, then
there exists a reduction between their FFBP-versions.

Lemma 5. (1) Let P,Q,R be FFBP s. Assume there exist
maximality-preserving reductions from P to Q via a function

g and φQ, and from Q to R via a function h and φR. Then
there exists a maximality-preserving reduction from P to R.

(2) Let P and Q be two frequency-based problems, and let
P ′ and Q′ be the FFBP-versions of those problems. Suppose
there exists a maximality-preserving reduction from P to Q
via a mapping g. Then there exists a maximality-preserving
reduction from P ′ to Q′.

Proof of (1). Let (DP , φP) be an instance for P . We construct
an instance (D∗, φ∗) for R: Set f : trans(P) → trans(R) to
f(p) = h(g(p)) for p ∈ trans(P). For r ∈ patterns(R), we
set φ∗(r) = 1 iff the following four conditions are satisfied: (1)
h−1(r) and f−1(r) exist; (2) φR(r) = 1; (3) φQ(h−1(r)) = 1;
and (4) φP(f−1(r)) = 1.

We check the properties from Definition 2. Property 1 and
Property 2 are satisfied since f is the composition g and h.
Property 3 holds since f−1 = g−1 ◦ h−1 and both g−1 and
h−1 can be computed in polynomial time.

The rest of the proof is devoted to proving Property 4.
Let p ∈ MAX(DP , τ, φP). Then p is feasible w.r.t. φP .

By the reduction from P to Q, g(p) ∈ MAX(DQ, τ, φQ),
where DQ = g(DP). Note that g(p) is feasible w.r.t. φQ.
Using the reduction from Q to R, we obtain r := h(g(p)) ∈
MAX(DR, τ, φR), where DR = h(DQ); additionally, r is
feasible w.r.t. φR. Now observe that r = f(p) and that r
is feasible w.r.t. the operation φ∗ defined above. Note that
r is frequent in D∗ since for each transaction t ∈ DP with
p vP t, r = f(p) vR f(t) by Property 2 of f . To prove that
r ∈ MAX(D∗, τ, φ∗), it remains to show that r is maximal.
Suppose not. Then there exists a pattern r′ ∈ MAX(D∗, τ, φ∗)
such that r @R r′. Since r′ is feasible, let p′ = f−1(r′). By
Property 2 of f , we have that p @P p′ and that p′ is frequent
since p′ @P t for t ∈ DP iff f(p′) = r′ @R f(t). This
contradicts the maximality of p. Hence, r ∈ MAX(D∗, τ, φ∗).

Let r ∈ MAX(D∗, τ, φ∗). Since r is feasible w.r.t. φ∗,
there exists p = f−1(r) ∈ patterns(P) that is feasible
w.r.t. φP . By Property 2, p is frequent in DP . It remains
to show that p is maximal. We argue by contradiction.
Suppose there exists a frequent pattern p′ with p @ p′. Then
f(p′) ∈ MAX(D∗, τ, φ∗) by the previous paragraph, and
r @ f(p′) by Property 2 of f . This contradicts the maximality
of r. Hence, p ∈ MAX(DP , τ, φP).

Proof of (2). Construction of f . Set f ≡ g. Set φQ′(q) = 1
iff f−1(q) exists and φP′(f−1(q)) = 1.

Maximality-preserving. Properties 1–3 for f are satisfied
since they are satisfied for g. We prove Property 4 for f .

Let p ∈ MAX(DP , τ, φP). We show that f(p) ∈
MAX(DQ, τ, φQ). Since f−1(f(p)) = p is feasible w.r.t.
φP , f(p) is feasible w.r.t. φQ. By Property 2 of f , f(p) is
frequent in DQ. It remains to show that f(p) is maximal.
Suppose not. Then there is a pattern q ∈ MAX(DQ, τ, φQ)
s.t. f(p) @ q. Since q is feasible, there exists a feasible
pattern p′ = f−1(q) ∈ patterns(P). By Property 2, we have
p @ p′. Additionally, the pattern p′ is frequent in DP : for each
transaction t ∈ DQ with q @Q t, p′ @P f−1(t) (by Property 2
of f and definition of DQ). Contradiction.



Let q ∈ MAX(DQ, τ, φQ). Since q is feasible, p =
f−1(q) exists and is feasible w.r.t. φP . We show that p ∈
MAX(DP , τ, φP). By Property 2 of f , p is frequent in DP .
We prove the maximality of p by contradiction. Suppose there
exists a pattern p′ ∈ MAX(DP , τ, φP) with p @ p′. Then by
the previous paragraph the pattern f(p′) is a feasible frequent
pattern in DQ with q = f(p) @ f(p′). Contradiction.

C. Reductions

Lemma 6. There exist maximality-preserving reductions be-
tween the following problems: (1) From MAXFFS(G) to
MAXFFIS. (2) From MAXFFS(DirG) to MAXFFIS. (3) From
MAXFSQS to MAXFFS(DAG).

Due to space constraints, we only prove point (1) of the
lemma; the technical report [3] contains the remaining proofs.

Proof of (1). Let (DMAXFFS(G), τ, φMAXFFS(G)) be an instance
for MAXFFS(G) with graphs with labels from {1, . . . , n}.

Construction of f . For MAXFFIS we use the labels L =
{1, . . . , n}2. Let G = (V,E) be a graph from DMAXFFS(G). We
construct an itemset I(G) := f(G) by mapping the graph onto
the labels of its edges, i.e., we construct an itemset I(G) =
{(label(u), label(v)) : (u, v) ∈ E}.

For I ∈ patterns(MAXFFIS), we set φMAXFFIS(I) = 1 iff
(1) f−1(I) exists and φMAXFFS(G)(f

−1(I)) = 1, and (2) for
each pair of tuples (a, b), (c, d) ∈ I there exists a sequence
(a, b) = (e1, e

′
1), . . . , (ek, e

′
k) = (c, d) of tuples (ei, e

′
i) ∈ I

with the following property: For each pair of consecutive tuples
(ei, e

′
i) and (ei+1, e

′
i+1), there exists some ` ∈ {1, . . . , n} with

` ∈ {ei, e′i} and ` ∈ {ei+1, e
′
i+1}. Intuitively, condition (2) of

φMAXFFIS asserts that the graph corresponding I is connected.
Maximality-preserving. Note that any feasible frequent

itemset in DMAXFFIS corresponds to a frequent connected graph
in DMAXFFS(G) due to the choice of φMAXFFIS. Observe that
there exists a bijection between connected subgraphs G and
feasible itemsets I(G) ⊆ L′. Further observe that for two
frequent subgraphs G and H , G ⊆ H iff f(G) ⊆ f(H).
It follows that a graph G and an itemset I must have the
same supports in DMAXFFS(G) and DMAXFFIS, respectively.
The maximality then follows from the subset-property we
observed.

VI. CONCLUSIONS

We showed that when considering a generalized version of
frequency-based problems, FFBP, the computational hardness
of many frequency-based problems collapses. Hence, our
reductions provide a unifying framework for the existing compu-
tational hardness results of fundamental data mining problems.
Additionally, our reductions give a formal explanation why
algorithms similar to the Apriori algorithm can be used for
such a wide range of problems by only slightly adjusting the
candidate generation.
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