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Abstract
Boolean matrix factorization is a natural and a popular tech-
nique for summarizing binary matrices. In this paper, we
study a problem of Boolean matrix factorization where we
additionally require that the factor matrices have consecutive
ones property (OBMF). A major application of this opti-
mization problem comes from graph visualization: standard
techniques for visualizing graphs are circular or linear layout,
where nodes are ordered in circle or on a line. A common
problem with visualizing graphs is clutter due to too many
edges. The standard approach to deal with this is to bundle
edges together and represent them as ribbon. We also show
that we can use OBMF for edge bundling combined with
circular or linear layout techniques.

We demonstrate that not only this problem is NP-hard
but we cannot have a polynomial-time algorithm that yields
a multiplicative approximation guarantee (unless P = NP).
On the positive side, we develop a greedy algorithm where
at each step we look for the best 1-rank factorization. Since
even obtaining 1-rank factorization is NP-hard, we propose
an iterative algorithm where we fix one side and and find the
other, reverse the roles, and repeat. We show that this step
can be done in linear time using pq-trees. We also extend the
problem to cyclic ones property and symmetric factorizations.
Our experiments show that our algorithms find high-quality
factorizations and scale well.

1 Introduction

Matrix factorization is an immensely popular way of
summarizing data as well as discovering signal from
the data. While being useful, the interpretation and
visualization of discovered factor matrices may be
difficult. A popular variant for factorizing binary
matrices is a k-Boolean matrix factorization, which,
essentially, summarizes the binary data as a union of k
tiles, that is, submatrices full of 1s. However, visualizing
such factorization is difficult as the discovered rows and
columns can be any sets, and there is no insightful way
of visualizing them all at once.

In this paper we consider k-Boolean matrix factoriza-
tion such that the resulting matrix has a certain property:
we can order the columns and the rows such that the
matrix consists of union of k contiguous tiles. We do not
know the order before-hand, and we discover the order
as we also discover the factorization.
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Our motivation for discovering such factorization is
primarily due to easy exploration of the factorization:
we can draw the factorization as k tiles. While in certain
cases, such a constraint may be too restrictive, there
are many settings, where this constraint comes naturally.
As a specific example, consider visualizing graphs. A
classic technique for visualizing a graph is using linear
or circular layout, where the nodes are drawn on a line
or circle, and they are connected with arcs. The most
common problem with visualizing graphs is clutter due
to too many edges. To combat the clutter, edges are
often grouped, and drawn in ribbons (see Figure 3 for an
example). The problem is to discover such ribbons and
the node order, while minimizing the error. We show
that we can use matrix factorization on the adjacency
matrix of a graph to find the order and the groups.

We show that the factorization we seek can be
expressed with consecutive ones property (C1P). Namely,
we will look for factor matrices X and Y whose columns
can be shuffled such that each row has a form of
[0, . . . , 0, 1, . . . , 1, 0, . . . , 0]. We show that the problem
is NP-hard, even if k = 1, and it is inapproximable
for k > 1. On the positive side, we propose a greedy
algorithm that searches the factors in iterative manner.
The search is done by first fixing a vector in X and
finding the optimal counterpart in Y , then fixing the
vector in Y and finding the optimal vector in X, and
so on, until convergence. We show that we can find the
optimal counterpart in linear time using pq-trees.

We also consider 3 extensions of this factorization:
the first variant, cyclic decomposition, consists of
allowing factors to “wrap around the border.” the second
variant is specifically designed for symmetric matrices,
while the last variant combines the two. Performing
cyclic and symmetric decomposition proves to be useful
for cyclic layout of graphs.

The rest of the paper is organized as follows: We
present preliminary notation and define the matrix fac-
torization and the cyclic version in Section 2. We present
the search algorithm in Section 3. The symmetric ex-
tensions are given in Section 4. Section 6 is dedicated
to related work, and Section 5 is dedicated to experi-
mental evaluation. Finally, we conclude the paper with
remarks given in Section 7. The proofs are given in the
full version of this paper [17].

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited.



2 Preliminary notation and problem definitions

We begin by presenting preliminary notation, and then
present the two main problem definitions. Extended
problems are discussed in Section 4.

2.1 Notation Given an n-by-k binary matrix A and
a k-by-m binary matrix B, the Boolean matrix product
A ◦B is defined element-wise as

(2.1) (A ◦B)ij =

k∨
`=1

ai`b`j .

The Boolean matrix sum of A ∈ {0, 1}n×m and B ∈
{0, 1}n×m is defined elementwise as (A∨B)ij = aij∨bij .

To measure the distance between two binary matri-
ces, we use the squared Frobenius norm of their (normal)

difference, ‖A−B‖2F . Notice that as A and B are
both binary, this is the same as calculating the num-
ber of disagreements between A and B: ‖A−B‖2F =
|{(i, j) : aij 6= bij}|.

We say that a binary matrix X has a consecutive
ones property (C1P) if its columns can be permuted such
that each row has a form of [0, . . . , 0, 1, . . . , 1, 0, . . . , 0],
that is, 1s form a contiguous interval. For the sake
of presentation, we will also refer these matrices as
unimodal.

We say that a binary matrix X is cyclic if its columns
can be permuted such that each row has a form of
[0, . . . , 0, 1, . . . , 1, 0, . . . , 0] or [1, . . . , 1, 0, . . . , 0, 1, . . . , 1].

2.2 Problem definitions Next we will give our two
main optimization problems.

Problem 1. (Ordered BMF, obmf) Given a binary
matrix D and an integer k ∈ N, find two unimodal
binary matrices X and Y that minimize the number of
disagreements

(2.2)
∥∥D − (XT ◦ Y )

∥∥2
F
.

Problem 2. (Cyclic Ordered BMF, cobmf)
Given a binary matrix D and an integer k ∈ N, find
two cyclic binary matrices X and Y that minimize the
number of disagreements

(2.3)
∥∥D − (XT ◦ Y )

∥∥2
F
.

The matrix Z = XT ◦Y given in Eq. 2.2 has another
natural alternative characterization: the columns and
the rows of Z can be permuted such that the resulting
matrix is a union of k contiguous tiles of 1s. Similarly,
the matrix Z = XT ◦Y given in Eq 2.3 can be permuted
such that the resulting matrix is a union of k contiguous

tiles, but we also allow the tiles to wrap around the
border.

Unsurprisingly, the problems are computationally
infeasible. First, we demonstrate that obmf is difficult
even if k = 1.

Theorem 2.1. The obmf problem is NP-hard, even if
k = 1.

Our next result shows that not only obmf is difficult,
but it is also impossible to approximate. To show this,
it is enough to demonstrate that testing for zero-error
solution is expensive.

Theorem 2.2. Deciding whether obmf has a zero-error
solution is NP-complete.

The proofs of these and other statements are given
in the full version of this paper [17].

3 Iterative greedy algorithm

3.1 Greedy algorithm As we saw in the previous
section, not only the problem is NP-hard, we cannot
construct any polynomial-time algorithm with a multi-
plicative guarantee. Hence, we need to resort to heuris-
tics. The most natural heuristic is a greedy heuristic,
where given a (k − 1)-sized factorization we look for a
k-sized factorization by adding one row and one column
to X and Y . Note that these rows need to be selected
carefully such that X and Y remain unimodal, and we
also need to maintain the permutation(s).

Unfortunately, Theorem 2.1 states that we cannot
even find the best solution for k = 1 in polynomial-time.
Fortunately, we can solve quickly a subproblem, where
we have fixed one side.

Problem 3. (Ordered BMF step, obmfstep)
Given a binary matrix D of size n-by-m and two
unimodal matrices, X ′ of size k-by-n and Y ′ of size
(k − 1)-by-m, find the decomposition XT ◦ Y solving
obmf such that X = X ′ and Y is obtained by adding
one new row to Y ′.

We can use obmfstep as follows. Assume that
we have already found (k − 1)-by-m matrices X and
Y . We first extend X with a new row using a given
seed, and find the optimal new row for Y (strategy
for such selection is given later using obmfstep. We
fix the discovered row, and use obmfstep to find the
corresponding row for X. Since we solve each step
optimally, the error will never increase. We stop when
the error stops decreasing. Note that we will need
to provide a seed for the initial row in X. Here, we
test several possible seeds S, and select the best. We
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Algorithm 1: Greedy iterative algorithm for
estimating obmf. The algorithm takes as input
the dataset, the desired dimension k, and the
seed set S used for selecting the first candidate
for a column.

1 X ← matrix of size 0-by-n;
2 Y ← matrix of size 0-by-m;
3 foreach i = 1 . . . , k do
4 foreach s ∈ S do
5 c← s;
6 while error decreases do
7 r ← best row for fixed columns [Y ; c];
8 c← best column for fixed rows [X; r];

9 X ← [X; r];
10 Y ← [Y ; c];

experiment with several options in experiments, but the
default is that S is equal to all singleton columns. The
pseudo-code for the algorithm is given in Algorithm 1.

The remainder of this section is about solving
obmfstep in linear time. Almost the same approach
will also work for the cyclic version, cobmfstep; we will
point the minute difference.

3.2 Expressing permutations with pq-trees The
complicated aspect of obmfstep is that we need to make
sure that the new matrix is unimodal. Luckily, we can
use pq-trees, a classic structure that allows us to express
every permutation for which a set of binary vertices
remain unimodal. In this section we will give a brief
review of pq-trees and the two main properties that are
relevant to us.

Assume that we are given a universe U ; in our
case this will be either rows or columns of the input
matrix. A pq-tree is a tree with each leaf corresponding
to u ∈ U . There are two types of non-leaf nodes, these
types will dictate what permutations we can perform on
the children. We can permute children of p-node in any
order whereas the order of the children of q-node is fixed
but we can flip the direction. The leaves of the permuted
tree will then indicate an order. We will denote such
orders by order(T ), where T is the pq-tree.

Two seminal results are important to us. The first
result states that there is a pq-tree T such that order(T )
are exactly the orders under which a set of binary vertices
remain unimodal.

Theorem 3.1. (Booth and Lueker [3]) Given a
universe U and k sets Si ⊆ U , there is a pq-tree T such
that order(T ) are exactly the permutations of U under
which each Si is contiguous.

The second result states that we can efficiently
update the pq-tree.

Theorem 3.2. (Booth and Lueker [3]) Assume
that we have a pq-tree T over a universe U and a set
S ⊆ T . Let P be the set of all permutations of U where
S is contiguous. If order(T ) ∩ P 6= ∅, then there is an
O(|U |)-time algorithm that constructs a tree T ′ such
that order(T ′) = order(T ) ∩ P . If order(T ) ∩ P = ∅,
then the same algorithm detects a failure.

The detailed description of the algorithm for updat-
ing the pq-tree can be found in [3].

3.3 Finding the optimal row In this section we
describe the algorithm that solves obmfstep. Assume
that we have a pq-tree T representing the permutations
of columns in D allowed by the previously discovered
rows in Y ′. When dealing with pq-trees it is notationally
easier to deal with sets rather than with vectors.
Naturally every binary vector y can be represented as a
set S = {i : yi = 1}.

Let us define U to be the column indices of D; these
are exactly the leaves of T . We say that a set S ⊆ U
is compatible with a pq-tree T , if there is an order in
order(T ) where S is contiguous. Obviously, compatible
sets S correspond exactly to suitable new rows in Y .

We can express obmfstep as an instance of the
following problem.

Problem 4. (optset) Given a universe U , weights
w(u) for each u ∈ U , and a pq-tree T over the universe
U , find a set S that is compatible with T and maximizes
the total weight

∑
u∈S w(u).

Recall that u ∈ U corresponds to a column index of
D. Define w(u) to be the gain in the error-function if we
were to use u in our new row for Y . More formally, let
x be the fixed counterpart in X for the new row in Y .
Let p be the number of ones in D at rows x and column
u that are not yet covered by the previous factors. Let
n be the number of zeros in D at rows x and column
u that are not yet covered by the previous factors. We
define w(u) = p−n. Solving optset with these weights
solves obmfstep.

In order to solve cobmfstep, we solve optset using
w(u) = p−n, as above, yielding a set, say S1. In addition,
we also solve optset using w(u) = n − p, yielding a
set, say S2. Then, we use either S1 or U \ S2, whichever
yields a better gain.

In order to solve optset, we need an additional
definition: Let S be a compatible set of a pq-tree T . If
there is a permutation in order(T ) with the first or the
last element in S, we call S a border-compatible set.
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Let T be a pq-tree. To solve optset we will compute
3 counters for a node v in T , namely, inner(v), border(v),
and total(v). The counter total(v) corresponds to the
total weight of leaves under v, while the counter inner(v)
corresponds to the best S that is compatible with the
subtree starting at v. Finally, border(v) corresponds to
the best S that is border-compatible with the subtree
starting at v.

We should stress that, strictly by definition, inner(v)
can represent an empty set, whereas total(v) and
border(v) should be never empty, even if they produce
a negative value. Thus, inner(v) ≥ 0 but border(v) and
total(v) can have negative values. Moreover, it is possible
that border(v) represents every leaf of v, in which case,
border(v) = total(v).

Naturally, we want to compute inner(r), where r is
the root of T . To obtain this value we compute each
value iteratively, children first. We also maintain the
lists of the children that were responsible for producing
the optimal value. These lists are clear from the proofs
of the following lemmata. This allows us to extract the
optimal S.

First, note that computing total(v) is trivial since
total(v) =

∑
c∈ch(v) total(c). If v is a leaf-node, then

border(v) = total(v) and inner(v) = max(0, total(v)).
The next two lemmata establish how to compute

the counters for q-nodes.

Lemma 3.1. Let v be a q-node and let c1, . . . , c` be its
children. Then

border(v) = max(x, y), where

x = max
i

border(ci) +

i−1∑
j=1

total(cj) ,

y = max
i

border(ci) +
∑̀

j=i+1

total(cj) .

Lemma 3.2. Let v be a q-node and let c1, . . . , c` be its
children. Then

inner(v) = max(x, y), where

x = max
i

inner(ci) ,

y = max
i<j

border(ci) + border(cj) +

j−1∑
`=i+1

total(c`) .

Our next step is to compute the counters for p-
nodes. For that we need to define the following helper
function: given a node v we define g(v) = border(v) −
max(total(v) , 0). We will use g(v) in the next two
lemmata describing on how to compute the counters
for p-node.

Lemma 3.3. Let v be a p-node and let c1, . . . , c` be its
children. Define b = max g(ci). Then

border(v) = b+
∑
i

max(total(ci) , 0) .

Note that since we require the set responsible for
border(v) be non-empty, it is possible that border(v) < 0.
This can happen only if b < 0 and every child w of v has
total(w) < 0.

Lemma 3.4. Let v be a p-node and let c1, . . . , c` be its
children. Define b1 and b2 be the top-2 values of g(ci).
Then

inner(v) = max(x, y), where

x = max
i

inner(ci) ,

y = max(b1, 0) + max(b2, 0) +
∑
i

max(total(ci) , 0) .

Note that using these lemmas every counter can be
trivially solved in linear time, except for inner(v), where
v is q-node. To compute inner(v) in linear time, it is
enough if we can solve

border(cj) + max
i<j

border(ci) +

j−1∑
`=i+1

total(c`)

in constant time for a fixed j. Luckily, we can rewrite
this function as

border(cj) +

(
j−1∑
`=1

total(c`)

)
+ max

i<j
t(i, j),

where

t(i, j) = max
i<j

border(ci)−
i∑

`=1

total(c`) .

Let i(j) to be the optimal i for a fixed j. Since

max
i<j

t(i, j) = max

(
t(j − 1, j) max

i<j−1
t(i, j)

)
,

we have either i(j) = i(j − 1) or i(j) = j − 1. If we
were to test each j consecutively, then this allows us to
compute i(j) in constant time: we simply compare the
solution i = j − 1 to the best previous solution i(j − 1).

In summary, each counter of v can be computed in
O(|ch(v)|). Thus we need O(`), where ` is the number
of nodes in T . Since ` ∈ O(|U |), we can compute the
counters in O(|U |) time, where |U | is the number of
columns in D.

When computing the counters we also store which
children were responsible for this value. Once we have
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computed inner(r), where r is the root of the tree, we
can backtrack to obtain the optimal S. This can be also
done in linear time.

Computing the weights w in optset can be done in
O(p) time, where p is the number of 1s in the dataset D
of size n-by-m. Consequently, obmfstep can be done
in O(p+ n+m) time.

4 Symmetric decomposition

We now propose an extension for symmetric matrices.

4.1 Definition If D is symmetric (e.g. an adjacency
matrix of an undirected graph), we have the following
problem:

Problem 5. (Symmetric obmf, obmfsym) Given a
binary matrix D and an integer k ∈ N, find two bi-
nary matrices X and Y such that [X;Y ] is unimodal,
that minimize the number of disagreements

(4.4)
∥∥D − ((XT ◦ Y ) ∨ (Y T ◦X)

)∥∥2
F
.

We define similarly cobmfsym, a cyclic and symmetric
variant of obmf.

The unimodality condition in obmfsym states that
we should be able to permute X and Y with the
same permutation so that the rows are in form of
[0, . . . , 0, 1, . . . , 1, 0, . . . , 0].

Notice that we do not use the more common
symmetric decomposition D ≈ XT ◦X as this would
lead to necessarily having the blocks around the diagonal.

4.2 Algorithm The discovery algorithm for symmet-
ric obmf is similar. Like with the regular obmf, we use
a greedy algorithm as an iterative step for discovering
new rows.

The first difference is that we maintain only one
pq-tree, corresponding to the rows in both X and Y .

The second difference is that – as XT ◦Y and Y T ◦X
can have overlapping 1s – maximizing optset does not
necessarily produce the optimal row. Instead, we can
show that solving optset, with the weights as described

in the previous section, minimizes
∥∥D −XT ◦ Y

∥∥2
F

+∥∥D − Y T ◦X
∥∥2
F

. It follows easily that minimizing this
function yields a 2-approximation for finding optimal
counterpart row.

5 Experimental evaluation

In this section we study how well the algorithms from
Sections 3 and 4.2 work with synthetic and real-world
data. We denote the algorithms with the same names
as the problems they are solving, and differentiate the
algorithms from the problems via the font. That is, obmf

is the algorithm for obmf, and so on. The algorithms
are implemented in C++, and we make the source code
and synthetic experiments freely available.1

5.1 Resilience to Noise We start by evaluating
the algorithms’ resilience to noise. To that end, we
synthesized random matrices of size 95× 95 with block
structure (6 blocks of size 20 × 20 along the diagonal,
with 5 overlapping rows and columns) and corrupted
those matrices with flipping a varying amounts of entries.
The amount of flipped entries varied from 0 % to 50 %
(of total elements) and we compared the quality of the
results to both the noise-free matrix and noisy matrix.
The results are shown in Figure 1.

With lower leves of noise (35 % for obmf and cobmf

and 25 % for the symmetric variants), the reconstruction
of the original data is more accurate. With higher levels
of noise, the noise has destroyed so much of the structure
that the algorithms start fitting to the noise only, with
a clear reduction of the quality versus the original data.

It is also worth noticing that obmf obtains exact
decompositions when the data has no noise; the other
methods introduce a slight error even in these cases
emphasizing their more complex setting.

5.2 Scalability In this section we test how well obmf
scales to larger data sets and how well it benefits from
multiple cores. These experiments were executed on a
server with 40 cores of Intel Xeon E7-4870 processors
running at 2.4 GHz. The algorithm was compiled using
GCC 8.1.0 and the parallel code uses the OpenMP
library.

To test the scalability, we generated n-by-n square
matrices with n = 2i for i = 9, . . . , 13. All matrices
have a density of approximately 24 %. The results are
presented in Figure 2a.

The algorithm shows very good scalability over the
full range, although it does get slower when the data size
increases from 212 to 213. It should be noted, though,
that as the density is constant, the number of non-zeros
in the matrices increases as the square of the matrix size.
Hence, obmf exhibits linear growth with respect to the
number of non-zero elements.

Algorithm 1 is almost embarrassingly parallel over
the different seeds vectors. Hence, we parallellized the
test of different seeds, and tested how the algorithm
behaves with increased number of cores. The results
are in Figure 2b, where we can see that the speed-up
is essentially linear up to 4 cores, slightly slower until
16 cores, and only marginal gains are available when
increasing the number of cores to 32, indicating that at

1https://cs.uef.fi/~pauli/bmf/ordered_bmf/

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited.



0 0.2 0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

noise

e
rr
o
r

clean data

noisy data

(a) obmf

0 0.2 0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

noise
e
rr
o
r

(b) cobmf

0 0.2 0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

noise

e
rr
o
r

(c) obmfsym

0 0.2 0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

noise

e
rr
o
r

(d) cobmfsym

Figure 1: Error as a function of noise. Here the error is the proportion of disagreements between the reconstructed
matrix and either the noise-free or the noisy matrix. The decomposition was done using the noisy matrix.
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Figure 2: Scalability with respect to the size and number of cores.

the algorithm has become memory bus constrained.
Overall, the experiments show that the algorithm

scales very well, and is able to benefit from modern multi-
core computers. We study further speed-up options later
in Section 5.3.2.

5.3 Experiments with Real-World Data We now
turn to real-world data sets. We used six different real-
world data sets, selected to offer a wide variety of different
types of data. The data sets we used are as follows.
Les Misérables is a standard benchmark data2 of the
characters of Victor Hugo’s novel Les Misérables. Paleo
is a palaeontological data3 in the form of a locations-
by-genera matrix, giving information where different
fossiles have been found. Newsgroups is a subset of the
famous 20Newsgroups data4 consisting four newsgroups
and 100 terms. Terms the terms-by-terms co-occurrence
matrix based on Newsgroups. Locations is locations-by-
locations matrix indicating mammal species co-location

2http://moreno.ss.uci.edu/data.html
3NOW 030717, http://www.helsinki.fi/science/now/
4http://qwone.com/~jason/20Newsgroups/

Table 1: Properties of real-world data sets. Rank
indicates the rank used in the decomposition.

data rows cols % of 1s sym. rank

Les Misérables 77 77 8.57 Yes 10
Paleo 124 139 11.48 No 10
Newsgroups 100 348 6.30 No 10
Terms 100 100 48.54 Yes 10
Locations 3203 3203 8.42 Yes 50
Mammals 194 194 58.04 Yes 10

in the northern hemisphere: the data has a 1 in element
(i, j) if locations i and j have at least five mammals in
common. The data is based on the IUC Red List data.5

The final data set, Mammals, contains a species-by-
species co-inhabitation matrix.6 The data set properties
are summarized in Table 1.

5http://www.iucnredlist.org/technical-documents/

spatial-data
6Available for research purposes from the Societas Europaea

Mammalogica at http://www.european-mammals.org
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To the best of our knowledge, this is the first work
to address the ordered Boolean matrix factorization
problem. To understand what kind of an effect the
ordering constraint has to the reconstruction error, we
compare our results with those of asso [14]. The asso

algorithm is a well-known method for computing the
standard Boolean matrix factorization. We used an
implementation available from the author7 and set the
rank for asso the same as for our algorithms, and used
threshold values τ = {0.2, 0.4, 0.6, 0.8}.

For symmetric data sets, we also computed the
symmetric Boolean factorization. This was done by
first computing the standard XT ◦ Y factorization, and
then testing whether XT ◦X or Y T ◦ Y gives smaller
reconstruction error and using that one. This version of
asso is denoted assosym.

5.3.1 Reconstruction errors We first compute the
reconstruction errors for the various data sets. To facili-
tate the comparisons, we report the relative reconstruc-
tion error

‖D −XT ◦ Y ‖2F
‖D‖2F

.

The results of all datasets are given in Table 2.
In case of asymmetric decompositions, asso is – as

expected, as its factor matrices are not restricted to
unimodal or cyclic – almost always slightly better than
either obmf or cobmf. This difference is, however, very
small in many data sets (only 8 % in Les Misérables
and 0.50 % in Paleo). A remarkable exception is the
Mammals data, where asso is in fact worse than either
obmf or cobmf. As the data set is the densest of the ones
we tested, it is possible that asso was unable to obtain
good candidates from it with the rounding thresholds
we tried.

There is almost no difference between obmf and
cobmf in the terms of reconstruction error in these
data sets. Usually, obmf is on par or slightly better
than cobmf, except again in Mammals, where cobmf is
slightly better. The asymmetric data sets, Paleo and
Newsgroups, cause the highest reconstruction errors at
over 70 %. It should be noted, though, that also asso has
similarly high errors with these data sets, indicating that
they might not have strong Boolean low-rank structure.

In symmetric decompositions, the relationship be-
tween the ordered BMF algorithms and asso is reversed,
with assosym being often the worse method (with the
exception of Terms). This is not very surprising, given
that asso is not designed for symmetric decompositions.
The errors are slightly worse than with the asymmetric

7https://cs.uef.fi/~pauli/basso/basso-0.5.tar.gz

algorithms, highlighting the complexity of finding the
symmetric decompositions.

5.3.2 Changing the seeds In the above experi-
ments, we used the columns as the seeds S for the
algorithm (cf. Algorithm 1). This slows the algorithm
down, as it has to attempt all of the potential seeds. In
this section we study if we can improve the running time
without hurting the reconstruction error by sampling
only some of the columns for the seed set S.

In particular, we sampled 10 % of the columns
uniformly at random to create the seed set. As the
algorithm scales linearly with the number of seeds, this
provides an order of magnitude speed-up. To test the
quality, we repeated the sampling ten times and report
the average relative reconstruction errors and standard
deviations in Table 3.

The first thing to notice in Table 3 are the low
standard deviations; less than 3 % in almost all data sets.
The reconstruction errors are also only slightly higher
than those in Table 2; for instance, obmf with Paleo has
only 6 % higher error on average when using random
sampling. In most cases the speed-up obtained by the
sampling is significant compared to the loss in accuracy.

5.4 Visualizing the Graphs One of the motivations
for the ordered BMF is that it allows the convenient
visualization of the graphs using edge bundles (or
ribbons) between nodes that are placed in a circle. In
this section we explore some of these visualizations and
explain what we can learn from the respective data sets
using them. In the following plots, the edge bundles
and the ordering are obtained form the factorization.
Further visualizations can be found in the full version of
this paper [17].

The Les Misérables data: The visualization of
the Les Misérables data is presented in Figure 3. Most
edge bundles form a circular segment indicating that
all of the nodes under the segment are connected to
each other (the characters appear in the same parts
of the book). Some of the bundles are contained in
other bundles, indicating important subset of characters.
Multiple bundles intersect on a node at south-east of the
circle called Valjean – the protagonist of the book.

The Mammals data: The second data set is the
Mammals data, in Figure 4. For a clearer visualization,
we only consider 134 species that do not appear too
frequently in the data, as such species are neighbours
of every other species in graph. The edge bundles in
Figure 4 are essentially rotating around the middle.
This probably corresponds to the change of fauna when
moving from north to south. The change is gradual,
hence two consecutive edge bundles have a significant
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Table 2: Relative errors with asymmetric (left) and symmetric (right) algorithms on real-world data.

Les Mis Paleo News Terms Locations Mammals

obmf 0.36 0.71 0.74 0.32 0.40 0.26
cobmf 0.36 0.72 0.74 0.32 0.40 0.26
asso 0.33 0.71 0.72 0.29 0.34 0.26

Les Mis Terms Locations Mammals

obmfsym 0.40 0.35 0.48 0.27
cobmfsym 0.41 0.36 0.45 0.27
assosym 0.66 0.33 1.02 0.33

Table 3: Average relative errors and standard deviation with random columns as seeds for asymmetric algorithms
on real-world data. Ten random samples.

Les Misérables Paleo Newsgroups Terms Locations Mammals

obmf 0.51± 0.08 0.76± 0.02 0.83± 0.02 0.32± 0.00 0.53± 0.00 0.26± 0.00
cobmf 0.46± 0.05 0.76± 0.02 0.83± 0.02 0.32± 0.01 0.51± 0.00 0.26± 0.00
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Figure 3: Visualization of the Les Misérables data with
the ribbons and ordering from cobmf.

overlap, but over longer distance, the change in the fauna
becomes more obvious and the edge bundles are more
disjoint. This gives a good intuition about the structure
of the data.

6 Related Work

Boolean matrix factorization (BMF) has received increas-
ing interest in the data analysis community [2, 8–16],
proving to be a versatile tool for analyzing Boolean ma-
trices. Many different algorithms have been proposed,
including algorithms based on candidate creation and
selection [11, 14], proximal alternations [9], and message
passing [15], to name but a few. It has also found ap-
plications in diverse fields, such as bioinformatics [5],
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Figure 4: Visualization of the Mammals data with the
ribbons and ordering from obmf.

information extraction [4], and lifted inference [18]. To
the best of our knowledge, however, the ordering con-
straint is not studied in earlier work related to Boolean
matrix factorization.

Tiling databases [6] can be seen as a restricted
version of BMF, where the factorization cannot express
any 0s as 1. Geometric tiling [7] is a variation thereof,
where the tiles have to be consecutive. The main
difference to our work is a different optimization function,
[7] uses log-likelihood, and that it assumes that the
order is already given, for example, by spectral ordering,
whereas we discover the order on the fly.

A binary matrix has the consecutive ones property
(C1P) if its columns can be permuted so that all rows
have all 1s consecutively. The pq-trees can be used
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to check for the C1P [3] and Atkins et al. [1] propose
spectral ordering algorithm. The spectral ordering
approach is used in [7] to permute the data for finding
the geometric tiles.

7 Conclusions

Ordered Boolean matrix factorization (obmf) and its
variations (cobmf, obmfsym) are restricted versions of
Boolean matrix factorization, requiring the factors to
have the consecutive ones property (or be cyclic, in case
of cobmf). This restriction facilitates the interpretation
of the factorization, in particular in the case of the
edge bundle visualizations of graphs, as we saw in
Section 5.4. On the other hand, the restriction yields
higher reconstruction errors, though our experiments
show that the difference to state-of-the-art Boolean
matrix factorization algorithm is usually very small.

In this paper we laid the theoretical foundations
of the obmf problem and its variations, and proposed
algorithms based on the pq-trees. An important part of
the proposed algorithm is the choice of the seed vectors.
In this paper, we mostly used all columns of the data
as the seed, though the experiments in Section 5.3.2
show that sampling the columns could work equally
well. An interesting question for the future is whether
other methods for selecting the seeds would yield better
reconstruction errors.

In the problem setting of this paper, the user
provides the rank of the decomposition and the goal
is to minimize the reconstruction error over the rank-
k obmf decompositions. A common variant in the
Boolean matrix factorization world is to make the
rank a free variable and replace the target function
with measure that penalizes for higher ranks (see,
e.g. [9, 11, 13]). The Minimum Description Length
principle is a common approach. The ordered nature
of our factor matrices could help with finding more
efficient MDL decompositions, as the factor matrices are
easier to compress using run-length encoding or similar
approaches.
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[2] R. Bělohlávek and V. Vychodil. Discovery of
optimal factors in binary data via a novel method
of matrix decomposition. J. Comput. Syst. Sci., 76
(1):3–20, 2010.

[3] K. S. Booth and G. S. Lueker. Testing for
the consecutive ones property, interval graphs,
and graph planarity using pq-tree algorithms. J.

Comput. Syst. Sci., 13(3):335–379, 1976.
[4] E. Cergani and P. Miettinen. Discovering relations

using matrix factorization methods. In CIKM ’13,
pages 1549–1552, 2013.

[5] G. Corrado, T. Tebaldi, G. Bertamini, F. Costa,
A. Quattrone, G. Viero, and A. Passerini. PTRcom-
biner: mining combinatorial regulation of gene ex-
pression from post-transcriptional interaction maps.
BMC Genomics, 15(1), Apr. 2014.

[6] F. Geerts, B. Goethals, and T. Mielikäinen. Tiling
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