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Maximal Frequent Patterns

• A pattern is a subset of the data entities 

• itemset, subgraph, subsequence, … 

• A pattern is frequent if it appears 
sufficiently often in the data 

• A frequent pattern is maximal if it is not 
contained in any other frequent pattern 

• Studied since 1990s



Computational Complexity
• Comp. complexity of maximal pattern mining surprisingly 

unknown 

• Potentially exponentially many max. patterns  
⇒ takes exponential time 

• More fine-grained answers: 

• Time w.r.t. input and output  
(enumeration complexity, Johnson et al. 1988) 

• Time spent to count the number of maximal patterns 
(counting complexity, Valiant 1979)



Reductions
• A can be reduced to B if we can solve A 

effectively with an algorithm to solve B  

• ”B is at least as hard as A” 

• In this talk: maximality-preserving reductions 
between frequent pattern mining problems 

• ”Maximum X mining is at least as hard as 
maximum Y mining”



State of the Art

MaxFS(BDG3)

MaxFS(BTW3)

MaxFS(G)

MaxFS(PLN)

MaxFS(T)

MaxFS(DAG)

MaxFS(DirG)
MaxFIS

MaxSQS

Uniquely labelled  
undirected graphs

Undir. graphs  
with degree ≤ 3

Undir. graphs  
with treewidth ≤ 3

Planar undir. graphs

Undir. trees

Directed cyclic graphs

Directed graphs

Sequences with  
no repetition

Itemsets

A → B = A can be reduced to B 



Maximality-Preserving 
Reductions

MaxFS(BDG3)

MaxFS(BTW3)

MaxFS(G)

MaxFS(PLN)

MaxFS(T)

MaxFS(DAG)

MaxFS(DirG)
MaxFIS

MaxSQS

A → B = A can be reduced to B 

These reductions preserve enumeration and counting complexity



Impressed?
• Why no more reductions? 

• Example: From MaxFS(G) to MaxFIS 

• Each edge {u, v} has a unique label (l(u), l(v)) 

• Make the edges as items and graphs as 
transactions 

• Mine maximal frequent itemsets 

• This doesn’t (quite) work!



What’s Wrong?
A B C

A D C

A B D

tid A–B A–D B–C B–D C–D

1 1 0 1 0 1

2 0 1 1 0 1

3 1 0 0 1 1

D

B

C

Frequent itemsets (minfreq 2/3):

C D (3)

B C (2)

A B (2)

B C D (2)

A B C D (2)

Not connected!



Feasible Patterns
• To be able to encode the connectedness, we need to 

constrain the feasible patterns 

• We can adjust our reductions to work with these 
constraints. E.g.: 

• maximal graph patterns must map to maximal feasible 
itemsets, and 

• it must be easy to compute the graph patterns from 
the feasible maximum itemsets 

• These constraints are transitive 



Maximality-Preserving 
Reductions for Feasible Patterns

MaxFS(BDG3)

MaxFS(BTW3)

MaxFS(G)

MaxFS(PLN)

MaxFS(T)

MaxFS(DAG)

MaxFS(DirG)
MaxFIS

MaxSQS

A → B = A can be reduced to B 

The complexity collapses under these reductions!



Maximality-Preserving 
Reductions for Feasible Patterns

MaxFS(BDG3)

MaxFS(BTW3)

MaxFS(G)
MaxFS(PLN)

MaxFS(T) MaxFS(DAG)
MaxFS(DirG)

MaxFIS

MaxSQS

A → B = A can be reduced to B 

The complexity collapses under these reductions!



Summary
• For all feasible pattern versions of the problems: 

• Enumerating all feasible patterns is #P-hard 

• Given a set of feasible patterns, deciding 
whether there is any more feasible patterns is 
NP-hard 

• Even if only two patterns are given 

• For any fixed minfreq threshold τ, the 
enumeration can be done in polynomial time



Conclusions
• Most maximal pattern mining problems are essentially equally hard 

• Methods for one type of problem can be used to solve other types, as 
well 

• Feasible patterns admit usually constraints that are amenable to 
standard level-wise algorithms 

• Notable exceptions: MaxFS on general graphs and sequences with 
repetitions 

• Subgraph isomorphism is NP-hard

Thank You!


