
Reductions for Frequency-
Based Data Mining Problems

Stefan Neumann & Pauli Miettinen

Maximal Frequent Patterns

• A pattern is a subset of the data entities

• itemset, subgraph, subsequence, …

• A pattern is frequent if it appears
sufficiently often in the data

• A frequent pattern is maximal if it is not
contained in any other frequent pattern

• Studied since 1990s

Computational Complexity
• Comp. complexity of maximal pattern mining surprisingly

unknown

• Potentially exponentially many max. patterns  
⇒ takes exponential time

• More fine-grained answers:

• Time w.r.t. input and output  
(enumeration complexity, Johnson et al. 1988)

• Time spent to count the number of maximal patterns 
(counting complexity, Valiant 1979)

Reductions
• A can be reduced to B if we can solve A

effectively with an algorithm to solve B

• ”B is at least as hard as A”

• In this talk: maximality-preserving reductions
between frequent pattern mining problems

• ”Maximum X mining is at least as hard as
maximum Y mining”

State of the Art

MaxFS(BDG3)

MaxFS(BTW3)

MaxFS(G)

MaxFS(PLN)

MaxFS(T)

MaxFS(DAG)

MaxFS(DirG)
MaxFIS

MaxSQS

Uniquely labelled  
undirected graphs

Undir. graphs  
with degree ≤ 3

Undir. graphs  
with treewidth ≤ 3

Planar undir. graphs

Undir. trees

Directed cyclic graphs

Directed graphs

Sequences with  
no repetition

Itemsets

A → B = A can be reduced to B

Maximality-Preserving
Reductions

MaxFS(BDG3)

MaxFS(BTW3)

MaxFS(G)

MaxFS(PLN)

MaxFS(T)

MaxFS(DAG)

MaxFS(DirG)
MaxFIS

MaxSQS

A → B = A can be reduced to B

These reductions preserve enumeration and counting complexity

Impressed?
• Why no more reductions?

• Example: From MaxFS(G) to MaxFIS

• Each edge {u, v} has a unique label (l(u), l(v))

• Make the edges as items and graphs as
transactions

• Mine maximal frequent itemsets

• This doesn’t (quite) work!

What’s Wrong?
A B C

A D C

A B D

tid A–B A–D B–C B–D C–D

1 1 0 1 0 1

2 0 1 1 0 1

3 1 0 0 1 1

D

B

C

Frequent itemsets (minfreq 2/3):

C D (3)

B C (2)

A B (2)

B C D (2)

A B C D (2)

Not connected!

Feasible Patterns
• To be able to encode the connectedness, we need to

constrain the feasible patterns

• We can adjust our reductions to work with these
constraints. E.g.:

• maximal graph patterns must map to maximal feasible
itemsets, and

• it must be easy to compute the graph patterns from
the feasible maximum itemsets

• These constraints are transitive

Maximality-Preserving
Reductions for Feasible Patterns

MaxFS(BDG3)

MaxFS(BTW3)

MaxFS(G)

MaxFS(PLN)

MaxFS(T)

MaxFS(DAG)

MaxFS(DirG)
MaxFIS

MaxSQS

A → B = A can be reduced to B

The complexity collapses under these reductions!

Maximality-Preserving
Reductions for Feasible Patterns

MaxFS(BDG3)

MaxFS(BTW3)

MaxFS(G)
MaxFS(PLN)

MaxFS(T) MaxFS(DAG)
MaxFS(DirG)

MaxFIS

MaxSQS

A → B = A can be reduced to B

The complexity collapses under these reductions!

Summary
• For all feasible pattern versions of the problems:

• Enumerating all feasible patterns is #P-hard

• Given a set of feasible patterns, deciding
whether there is any more feasible patterns is
NP-hard

• Even if only two patterns are given

• For any fixed minfreq threshold τ, the
enumeration can be done in polynomial time

Conclusions
• Most maximal pattern mining problems are essentially equally hard

• Methods for one type of problem can be used to solve other types, as
well

• Feasible patterns admit usually constraints that are amenable to
standard level-wise algorithms

• Notable exceptions: MaxFS on general graphs and sequences with
repetitions

• Subgraph isomorphism is NP-hard

Thank You!

