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Chapitre 1

The five Platonic solids

§ 1. Pyramids, prisms and antiprisms
§ 2. Drawings and models
§ 3. Euler’s formula
§ 4. The three spheres associated to a regular po-

lyhedron

§ 5. Reciprocal polyhedra

In this chapter we are following Coxeter. The regular convex
polyhedra (or polyhedrons) are the simplest solid figures, if we ex-
cept the sphere.

§ 1. Pyramids, prisms and antiprisms

A convex polygon such as the regular polygon with n edges or sides and n vertices is a
finite region of the plane intersection of half-planes. Analogously, a convex polyhedron is
a finite region of space enclosed by a finite number of planes. The part of each plane that
is cut off by the other planes is a polygon called face. Any common side of two faces is an
edge.

Right regular prisms

We shall be concerned solely with "right regular" pyramids and prisms. The faces of
such pyramids are one base which is a regular polygon and side faces which are congruent
isosceles triangles. The faces of a right regular prism are two regular n-gons connected by
n rectangles. Question : given a vertex, how are the faces having this vertex in common ?

The height of such a prism can always be adjusted so that the rectangles become squares.
What do we get when n D 4 ?

The cube is regular, because all the faces are congruent regular polygons, all the edges
are congruent and at all vertices we have the same configuration of faces.

Right regular pyramids

The height of n-gonal pyramid can be adjusted so that the isosceles triangles become
equilateral if n < 6. A triangular pyramid is a regular tetrahedron, regular since the four
faces are congruent.

3
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4 CHAPITRE 1. THE FIVE PLATONIC SOLIDS

Antiprisms

Let us rotate one of the bases of a right regular prism on an n-gone by an angle 1
2
2�
n

and connect the two bases by 2n isosceles triangles. Choose the height such that all these
triangles become equilateral. We get a uniform polyhedron with 3 triangles and 1 n-gone at
each vertex.

When n D 3 the antiprism is an octahedron.
When n D 5 we can combine it with two pentagonal pyramids, one on each base, to get

the regular icosahedron.

The dodecahedron

Draw on a cardboard a regular pentagon F and then 5 pentagons each one having one
side in common with F . Cut it out and fold it to get a bowl. Build a second bowl the same
way and then put them together.

Schläfli symbols

Each polyhedron is characterized by a Schäfli symbol fp; qg which means the faces are
p-gones and that there are q faces at each vertex.

We put V D number of vertices, E D number of edges and F D number of faces.

§ 2. Drawings and models

Schlegel diagram

Construct a polyhedron using sticks for the edges and draw the image in perspective
from a point of view just outside the center of one face near enough to get an image of
the edges of that face which surrounds all the other edges. The result is a Schlegel diagram
of the polyhedron. Here are the results for the tetrahedron f3; 3g, the cube f4; 3g and the
octahedron f3; 4g.

Draw the Sclegel diagram of the dodecahedron f5; 3g and the icosahedron f3; 5g :
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§ 3. Euler’s formula

Any polyhedron that can be represented by a Schlegel diagram is said to be simply
connected or Eulerian, because its numerical properties satisfy Euler’s formula

V �E C F D 2

This formula is valid for any connected graph formed by a finite number of points joined by
edges decomposing the plane in non overlapping regions.

Proof. Build up the graph beginning with one single point by adding a new edge at each
step. The new edge has to start from an existing point and has to end either at an existing
point or at a new point. In the first case you have to add 1 to E and 1 to F since the edge
has cut a face in two. In the second case F is constant but V and E increase both by 1. In
both cases V � E C F is unchanged at each step and we have begun with V D 1, E D 0

and F D 1. �

V , E and F as functions of p and q

In a regular polyhedron we have

qV D 2E D pF

since each edge has 2 endpoints and each edge is a side for 2 faces.
Now remember the very convenient formula

if
A1

B1
D
A2

B2
D � � � D

AN

BN
then

A1

B1
D
A2

B2
D � � � D

AN

BN
D
�1A1 C �2A2 C � � � C �NAN

�1B1 C �2B2 C � � � C �NBN

Thus
V
1
q

D
E
1
2

D
F
1
p

D
V �E C F
1
q
�
1
2
C

1
p

D
2

2p�pqC2q
2pq

D
4pq

2p C 2q � pq

from what we get

V D
4p

2p C 2q � pq
; E D

2pq

2p C 2q � pq
and F D

4q

2p C 2q � pq

Since these quantities have to be positive, the numbers p and q have to satisfy 2p C 2q �
pq > 0, or equivalently

.p � 2/.q � 2/ < 4
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Put p0 D p � 2 and q0 D q � 2, the positive integers p0 and q0 have to be such that their
product is less or equal to 3. The possibilities are

.1; 1/ or .2; 1/ or .1; 2/ or .3; 1/ or .1; 3/

The five possible regular polyhedra are thus such that fp; qg is one of these

.3; 3/ or .4; 3/ or .3; 4/ or .5; 3/ or .3; 5/

But these five polyhedra exist !

§ 4. The three spheres associated to a regular polyhedron

Given a regular polyhedron, let us call O the center of it. How would you define such a
center and does it exist ?

You may define three spheres associated to that regular polyhedron :

— the circumsphere which passes through all vertices

— the midsphere which is tangent to all the edges (the contact points are the midpoints
of the edges)

— the insphere which is tangent to each face (the contact points are the center of the
faces)

We skip the computation of the radii of these spheres to another year !

§ 5. Reciprocal polyhedra

The reciprocal platonic solid to fp; qg is fq; pg : just take the polyhedron you get by
choosing as vertices the centers of the faces.

Exercises

Exercise 1. Draw a cube ABCDEFGH . Select four points A, C , F and H such that
no two points belong to a common edge. Describe the polyhedron ACFH .

Exercise 2. Let T be a regular tetrahedron. How can you construct a cube whose set of
vertices contains all the vertices of T ? Is this cube unique ?

Exercise 3. Let T be a regular tetrahedron. Describe the polyhedron whose vertices are
the midpoints of the edges of T . You may use the result of exercise 2.

Exercise 4. Give a description of a regular octahedron as a two-pyramid.

Exercise 5. Describe a solid having 5 vertices and 6 equilateral triangular faces. Why is
it not a "regular pentahedron" ?

Exercise 7. Describe the section of a regular tetrahedron by the plane midway between
two opposite edges.
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Exercise 8. Describe the section of a cube by the plane midway between two opposite
vertices.

Exercise 9. Describe the section of a regular dodecahedron by the plane midway bet-
ween two opposite planes.

From now on, we suppose we take the coordinates relatively to a frame .0;E{; E|; Ek/where
the basis .E{; E|; Ek/ is orthonormal.

Exercise 10. LetC1 be the cube of edge 1 with all vertices with nonnegative coordinates,
one vertex at the origin and the edges parallel to the three axes of the frame. Show that the
coordinates of the vertices of C1 are .X; Y;Z/whereX 2 f0; 1g, Y 2 f0; 1g andZ 2 f0; 1g.

Let C2 be the cube of edge 2 with its center at the origin and the edges parallel to the
three axes of the frame. Show that the coordinates of the vertices of C2 are .˙1;˙1;˙1/.

Where is the center of dilatation that relates C1 and C2 ?

Exercise 11. Describe the solid defined by

jxj C jyj C j´j 6 1

Exercise 12. Let � be the golden ratio : � D
p
5C1
2

. A golden rectangle is a rectangle
where the length is equal to the breadth multiplied by � . Let us look at the three following
golden rectangles :

— one in the yO´ plane with vertices .0;˙�;˙1/ ;

— one in the ´Ox plane with vertices .˙1; 0;˙�/ ;

— one in the xOy plane with vertices .˙�;˙1; 0/ ;

Show that these 12 points are the 12 vertices of a regular icosahedron. Draw a picture sho-
wing the three rectangles.
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Chapitre 2

Four-dimensional regular
polytopes

§ 1. Drawings
§ 2. Schläfli symbols Four-dimentional geometry is the most difficult geometry in the

matter of polytopes. From dimension five and up to infinity it is
simpler ! So don’t get afraid by any four-dimentional hypercube or
other "24-cell".

§ 1. Drawings

1.1 Draw a 4-dimensional simplex

It the generalization of the regular tetrahedron. Think of a pyramid with a vertex in the
new dimension and having a regular tetrahedron as base.

Here again we count the number of vertices : , the number of edges : , the number
of faces : , the number of cells : .

This polytope is called a 4-dimensional simplex.

9
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1.2 Draw a 4-dimensional cube

It the generalization of the cube. We’l get a hypercube or tesseract (or "8-cell" or "mea-
sure polytope").

Moving pictures : https ://funnyjunk.com/Hypercube/hdgifs/6112424/
https ://en.wikipedia.org/wiki/Tesseract
Here again : number of vertices : , number of edges : , number of faces : , number

of cells : .

§ 2. Schläfli symbols

A regular polytope is characterized by its Schläfli symbol fp; q; rg. We have the symbol
fp; qg for the cells (all congruent, of course).

Question : why do we say "congruent" instead of "equal" ?
The faces of the cells are such that each face fpg belongs to 2 cells. But the edges are

belonging to several cells : r cells. We can look at r in an other way : Take the midpoints
of the edges coming out from one vertex : they make a regular polyhedron fq; rg. Thus
fp; q; rg is a contraction of fp; qg and fq; rg.

4-simplex : f3; 3; 3g (V,E,F,C)=( , , , )

Hypercube : f4; 3; 3g (V,E,F,C)=( , , , )

Orthoplex : f3; 3; 4g (V,E,F,C)=( , , , )

24-cell : f3; 4; 3g (V,E,F,C)=(24,96,96,24)

120-cell : f3; 3; 5g (V,E,F,C)=(600,1200,720,120)

600-cell : f3; 3; 5g (V,E,F,C)=(120,720,1200,600)

https ://en.wikipedia.org/wiki/120-cell
https ://en.wikipedia.org/wiki/600-cell
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Exercises

Exercise 1. LetH be the hypercube of edge 2 with its center at the origin and the edges
parallel to the four axes of the frame .O;E{; E|; Ek; È/. Find the coordinates of the vertices of
H .

What are the coordinates of the centers of the cells of the hypercube H?

Exercise 2. Find the coordinates of an orthoplex having its vertices on the axes of the
orthonormal frame .O;E{; E|; Ek; È/.

Exercise 3. Guess what is the analogue of Euler’s theorem for polytopes in 4-dimensional
geometry?
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Chapitre 3

Basic notions

§ 1. The axioms of incidence
§ 2. Desargues theorem

Everything begins with Euclid (about 300 before JC). The ni-
ckname "Euclis" means "the good key". He builds geometry entirely
upon common notions and axioms. Now it is easy to say that he
missed one, the Pash axiom : "If a line intersects one side of a tri-
angle, it intersects at least one of the two others. Remark that in this
context the sides of a triangleABC are the segmentsBC ,CA and
AB .

The non-euclidean geometries were invented/discovered in the
19th century. We shall go back to this later on if we have time.

Finally Hilbert put an endpoint to that history with his book
"Grundlagen der Geometrie" in 1899 : there are points, lines and
planes (these words have no mathematical meaning, but you may
keep the intuitive meaning you have inherited from Euclid). The
axioms relating these objects are classified in 5 groups : axioms of
incidence, axioms of order, axioms of congruence, axioms of conti-

nuity and axioms of parallelism. In this chapter we will be concer-
ned mostly by the axioms of incidence and a little by those of paral-
lelism.

Nowdays it is usual to make use of a model constructed on the
set theory which is equivalent to the axiomatic formulation of Geo-
metry by Hilbert. Starting with set theory and the recursivity axiom
one constructs the set of numbers N, Z, Q, R and C and then R3.
We can put a structure of linear space on R3. What we have got
looks very much like 3D-geometry, but it is not yet satisfactory. Two
main defects are : 1°) no distance is defined : we do not have any
Pythagoras theorem ; 2°) one of the points in R3 is a very special
point : the origin or null vector. We’ll take care of Pythagoras in
the following chapters. For the time being, just forget that the the
origin is special and think that any vector�!! may be the origin The
expressions "the point A lies on the line `" or "` goes through A"
mean simply A 2 `. Similarly "the point A lies on the plane h" or
"h goes through A" mean A 2 h. But notice that "the line ` lies in
the plane h" means ` � h we use the symbol� as a synonym of�.

§ 1. The axioms of incidence

Let us denote by E the set of points, by L the set of lines and by P the set of planes.

1.1 Relations between points and lines

1: There are at least two distinct points. : card E > 2 ;
2: There is one and only one line that contains two distinct points. Given two distinct

points A and B the unique line ` that contains them will be denoted AB

8A 2 E 8B 2 E A ¤ B H) 9Š` 2 L A 2 ` and B 2 `

3: Every line contains at least two distinct points : 8` 2 L card ` > 2.

13
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1.2 Relations between points and planes

4: There are three points that do not all lie on the same line.

9.A;B; C / 2 E3 8` 2 L fA;B;C g š `

5: For any three points that do not lie on the same line there is one and only one plane
that contains them.

8.A;B; C / 2 E3
�
8` 2 L fA;B;C g š ` H) 9ŠP 2 P fA;B;C g � P

�
6: Any plane contains at least three points : 8P 2 P cardP > 3.

1.3 Relations between points and planes

7: If a line lies on a plane then every point contained in the line lies on that plane.

8` 2 L 8P 2 P ` � P H)
�
8A 2 E A 2 ` H) A 2 P

�
8: If a line contains two points which lie on a plane then the line lies on the plane.

8P 2 P 8.A;B/ 2 E2
�
A ¤ B and fA;Bg � P

�
H)

�
8` 2 L fA;Bg � ` H) ` � P

�
1.4 Dimension of space

9: If two planes both contain a point then they also contain a line.

8P 2 P 8P 0 2 P P \ P 0 ¤ ¿ H) 9` 2 L ` � P \ P 0

10: There are at least four points that do not all lie on the same plane.

9.A;B; C;D/ 2 E4 8P 2 P fA;B;C;Dg š P

Remark. The first four axioms (which do not refer to planes) are the plane geometry
axioms, while the remaining are the space axioms. Out of the various Theorems that can be
proved we note

Theorem 1. Given a line and a point not on it there is one and only one plane that contains
the line and the point.

Theorem 2. Given a pair of lines which meet in a point there is one and only one plane that
contains the lines.

Theorem 3. Given four points that do not all lie on a plane, there is no line containing three
of these points.
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§ 2. Desargues theorem

The most general statement of Desargues Théorem is the following :

Theorem. Two triangles are in perspective axially if and only if they are in perspective
centrally.

Vocabulary. Let ABC and A0B 0C 0 be two triangles. If there is a point S and three lines
p, q and r concurrent in S (all three lines go through the point S ) such that A and A0 belong
to p, B and B 0 belong to q, C and C 0 belong to p, then the triangles are said to be centrally
perspective or in perspective centrally.

Let the lines a D BC , b D CA and c D AB be the sides of the triangle ABC and
similarly a0 D B 0C 0, b0 D C 0A0 and c0 D A0B 0 be the sides of the triangle A0B 0C 0. If there
is a line s containing the points P D a\ a0, Q D b \ b0 and R D c \ b0, then the triangles
are said to be axially perspectiveor in perspective axially.

We keep the notations ABC , A0B 0C 0, a, b, c, a0, b0, c0 throuh the whole paragraphe.
The triangles ABC and A0B 0C 0 are supposed to be real triangles, that is to say that the
vertices are not collinear.

2.1 Generic statement in space

Quasi theorem. Let ABC and A0B 0C 0 be two triangles in space such that the planes… and
…0 of these triangles intersect along a line s and such that A0 ¤ A, B 0 ¤ B , C 0 ¤ C . We
suppose that a and a0 are not parallel, that b and b0 are not parallel and that c and c0 are not
parallel. If the lines AA0, BB 0 and CC 0 are concurrent in a point S , then the lines a and a0

intersect each other in a point P , b \ b0DQ and c \ c0DR all three belonging to the line s.
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Proof. The lines AA0 and BB 0 go through the point S . Since B ¤ B 0, we have S ¤ B

or S ¤ B 0. By a change of names we may suppose that S ¤ B . Let us call H the plane
containing the line AA0 and the point B . The points of the line AA0 belong to H , thus
S 2 H . The points S and B belong to H thus the line SB lies on H . Since there is only
one line through B and B 0 and since this line contains S distinct from B , the lines SB and
BB 0 are equal (that is the same line). Since this line is inH , we have B 0 2 H . Thus the four
points A, A0, B and B 0 are coplanar (all 4 points belong to the planeH ). The lines c D AB
and c0 D A0B 0 are coplanar and not parallel, thus they have a common point R.

Since R 2 c � … and R 2 c0 � …0, we have R 2 …\…0 D s. Similarly, we get P 2 s
and Q 2 s. The three points belong to a common line, the line s.�

2.2 Generic statement in the plane

Quasi theorem. Let ABC and A0B 0C 0 be two triangles in a plane … such that A0 ¤ A,
B 0 ¤ B , C 0 ¤ C . We suppose that a and a0 are not parallel, that b and b0 are not parallel
and that c and c0 are not parallel. Let us put P D a \ a0, Q D b \ b0 and R D c \ c0, If
the lines AA0, BB 0 and CC 0 are concurrent in a point S , then the points P , Q and R are
collinear.

Proof. Let’s choose a point † which does not belong to … and an other point †0 on the
line †S distinct from S and from †. The lines †A and †A0 are in a plane : the plane
determined by the lines SAA0 and S††0. If the lines †A and †0A0 are parallel, just change
by a small amount the point †0 and they become secant. Lat us call ˛ the point †A \†0A0

and similarly ˇ D †B \†0B 0 and  D †C \†0C 0. Let us call � the plane through ˛, ˇ
and  and s the line which is common to the planes � and …. The line ˇ is in the plane
†BC . Let us call P1 the intersection of the lines ˇ and †BC . We define in the same way
P 01 D ˇ \†

0B 0C 0. Now P1 and P 01 belong th the line ˇ and the plane …, thus P1 D P 01
and so this is a point common to BC and to B 0C 0. Then P1 D P 01 D P . Thus P 2 s.
Similarly Q 2 s and R 2 s. �

Comment. We have not taken into account parallelism. Two solutions : reason in affine
geometry and discuss all the different cases or reason in projective geometry where there
are no parallels : two parallel lines are lines having in common one "new" point : the point at
infinity which is the direction or the set of all the lines parallel to the two we are considering.
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2.3 In the affine plane

cf. https ://mathcs.clarku.edu/ djoyce/java/round/desargues.html

Weak form of Desargues theorem. Let p, q and r be three lines concurrent in a point S or
parallel. Let ABC and A0B 0C 0 be two triangles without any common vertex and such that
A and A0 belong to p, B and B 0 belong to q and C and C 0 belong to r . If BCkB 0C 0 and
CAkC 0A0, then ABkA0B 0.

Strong form of Desargues theorem. Given two triangles ABC and A0B 0C 0 and three
distinct lines p, q and r such that A ¤ A0, B ¤ B 0, C ¤ C 0, A and A0 belong to p, B
and B 0 belong to q and C and C 0 belong to r . Then the three lines p D AA0, q D BB 0 and
r D CC 0 are parallel or concurrent if and only if one of the following three conditions is
valid :
� the lines BC and B 0C 0 intersect, CA and C 0A0 intersect and also AB and A0B 0 intersect
and the points P D BC \ B 0C 0, Q D CA \ C 0A0 and R D AB \ A0B 0 are collinear ;
� two among the three couples of linesBC etB 0C 0,AC etA0C 0,AB etA0B 0 are couples of
intersecting lines and the last couple contains two parallel lines which are also parallel to the
line joining the former intersection points ; for instance P D BC \B 0C 0,Q D CA\C 0A0

and the lines AB and A0B 0 are parallel and parallel to the line PQ ;
� all three couples of lines are couples of parallel lines : BC k B 0C 0, CA k C 0A0 and
AB k A0B 0.
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2.4 In the projectif plane

Theorem. Let ABC and A0B 0C 0 be two non flat triangles (the vertices are not collinear)
such that A ¤ A0, B ¤ B 0 and C ¤ C 0 and let p, q and r be three distinct lines such that
p D BC \ B 0C 0, q D CA \ C 0A0 and r D AB \ A0B 0 :

if the lines p, q and r are intersecting in one point S , then the points P D a \ a0,
Q D b \ b0 and R D c \ c0 belong to a common line s ;

if the three points P D a \ a0, Q D b \ b0 and R D c \ c0 belong to a common line,
then the three lines pDAA0, qDBB 0 and rDCC 0 are intersecting in a common point S .

Exercises

Exercise 1. Using the axioms show the theorem 1 : Given a line and a point not on it
there is one and only one plane that contains the line and the point.

Exercise 2. Using the axioms show the theorem 2 : Given a pair of lines which meet in
a point there is one and only one plane that contains the lines.

Exercise 3. Using the axioms show the theorem 3 :Given four points that do not all lie
on a plane, there is no line containing three of these points.

Exercise 4. Among the axioms of incidence, which one is not necessary ?

Exercise 5. Show that parallelism is an equivalence relation in the set L2 of all the lines
lying in a common plane.

Show that parallelism is an equivalence relation in the set P of all the planes in 3D-
space.

Show that parallelism is an equivalence relation in the set L3 of all the lines in 3D-space.
What is the name of the elements of the quotients L2= k and L3= k ?

Exercise 6. On a plane draw three circles C , D and E with distinct radii and outside of
each other. Draw the common tangents to D and E which let D and E be in the same half-
plane (called outer tangents), and call P the intersection point of these two tangents. Define
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similarly the pointQ, intersection of the outer tangents to E and C and define similarly the
point R, intersection of the outer tangents to C and D.

1°) Guess a theorem.
2°) Give a proof of your theorem using 3D-geometry (you do not need to make any new

drawing, just look at the one you have in another way ! and you do not need any words when
you "see" your solution).

3°) Give another proof of your theorem.

Exercise 7. Let A and B be two distinct points in an n-dimensional space. Let c D AB
be the line through A and B . Similarly let A0 and B 0 be two distinct points in the same
n-dimensional space and such that A ¤ A0, B ¤ B 0 and c ¤ c0. Show that the lines AA0

and BB 0 are concurrent if and only if c and c0 are concurrent.

Exercise 8. Is it possible to generalize Desargues’s theorem to 4 dimensions ?
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Chapitre 4

One-dimensional geometries

§ 1. Oriented 1-dimensional euclidean geometry
§ 2. 1-dimensional Euclidean geometry
§ 3. "Euclid’s" 1-dimensional geometry
§ 4. Projective 1-dimensional geometry

L

The line above is a set of points. If we take one point O no-

thing happens. If we take two points,O and I , we can just say that
O D I or O ¤ I . Now if we take a third point M , we can com-
pare the length and orientation from O to M relative to the length
and orientation fromO to I . In fact we describe the line, given two
distinct pointsO and I , by the set of real numbers R. The distance
from O to I will be our unit. In physics we may take the cm. In
mathematics we do not care, any two distinct points are enough.
In geometry it is sometimes convenient to think that one choice has
been made and sometimes it is better to leave that question open.

§ 1. Oriented 1-dimensional euclidean geometry

1.1 Description of a physical line

Let us denote byL the set of points of the line. We can orient the line by putting an arrow
at one end (of course, we draw only a finite part of the line supposed to go on indefinitely
in both ends). We choose one point O .

L
�
O

Now to each point M we can associate a real number x in a one to one map : you just
measure the length OM in cm and putC sign if M is on the right hand side of O , a � sign
if M is on the left hand side of O and put x D 0 if M D O . Let us call that map by c as
"coordinate". Thus there is a bijection of L onto R : c W L! R;M 7! c.M/ D x.

L

R
�
O

0
�
M
x

What happens if we choose another point O 0 ? We get another bijection. Let us call it c0

and put x0 D c0.M/. Can we compute x0 knowing x ? Of course we must say where we took

21
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the pointO 0, that is we have to suppose that we know c.O 0/ D !. Then c0.M/ D c.M/�!,
or x0 D x � !.

L

R
�
O

0
b

�
O 0

!
�
M
x

0 x0 D x � ! R

The formula giving x0in term of x is the explicit form of the map c0 ı c�1 W R ! R. Let
us put b D �!. We can summarize our study in the following way : we have a set L and
a family of bijections B of L onto R such that if c and c0 belong to B, then there is a real
number b such that for all x in R

.c0 ı c�1/.x/ D x C b

1.2 Vectors

We are working in one dimension. Thus things are in a way too simple. Here we are
using the fact that given a field F , F is one-dimensional vector space on itself (vector space
means the same thing as linear space, but since we want to talk about vectors, we’ll use the
term "vector space").

If we take two points A and B , we notice that the real number c.B/ � c.A/ do not
depend on the choice of the bijection c. We say that this number is intrinsic and R being
a vector space on itself, we may call it "vector" and use the notation

��!
AB . If C and D are

two other points on the line we can compute
��!
CD. Thus

��!
AB D

��!
CD means c.B/ � c.A/ D

c.D/ � c.C /, and this relation is valid independently of the choice of c in B.

1.3 Mathematical definitions

Now forget (nearly) everything we have done and forget also about the physics. We start
from scratch.

Definition. Let F be a field. An oriented Euclidean line over the field F is a couple .L;B/,
where L is a set and B is a set of bijections of L onto F such for any c and c0 in B there is
an element b in F such that

c0 ı c�1 W F ! F; x 7! x C b

We say that the change of coordinates is given by

x0 D x C b

Remark. Usually the adjective "Euclidean" is reserved for geometry on the real field R. But
I do not know any generic denomination for a general field F .

Example 1. Let L be the set of electric potential. We suppose we know what is higher
potentials or what is lower potentials and we know the unit of difference of potentials. That
explains that you never can say that the electric potential is this or that but only that the
difference of electric potential is equal to so and so much, measured in Volts.

Example 2. Any line which is not necessary a straight line, but such that one may measure
distances along that line and without multiple points and such that it is directed like a one-
way road.
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Example 3. Let us take the field F D Z=7Z. We may sketch the line in the following way

�

�

�

�

�

�

�

Oriented Eucl Line
� 0

�1
�
2

�
3

�
4

�
5

�
6

Field F D Z=7Z

Proposition and Definition. Let .L;B/ be an oriented Euclidean line. Given two points A
and B in L, c.B/ � c.A/ is an element of F independent of the choice of the bijection c
in B. It is called a vector and denoted

��!
AB . The set of vectors is a vector space called the

vector space associated to the line L. Thus

��!
AB D c.B/ � c.A/

Proposition. The map L � L! F; .A;B/ 7!
��!
AB has the following properties :

— for every point A, the map L! F; B 7!
��!
AB is a bijection ;

— for all points A, B and C in L, we have
��!
AC D

��!
AB C

��!
BC .

Notation. Let .L;B/ be an oriented Euclidean line constructed on the field F . Let �!u be an
element of F ,we denote by M C�!u the point N such that

��!
MN D �!u . In that case, we use

also the notations �!u D N �M .

Proposition and Definition. Let .L;B/ be an oriented Euclidean line constructed on the
field F and let �!u be a vector in the vector space associated with L.

The map T�!
u
W L! L;M 7!M C�!u is a bijection called translation of vector �!u .

It is easy to check that the set of translations of .L;B/ is a group isomorphic to the group
.F;C/ through

T�!
u
ı T�!

v
D T�!

uC
�!
v

§ 2. 1-dimensional Euclidean geometry

Now we skip orientation. We’ll follow the same track as for the oriented 1-dimensional
euclidean geometry.

2.1 Description of a physical line

Let us denote by L the set of points of the line. We do not orient the line. We choose
one point O and we choose one of the two possible orientations of the line.
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L
�
O

or

Now to each point M we can associate a real number x in a one to one map : you just
measure the length OM in cm and put C sign if OM is in the direction of the orientation
you have choosen, � if not. Let us call that map by c as "coordinate". Thus there is a
bijection of L onto R : c W L! R;M 7! c.M/ D x.

L

R
�
O

0
�
M
x

In the above drawing x D �4, since our unit is the cm.
What happens if we choose another point O 0 and another orientation ? (The point O 0

may be equal to O or different, the new orientation chosen may be the same or the opposite
orientation). We get another bijection (which can be the same if we have done the same
choices as before !). Let us call it c0 and put x0 D c0.M/. Can we compute x0 knowing
x ? Of course we must say where we took the point O 0, that is we have to suppose that we
know c.O 0/ D !. We have also to say if the orientation is the same or opposite. Let us put
" D C1 whether the orientation is the same and " D �1 if the orientation is opposite. Then
c0.M/ D ".c.M/ � !/, or x0 D "x � "!.

L

R
�
O

0
b

�
O 0

!
�
M
x

0 x0 D "x � "! R

The formula giving x0in term of x is the explicit form of the map c0 ı c�1 W R ! R. Let
us put b D �"!. We can summarize our study in the following way : we have a set L and
a family of bijections B of L onto R such that if c and c0 belong to B, then there is a real
number " in fC1;�1g and a real number b such that for all x in R

.c0 ı c�1/.x/ D "x C b

2.2 Vectors

If we take two points A and B , we notice that the real number c.B/ � c.A/ depends
on the choice of the bijection c. This number is not intrinsic. We cannot define vectors as
simply as in the case of the oriented line.

We can verify that the midpoint M of the couple of points .A;B/ is intrinsic ; that is
c.M/ D 1

2
.c.A/Cc.B// if and only if for any c0 2 B we have c0.M/ D 1

2
.c0.A/Cc0.B//.

Put xA D c.A/ and xB D c.B/. We have to check that if xM D 1
2
.xA C xB/ then for

x0M D "xM C b, x0A D "xAC b, x0B D "xB C b, we have x0M D
1
2
.x0AC x

0
B/. That is easy

mathematics !
Then we can define an equivalence relation � between couples of points by .A;B/ �

.C;D/ if and only if fA;Dg and fB;C g have the same midpoint.

Exercice 1. Verify that� is an equivalence relation.
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We then define the vectors as the equivalence class of couples of points relative to the
equivalence relation�. Denote

�!
L the set of vectors :

�!
L D .L � L/= �

It is easy to verify that
�!
L is isomorphic to F (in fact we have two isomorphisms).

2.3 Mathematical definitions

Do not forget everything this time. We keep the relation�.

Definition. Let F be a field. An Euclidean line over the field F is a couple .L;B/, where L
is a set and B is a set of bijections of L onto F such for any c and c0 in B there is an element
b in F and an element " 2 f1;�1g such that

c0 ı c W F ! F; x 7! "x C b

We say that the change of coordinates is given by

x0 D "x C b

Remark. In any field F , the symbols 1 and �1 have a meaning. They are different unless
1 C 1 D 0. One says that the characteristic of the field is 2. We suppose our Field is of
characteristic different from 2 !

Example 1. LetL be the set of electric potential. It is an arbitrary choice that has been made
to give the electron a negative charge. If we never change this convention the line of electric
voltage is oriented, but... theoretically we could have done the opposite choice...

Example 2. Any line which is not necessarely a straight line, but such that one may measure
distances along that line and without multiple points. The road may now be two-ways !

Example 3. Let us take the field F D Z=7Z. We may sketch the line in the following way

�

�

�
B

�

�
O

�

�
A

"Euclidean" Line

�C
� 0

�1
�
2

�
3

�
4

�
5

�
6

Field F D Z=7Z

Exercice 2. In the above picture, if we choose the origin in O and the orientation C, what
are the coordinates of A and B ? Describe the translation T�!

AB
.
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2.4 Vectors

Proposition and Definition. Let .L;B/ be an oriented Euclidean line. The relation� defi-
ned in L � L by

.A;B/ � .C;D/” .A;D/ and .B; C / have same midpoint

is an equivalence relation. The set L � L= � is isomorphic to F and has thus the structure
of a one-dimensional vector space on F .

Proof. The exercise 1 shows that � is an equivalence relation. Thus
�!
L D L � L= �

is defined. Now choose any c in B. Call O the point c�1.0/. It is our origine. We have a
bijection of

�!
L ! F;

��!
OM 7! c.M/, which gives

�!
L a structure of vector space independent

of the choice of c. The change of orientation between c and c0 corresponds to a change of
the basis vector into its opposite. �

Proposition. The map L � L! F; .A;B/ 7!
��!
AB has the following properties :

— for every point A, the map L! F; B 7!
��!
AB is a bijection ;

— for all points A, B and C in L, we have
��!
AC D

��!
AB C

��!
BC .

Notation. Let .L;B/ be an oriented Euclidean line constructed on the field F . Letting �!u
be an element of F , we denote by M C �!u the point N such that

��!
MN D �!u . In that case,

we use also the notations �!u D N �M .

Proposition and Definition. Let .L;B/ be an oriented Euclidean line constructed on the
field F and let �!u be a vector in the vector space associated with L.

The map T�!
u
W L! L;M 7!M C�!u is a bijection called translation of vector �!u .

It is easy to check that the set of translations of .L;B/ is a group isomorphic to the group
.F;C/ through

T�!
u
ı T�!

v
D T�!

uC
�!
v

Proposition and Definition. Let .L;B/ be an oriented Euclidean line constructed on the
field F and let � be a point in L. For any point M in L there is one and only one point N
such that the midpoint ofMN is�. The mapL! L;M 7! N is called a central symmetry
relative to �. Let us denote it by Sym�.

Exercice 3. Show the following properties :

� Sym� ı Sym� D IdL where IdL is the identity mapping on L ;

� Sym� ı Sym�0 D T2
��!
�0�

;

� T�!
u
ı Sym� D Sym

�C 1
2
�!
u

;

� Sym� ı T�!u D Sym
�� 1

2
�!
u

.

Question : How does the complex line look like ?
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§ 3. "Euclid’s" 1-dimensional geometry

At the time of Euclid there was no common unit of length. In fact the only notion used
was the ratios of lengths. Thus the concept of midpoint was clear.

3.1 Mathematical definitions

Definition. Let F be a field. A line over the field F is a couple .L;B/, where L is a set and
B is a set of bijections of L onto F such for any c and c0 in B there is an element b in F
and an element a in F different from 0 such that

c0 ı c W F ! F; x 7! ax C b

We say that the change of coordinates is given by

x0 D ax C b

Remark. The function x 7! ax is linear and the function x 7! ax C b is affine.

Example 1. Let L be the set of temperatures in "normal" life (I mean that we forget about
Kelvin’s absolute temperatures). The change of coordinates from °Celsius (denoted x) to
°Fahrenheit (denoted x0) is

x0 D
9

5
x C 32

Example 2. Any line which is not necessary a straight line, but such that one may measure
distances along that line and without multiple points. The road may now be two-ways !

Example 3. Let us take the field F D Z=7Z. We may sketch the line in the following way

�

�

�
I

�

�
O

�

�

� 0

�1
�
2

�
3

�
4

�
5

�
6

Field F D Z=7Z

Exercice 4. In the above picture, we choose the origin inO and the point whose coordinate
is 1 in I . Give the coordinates of the five other points.

Example 4. Let .L;B/ be a line on the field C. Such a line is called a complex line (and
often a complex plane because C is in bijection with R � R). We take a new origin O 0 at
the point such that c.O 0/ D �1 and the point I 0 such that c0.I 0/ D 1 at the point with
coordinate i � 1. Compute ´0 D c0.M/ in terms of ´ D c.M/ for any point M .

�
O.0/

�
I.1/

�
O 0.�1/

�I 0.�1C i/
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3.2 Vectors

Proposition and Definition. Let .L;B/ be a line. The relation� defined in L � L by

.A;B/ � .C;D/” .A;D/ and .B; C / have same midpoint

is an equivalence relation. The set L � L= � is isomorphic to F and has thus the structure
of a one-dimensional vector space on F .

Proof. Same as before. �
Proposition. The map L � L! F; .A;B/ 7!

��!
AB has the following properties :

— for every point A, the map L! F; B 7!
��!
AB is a bijection ;

— for all points A, B and C in L, we have
��!
AC D

��!
AB C

��!
BC .

Notation. Let .L;B/ be an oriented Euclidean line constructed on the field F . Letting �!u
be an element of F , we denote by M C �!u the point N such that

��!
MN D �!u . In that case,

we use also the notations �!u D N �M .

Proposition and Definition. Let .L;B/ be a line constructed on the field F and let �!u be a
vector in the vector space associated with L.

The map T�!
u
W L! L;M 7!M C�!u is a bijection called translation of vector �!u .

The set of translations of .L;B/ is still a group isomorphic to the group .F;C/.

Proposition and Definition. Let .L;B/ be a line constructed on the field F , let� be a point
in L and let � be an element of F . For any point M in L there is one and only one point N
such that

��!
�N D �

��!
�M . The map L ! L;M 7! N is called a homothety with center �

and ratio �. Let us denote it by H�;�.

Exercice 5. Show that a central symmetry is a homothety. What is its ratio ?

Exercice 6. Let c be an element of B, let� 2 L and � 2 F . We call ! the coordinate c.�/
of the point �. For any point M in L, we put x D c.M/ and x0 D c.H�;�.M//. Give the
formula for computing x0 knowing x.

Exercice 7. The composition of two affine maps of F on itself is still an affine map. More
precisely : if g1.x/ D a1x C b1 and g2.x/ D a2x C b2, then g1 ı g2 D g where g.x/ D
axCb, a D a1a2 and b D a1b2Cb1. Show that you find back these results using matrices :�

a1 b1
0 1

� �
a2 b2
0 1

�
D

�
a b

0 1

�
3.3 Intrinsic objects

Anything defined on a line which is independent of the choice of coordinate is called
intrinsic and has a geometrical meaning. The vectors associated with a line are all collinear.
If �!u and �!v are such vectors we can find an element � in F such that �!v D ��!u . This
number is the ratio of the two vectors. Let us take three points on a line A, B and C such
that C ¤ A, the ratio � such that

��!
AB D �

��!
AC is thus intrinsic. In France we have been

using the notation AB

AC
for this ratio. We could also use

�!
AB
�!
AC

but in higher dimensions that
would be a tensor...

Theorem. The bijections of a line preserving ratios are the translations and the homothety.
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§ 4. Projective 1-dimensional geometry

In the projective line, instead of using the group of affine bijections, we’ll use the group
of homographic functions

h.x/ D
ax C b

cx C d
where ad � bc ¤ 0

If F D R, draw examples of homographic functions with Geogebra.

x

y

�

�
d
c

�

a
c

Notice the two asymptotes when c ¤ 0. One is vertical (parallel to Oy) with equation
x D �d=c and one is horizontal (parallel to Ox) with equation y D a=c.
————————————

If F D C these functions are called Möbius transformations. The variable is usually
denoted by ´ and here a, b, c and d are complex numbers. One simple example is

h.´/ D
1

´

The circle j´j D 1 has itself as image. The image of the line <.´/ D 0;8 is the circle with
radius 0;625 and center at ´center D 0;625.

x

y
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4.1 The group of homographic functions on F

If you combine two homographic functions, you still get a homographic function. What
are the computation rules ?

Let us associate the matrix A D
�
a b

c d

�
to the above homography. We then denote the

homography by hA. The magic phenomenon is that

hA1
ı hA2

D hA1A2

We have to do the computation completely at least one time :

.h24a1 b1
c1 d1

35 ı h24a2 b2
c2 d2

35/x D
a1
a2xCb2

c2xCd2
C b1

c1
a2xCb2

c2xCd2
C d1

D
.a1a2 C b1c2/x C .a1b2 C b1d2/

.c1a2 C c2d1/x C .c1b2 C d1d2/

and the last fraction is hA.x/ for A D A1A2.
The function h defined above h.x/ D axCb

cxCd
where ad �bc ¤ 0 is a bijection of F onto

F only when c D 0. If c ¤ 0 then h is a bijection of F X f�d
c
g onto F X fa

c
g.

How to get the homographies to become bijections ?

Answer : add one point, call it infinity and denote it1.
We shall still denote by h the bijection of F [ f1g onto itself by adding the two follo-

wing rules :

h.1/ D
a

c
and h.�

d

c
/ D1

And finally we have to define if c D 0 : h.1/ D1.

Remark. What we usually call the complex plane is in fact a complex projective line. We
have for instance the following nice theorem : The points corresponding to the complex
numbers ´1, ´2, ´3 and ´4 are cocyclical if and only if the cross-ratio of these four numbers
is real ("cocyclical" means on a same circle or a same line).

4.2 The projective line on a field F

Definition. A real projective line is a couple .L;B/ where L is a set and B is a set of
bijections of L onto R [ f1g such that for any two bijections c and c0 belonging to B the
composition of maps c0 ı c is a homography.

Definition. The cross-ratio of four numbers x1, x2, x3 and x4 denoted .x1; x2I x3; x4/ is
defined by

.x1; x2I x3; x4/ D
.x3 � x1/.x4 � x2/

.x4 � x1/.x3 � x2/
D

x3�x1

x4�x1

x3�x2

x4�x2

Theorem. Let A, B , C and D be four points on a projective line .L;B/. The cross-ratio of
the coordinates of these four points in that order is independent of the choice of the bijection
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c in B. Thus the cross-ratio of four points may be defined by

.A;BIC;D/ D .c.A/; c.B/I c.C /; c.D// D

��!
AC
��!
BD

��!
AD
��!
BC
D

�!
AC
��!
AD
��!
BC
��!
BD

and it is an intrinsic quantity.

Proof. Put x0
k
D

axkCb
cxkCd

for k 2 f1; 2; 3; 4g. And compute

.x01; x
0
2I x
0
3; x
0
4/ D

ax3Cb
c3Cd

�
ax1Cb
cx1Cd

ax4Cb
cx4Cd

�
ax2Cb
cx2Cd

�

ax4Cb
c4Cd

�
ax2Cb
cx2Cd

ax3Cb
cx3Cd

�
ax2Cb
cx2Cd

D .x1; x2I x3; x4/ �

Fundamental example of a real projective line.
Let E be real Euclidean plane and � a point in E . The set L of lines passing through �

is a projective line.
Attention. Each LINE in E which passes through O is a POINT belonging to the line L.

Here below we have 6 points of the line L :

�

Until now L is just a set. Where and how are the coordinates ? Cut the above picture by
any line� that does not go through�. That line� is an affine line. Let us chose two points
O and I . We have one bijection c1 W �! R such that c1.O/ D 0 and c1.I / D 1.

�

�
0

O I
�
1

�
x D c1.M/

M
�

Now we define the coordinates of the point of L in the following way

c.line �O/ D 0
c.line �I/ D 1
c.line �M/ D c1.M/ for M 2 �
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Now I hope you guess which line going through� will get the value1 (do not turn the
page before answering !).

�

�
0

O I
�
1

�
x D c1.M/

M
�

1

x 0

1

To end our construction we our going to use a theorem of basic plane geometry.

Theorem. The central projection of a line on an other one preserves the cross-ratios.
Thus if we take any other line �0 we would get a coordinate c01 such that c01 ı c

�1 is a
real homography.

Another aspect of the real projective line

The real projective line is a circle !

L
�
O

�
1

�
M

01

x

1 1�

�

�

Aspect of the complex projective line
Stereographic projection
Central projection
The complex projective line is called the Riemann Sphere !
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4.3 Homogeneous coordinates

Instead of using a coordinate x we shall use two elements of F , let’s call them X and T
and put

x D
X

T

We put X and T in a column-matrix
�
X

T

�
and say that

�
X

T

�
and

�
X 0

T 0

�
describe the same

point if they are colinear vectors in R2. The numbers X and T are called the homogeneous
coordinates of the point on the projective line.

With this "trick" we see that the homographic function hA may simply be written�
X 0

T 0

�
D A

�
X

T

�
But this is nice not only because we have transformed homographic functions into linear

function, but also because with this new formalisme, we can include easily the "point at
infinity". And furthermore in higher dimensions it helps to clarify the relations between all
the points at infinity.
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Chapitre 5

General definition of a geometry

https ://people.maths.ox.ac.uk/hitchin/hitchinnotes/Projective_geometry/Chapter_4_The_Klein_programme.pdf

§ 1. The general setting
§ 2. An example : the real planes

Nigel Hitchin (Savilian Professor of Geometry, University of
Oxford) writes :

Felix Klein prepared for his inaugural address in 1872 in Er-
langen a paper which gave a very general view on what geometry

should be regarded as. It was somewhat controversial at the time
and in fact he spoke on something different for his lecture, but the
point of view is still called the Erlanger Programm. Klein saw geo-
metry as :

the study of invariants under a group of transformations.
This throws the emphasis on the group rather than the space,

and was highly influential in a number of ways.

§ 1. The general setting

Set of points Set of points

Rn or RnC1 Rn or RnC1

�
M

�
M 0

�
x

�
x0

c c0 c�1

c0 ı c�1 W x 7! x0 D g.x/

Transformation

The mapping g belongs to a GROUP

Practically, the important thing is the formula hidden in g.

35
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n D 1

� x0 D x C b : Euclidean oriented line

� x0 D "x C b : Euclidean line

� x0 D ax C b, a ¤ 0 : "the line of Euclid" if F D R

� x0 D axCb
cxCd

, ad � bc ¤ 0 : the projective line

�

�
X 0

T 0

�
D

�
a b

c d

� �
X

T

�
,
�
a b

c d

�
invertible : still the projective line

n > 1

�

26664
x01
x02
:::

x0n

37775 D
26664
x1
x2
:::

xn

37775C
26664
b1
b2
:::

bn

37775 : group of translations

�

26664
x01
x02
:::

x0n

37775 D "
26664
x1
x2
:::

xn

37775C
26664
b1
b2
:::

bn

37775 : group of translations and central symmetries

�

26664
x01
x02
:::

x0n

37775 D A
26664
x1
x2
:::

xn

37775C
26664
b1
b2
:::

bn

37775
where AAT D ATA D I , detA D C1 :
The direct Euclidean isometry group, or
the special Euclidean group, whose ele-
ments are called Euclidean motions, dis-
placements or rigid motions.

�

26664
x01
x02
:::

x0n

37775 D A
26664
x1
x2
:::

xn

37775C
26664
b1
b2
:::

bn

37775

where AAT D ATA D I : The Eucli-
dean group E(n), also known as ISO(n)
or similar, is the symmetry group of n-
dimensional Euclidean space. Its elements
are the isometries associated with the Eu-
clidean distance, and are called Euclidean
isometries, Euclidean transformations or
Rigid transformations..

�

26664
x01
x02
:::

x0n

37775 D A
26664
x1
x2
:::

xn

37775C
26664
b1
b2
:::

bn

37775 where detA ¤ 0 : The affine group

�

2666664
X 01
X 02
:::

X 0n
T 0

3777775 D A
2666664
X1
X2
:::

Xn
T

3777775 where detA ¤ 0 : The projective group
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§ 2. An example : the real planes

I begin with some repetitions...

2.1 Permutations of the four points of a cross-ratio

In the following paragraph, I use the following notation : if A and B are two points of
projective line .L;B/ and if c is a coordinate belonging to B

AB D c.B/ � c.A/

Notice that with that notation AB can be negative and the length of the segment with end-
points A and B is

ˇ̌
AB

ˇ̌
.

Then the definition of the cross-ratio becomes

.A;BIC;D/ D
AC

AD

BD

BC
D
AC � BD

AD � BC

Let us call r the cross-ratio .A;BIC;D/

.A;BIC;D/ D r

If we exchange the couples .A;B/ and .C;D/ nothing is changed. Thus .C;DIA;B/ D r .
If we exchange A and B , we get .B;AIC;D/ D BC �AD

BD�AC
D

1
AC �BD
AD�BC

D
1
r

.

Using the relation above we get .D;C IA;B/ D .A;BID;C/ D 1
r

. Exchanging A and
B again, we get .B;AID;C/ D r . Thus

r D .A;BIC;D/ D .B;AID;C/ D .C;DIA;B/ D .D;C IB;A/

and

1
r
D .A;BID;C/ D .B;AIC;D/ D .D;C IA;B/ D .C;DIB;A/

Let’s compute

.A; C IB;D/ D
AB � CD

AD � CB
D
.AD CDB/.CB C BD/

AD � CB
D 1C

DB.CB C BD � AD/

AD � CB

D 1C
DB.CB C BD � AD/

AD � CB
D 1 � r

Making use of the two relations above, we get

1 � r D .A; C IB;D/ D .C;AID;B/ D .B;DIA;C / D .D;BIC;A/

and

1
1�r
D .A; C ID;B/ D .C;AIB;D/ D .D;BIA;C / D .B;DIC;A/
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Notice that 1 � 1
1�r
D

r
r�1

. Exchanging the letters in second and third position in the
preceding formula, we get

r
r�1
D .A;DIC;B/ D .D;AIB;C / D .C;BIA;D/ D .B; C ID;A/

The inverse of r
r�1

is 1 � 1
r

, thus

1 � 1
r
D .A;DIB;C / D .D;AIC;B/ D .C;BID;A/ D .B; C IA;D/

Question : Doing a permuation of the points A, B , C etD we get 6 values : r , 1
r

, 1� r ,
1
1�r

, r
r�1

and 1 � 1
r

. For which values of r do some of these values be equal ? There are
three families of answers :

1. If one of the values belongs to f0; 1;1g, then the 5 others also (each value is found 2
times)

2. If one of the values belongs to f�1; 1
2
; 2g, then the 5 others also (each value is found

2 times)

3. If one of the values belongs to f1Ci
p
3

2
; 1�i

p
3

2
g, then the 5 others also (each value is

found 3 times)

The first case happens when two of the four points are the same. The third case is
interesting for the complex projective line. We are left with the second case.

Definition. Let A, B , C and D be four points on a line. They are said to form a harmonic
range if .A;BIC;D/ D �1. In this case, we also say that D is the harmonic conjugate of
C relative to A and B .

Definition. Let � and �0 be two lines in a projective plane. Let S be a point of the plane
which does not belong to � neither to �0. The central projection of � on �0 with center S
is the map p W �! �0;M 7! M 0, where M 0 is the intersection point of the lines SM and
�0.

Theorem. Central projection of a line on another preserves cross-ratios. If the lines are
projective lines the central projections are bijection.

Corollary. Let � and �0 be two lines in a projective plane. Let S be a point of the plane
which does not belong to � neither to �0 and denote by p the central projection of � onto
�0. If c W �! R [ f1g is a coordinate on � then c ı p�1 is a coordinate on �0.
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2.2 How to construct a harmonic conjugate ?

The answer :

�
�
A

�
B

�
C

�S

Exercice 1. Check by computation that the drawing you have done has given the right point.

Exercice 2. Show that the method used above always gives the right answer.

Exercice 3. Given two lines which meet in a point K outside the sheet of paper and a point
A between the two lines. How to draw the line AK (just a segment of that line which is
inside the sheet) ?

** Exercice 4. You have a pen and a 5 cm long ruler. Given two pointsA andB at a distance
about 15 cm, how to draw the line AB ?

2.3 Homogeneous coordinates

Put x D X
T

and y D Y
T

. The equation of a line becomes

aX C bY C cT D 0

instead of ax C by C c D 0. Then we can write the equation of a line in the matrix form

�
a b c

�24XY
T

35 D 0
which gives you immidiately the duality between points and lines...

Exercise Show the converse of the theorem of Desargues.

2.4 Pappus’s theorem

Theorem. Let � and �0 be two lines, let A, B and C be three points belonging to � and
A0, B 0 and C 0 be three points belonging to �0. Put P D BC 0 \B 0C , Q D CA0 \C 0A and
R D AB 0 \ A0B . The points P , Q and R are collinear.

Proof. Choose two points and decide that they are on the line at infinity. Redraw the picture
and use parallel projection. �


