
Analysis IV
Spring 2011
Exercises 2 / Answers

(1) Let `1 be the set of those infinite sequences x = {x1, x2, . . .}
with xn ∈ C which satisfy the condition

∞∑
n=1

|xn| < ∞.

Show that `1 equipped with addition x+y = {x1+y1, x2+y2, . . .}
and scalar multiplication αx = {αx1, αx2, . . .}, α ∈ C, is a
vector space over C.

* * *
The same thing as last week: Let x, y and z be in `1, where

x = {x1, x2, . . .} and y and z likewise. Let α, β ∈ C.
(a) Addition is commutative, since

x + y = {x1 + y1, x2 + y2, . . .}
={y1 + x1, y2 + x2, . . .} = y + x,

and it is associative1, since

x + (y + z) = x + {y1 + z1, y2 + z2, . . .}
={x1 + y1 + z1, x2 + y2 + z2, . . .}
={x1 + y1, x2 + y2, . . .}+ z = (x + y) + z.

(b) There is a unique zero element, 0 = {0, 0, . . .}, since for
any x ∈ `1,

x + 0 = {x1 + 0, x2 + 0, . . .} = {x1, x2, . . .} = x.

(c) For each x ∈ `1 there is an inverse element −x, defined by

−x = {−x1,−x2, . . .},

since

x + (−x) = {x1 − x1, x2 − x2, . . .} = {0, 0, . . .} = 0.

1A random bit of motivation. Many operations are associative, but not all. For
the normal multiplication of real numbers we have a(bc) = (ab)c, but for their
division we most certainly don’t have a/(b/c) = (a/b)/c.
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Also, this −x is in the space `1, since
∞∑

n=1

| − xn| =
∞∑

n=1

|xn| < ∞.

(d) Clearly 1 · x = x, since

1 · x = {1 · x1, 1 · x2, . . .}.
Likewise, α(βx) = (αβ)x.

(e) Clearly

α(x + y) = α({x1 + y1, x2 + y2, . . .})
={α(x1 + y1), α(x2 + y2), . . .}

and

αx + αy = {αx1, αx2, . . .}+ {αy1, αy2, . . .},
which are the same. Likewise with (α + β)x = αx + βx.

(2) Prove Theorem 1.13 (b) and (c).
* * *

Theorem 1.13 Suppose that {xn} is a convergent sequence
(with a limit x) in a metric space (M, d). Then:
(b) any subsequence of {xn} also converges to x,
(c) {xn} is a Cauchy sequence.

Proof: (b) Let ε > 0. Let {xnj
} ⊂ {xn}. Because {xn} converges

to x, there is a Nε ∈ N such that d(xn, x) < ε for all n ≥ Nε.
Because {xnj

} is a subsequence of xn, there is a jN ∈ N such
that nj > N for all j > jN , and, consequently, d(xnj

, x) < ε.
(c) Let ε > 0. Since {xn} converges to x, there is a N ∈ N so

that
d(xn, x) < ε/2

for all n ≥ N . Then, for all n,m ≥ N , we have

d(xn, xm) ≤ d(xn, x) + d(x, xm) ≤ ε/2 + ε/2 = ε.

(3) Show that the function d : `1 × `1 → R,

d({xn}, {yn}) =
∞∑

n=1

|xn − yn|

is a metric. (When we are talking of `1 or some other sequences,
the following four notations all mean the same, and are used
somewhat randomly: x, {xn}, {xn}∞n=1, {x1, x2, . . .}.)

* * *
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A function d is a metric, if the following four properties hold:
(a) d(x, y) ≥ 0
(b) d(x, y) = 0 ⇔ x = y
(c) d(x, y) = d(y, x)
(d) d(x, z) ≤ d(x, y) + d(y, z) (the triangle inequality)
For our function d, the properties are rather obvious —
(a) d({xn}, {yn}) =

∑∞
n=1 |xn − yn|, which as a sum of non-

negative terms is also non-negative.
(b) If d({xn}, {yn}) =

∑∞
n=1 |xn−yn| = 0, then |xn−yn| = 0 for

every n, because the terms of the sum are all non-negative.
This is possible only when xn = yn for every n, that is,
when {xn} = {yn}. The converse is obvious.

(c) d({xn}, {yn}) =
∑∞

n=1 |xn−yn| =
∑∞

n=1 |yn−xn| = d({yn}, {xn})
by the same property of the common absolute value.

(d) For any n, we have

|xn − zn| = |xn − yn + yn − zn|
≤|xn − yn|+ |yn − zn|.

The triangle inequality follows by induction.

(4) Let {xn}∞n=1 be a Cauchy sequence in the metric space (M, d).
Prove that there exists R > 0 such that {xn}∞n=1 ⊂ Bd(x1, R).

* * *
Since {xn} is a Cauchy sequence, there is a N1 ∈ N such that

d(xn, xm) < 1 for all m,n ≥ N1, and especially

d(xN1 , xm) < 1

for all m ≥ N1. We now set M1 := d(x1, xN1)+1, and note that
by the triangle inequality, for all n ≥ N1, we have

d(x1, xn) ≤ d(x1, xN1) + d(xN1 , xn) < d(x1, xN1) + 1 = M1.

Since there are N1 − 1 points in the sequence before xN1 , we
have

M2 := max
1≤n≤N1−1

d(x1, xn) < ∞.

Thus, for all points xn, the following holds:

d(x1, xn) < max(M1, M2).

This is the same as saying that all points xn are in a x1-centric
ball of radius R := max(M1, M2), or {xn}∞n=1 ⊂ Bd(x1, R).
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(5) Let {an} be a Cauchy sequence in the metric space (M, d).
Prove: If the sequence {an} has a subsequence which converges
to a ∈ M , then {an} converges to a.

* * *
Let {anj

} be the convergent subsequence of {an}, and let
ε > 0. We will now show that there is a Nε ∈ N such that

d(an, a) < ε

for all n ≥ Nε.
Since {an} is a Cauchy sequence, there is a N2 ∈ N such that

d(an, am) < ε/2 when n, m ≥ N2.
Since {anj

} converges to a, there is a N1 ∈ N such that aN1 ∈
{anj

}, d(aN1 , a) < ε/2 and N1 ≥ N2.
Thus, for any n > N =: max(N1, N2), we have by the triangle

inequality that
d(an, a) ≤ d(an, aN1) + a(aN1 , a) ≤ ε/2 + ε/2 = ε.


