Analysis IV Spring 2011 Exercises 3

(1) Let (E, d) be a metric space and let $x \in E, A \subset E$. Define

$$d(x,A) = \inf_{y \in A} d(x,y).$$

Show that $\{x \mid d(x, A) = 0\} = \overline{A}$.

- (2) Let X be an infinite set. Let \mathbb{T} consist of \emptyset , X and all sets G such that $X \setminus G$ is a finite set. Prove that (X, \mathbb{T}) is a topological space.
- (3) Let $A \subset \mathbb{R}^n$ be a set whose every point has a neighborhood which includes only a countable number of points of A. Prove that A is countable. (Hint: Lindelöf's covering theorem)
- (4) Prove that a collection of disjoint open sets in \mathbb{R}^n is either finite or countable.
- (5) Let f be a continuous real function on a metric space X. Let $\mathbb{Z}(f)$ be the set of all $p \in X$ for which f(p) = 0. Prove that $\mathbb{Z}(f)$ is closed.