
Analysis IV
Spring 2011
Exercises 3 / Answers

(1) Let (E, d) be a metric space and let x ∈ E, A ⊂ E. Define

d(x, A) = inf
y∈A

d(x, y).

Show that {x | d(x, A) = 0} = A.
* * *

The closure (sulkeuma) of A is denoted by A and is defined as
the smallest closed set which contains A. We know that A ⊂ A.

”⊂” : Let x ∈ E so that d(x, A) = 0 and x /∈ A. Because A

is closed, E \ A is open, and x ∈ E \ A. Thus there is a radius
r > 0 so that x ∈ B(x, r) ⊂ E \ A. This means d(x, A) ≥ r,
which is a contradiction. Hence {x | d(x, A) = 0} ⊂ A.

”⊃” : Let x ∈ E so that x ∈ A and x /∈ {x | d(x, A) = 0}.
Then d(x, A) = 2r > 0 for some r > 0. Since B(x, r) is open,
E \B(x, r) is closed. Since for each y ∈ A we have

d(x, y) ≥ d(x, A) = 2r > r,

we have A ⊂ E \ B(x, r). Because E \ B(x, r) is a closed set
that contains A, and it does not contain x, and since A is the
smallest closed set that contains A, we have x /∈ A. This is a
contradiction; hence {x | d(x, A) = 0} ⊃ A.

(2) Let X be an infinite set. Let T consist of ∅, X and all sets G
such that X \G is a finite set. Prove that (X, T) is a topological
space.

* * *
We know that (X, T) is a topological space if:
(a) ∅ ∈ T and X ∈ T. (This is okay.)
(b) the union of sets stays in T.

Let Gi ∈ T, i = 1, 2, . . .. Then X \Gi is finite for every Gi,
and thus

X \

(⋃
i

Gi

)
=
⋂
i

(X \Gi)

is finite too, being an intersection of finite sets.
(c) the intersection of a pair of sets stays in T.

If X \G1 and X \G2 are finite for some G1, G2 ∈ T, then

X \ (G1 ∩G2) = (X \G1) ∪ (X \G2)

is, as the union of two finite sets, also finite.
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(3) Let A ⊂ Rn be a set whose every point has a neighborhood
which includes only a countable number of points of A. Prove
that A is countable. (Hint: Lindelöf’s covering theorem)

* * *
Lindelöf’s covering theorem : Every
open covering of a set A ⊂ Rn has a coun-
table subcovering.

We have for each x ∈ A a neighborhood Bx so that Bx contains
only a countable number of points of A. Let T be the set of
all sets Bx. Then T is a covering of A. As neighborhoods are
open sets, T is an open covering of A, and by Lindelöf it has
a countable subcovering. Let the sets of this subcovering be Ti,
i = 1, 2, 3, . . .. Since each set Ti has only a countable number of
points of A, we can denote those points by ti,j, j = 1, 2, 3, . . ..
Since

A =
⋃

i,j ∈ N

{ti,j},

A is countable.

(4) Prove that a collection of disjoint open sets in Rn is either finite
or countable.

* * *
Let G be a (not necessarily countable) collection of disjoint

open sets Gi ⊂ Rn. Then G is an open covering of ∪iGi, and
by Lindelöf’s covering theorem G has a countable subcovering.
But since Gi are disjoint, the only possible ”subcovering” is G
itself, so G is (at most) countable.

(5) Let f be a continuous real function on a metric space X. Let
Z(f) be the set of all p ∈ X for which f(p) = 0. Prove that
Z(f) is closed.

* * *
By definition, Z(f) is closed if its complement X \ Z(f) is

open. Let p ∈ X\Z(f). Then f(p) 6= 0. Because f is continuous,
there is a δ > 0 so that

|f(p)− f(y)| < f(p)/2 (1)

when d(y, p) < δ. From (1) we get f(y) 6= 0 if d(y, p) < δ. Since
any p ∈ X \Z(f) thus has an environment Bd(p, δ) ⊂ X \Z(f),
we have that X \ Z(f) is open, and thus Z(f) is closed.


