(1) Let (E, d) be a metric space and let $x \in E$, $A \subset E$. Define

$$
d(x, A) = \inf_{y \in A} d(x, y).
$$

Show that $\{x \mid d(x, A) = 0\} = A$. * * *

The closure (sulkeuma) of A is denoted by \overline{A} and is defined as the smallest closed set which contains A. We know that $A \subset \overline{A}$.

 $\lfloor \n\text{``C"} \rfloor$: Let $x \in E$ so that $d(x, A) = 0$ and $x \notin \overline{A}$. Because \overline{A} is closed, $E \setminus \overline{A}$ is open, and $x \in E \setminus \overline{A}$. Thus there is a radius $r > 0$ so that $x \in B(x,r) \subset E \setminus \overline{A}$. This means $d(x,A) \geq r$, which is a contradiction. Hence $\{x \mid d(x, A) = 0\} \subset \overline{A}$.

 \overline{C} " \supset " : Let $x \in E$ so that $x \in \overline{A}$ and $x \notin \{x \mid d(x, A) = 0\}.$ Then $d(x, A) = 2r > 0$ for some $r > 0$. Since $B(x, r)$ is open, $E \setminus B(x,r)$ is closed. Since for each $y \in A$ we have

 $d(x, y) \geq d(x, A) = 2r > r,$

we have $A \subset E \setminus B(x,r)$. Because $E \setminus B(x,r)$ is a closed set that contains A, and it does not contain x, and since \overline{A} is the smallest closed set that contains A, we have $x \notin \overline{A}$. This is a contradiction; hence $\{x \mid d(x, A) = 0\} \supset \overline{A}$.

(2) Let X be an infinite set. Let $\mathbb T$ consist of \emptyset , X and all sets G such that $X \setminus G$ is a finite set. Prove that (X, \mathbb{T}) is a topological space.

* * *

We know that (X, \mathbb{T}) is a topological space if:

- (a) $\emptyset \in \mathbb{T}$ and $X \in \mathbb{T}$. (This is okay.)
- (b) the union of sets stays in \mathbb{T} .

Let $G_i \in \mathbb{T}$, $i = 1, 2, \ldots$ Then $X \setminus G_i$ is finite for every G_i , and thus

$$
X\setminus \left(\bigcup_i G_i\right) = \bigcap_i \left(X\setminus G_i\right)
$$

is finite too, being an intersection of finite sets.

(c) the intersection of a pair of sets stays in \mathbb{T} . If $X \setminus G_1$ and $X \setminus G_2$ are finite for some $G_1, G_2 \in \mathbb{T}$, then $X \setminus (G_1 \cap G_2) = (X \setminus G_1) \cup (X \setminus G_2)$

is, as the union of two finite sets, also finite.

(3) Let $A \subset \mathbb{R}^n$ be a set whose every point has a neighborhood which includes only a countable number of points of A. Prove that A is countable. (Hint: Lindelöf's covering theorem)

* * *

We have for each $x \in A$ a neighborhood B_x so that B_x contains only a countable number of points of A. Let T be the set of all sets B_x . Then T is a covering of A. As neighborhoods are open sets, T is an open covering of A , and by Lindelöf it has a countable subcovering. Let the sets of this subcovering be T_i , $i = 1, 2, 3, \ldots$ Since each set T_i has only a countable number of points of A, we can denote those points by $t_{i,j}$, $j = 1, 2, 3, \ldots$ Since

$$
A = \bigcup_{i,j \in \mathbb{N}} \{t_{i,j}\},\
$$

A is countable.

2

(4) Prove that a collection of disjoint open sets in \mathbb{R}^n is either finite or countable.

Let G be a (not necessarily countable) collection of disjoint open sets $G_i \subset \mathbb{R}^n$. Then G is an open covering of $\cup_i G_i$, and by Lindelöf's covering theorem G has a countable subcovering. But since G_i are disjoint, the only possible "subcovering" is G itself, so G is (at most) countable.

* * *

(5) Let f be a continuous real function on a metric space X. Let $\mathbb{Z}(f)$ be the set of all $p \in X$ for which $f(p) = 0$. Prove that $\mathbb{Z}(f)$ is closed.

* * *

By definition, $\mathbb{Z}(f)$ is closed if its complement $X \setminus \mathbb{Z}(f)$ is open. Let $p \in X \setminus \mathbb{Z}(f)$. Then $f(p) \neq 0$. Because f is continuous, there is a $\delta > 0$ so that

$$
|f(p) - f(y)| < f(p)/2 \tag{1}
$$

when $d(y, p) < \delta$. From (1) we get $f(y) \neq 0$ if $d(y, p) < \delta$. Since any $p \in X \setminus \mathbb{Z}(f)$ thus has an environment $B_d(p, \delta) \subset X \setminus \mathbb{Z}(f)$, we have that $X \setminus \mathbb{Z}(f)$ is open, and thus $\mathbb{Z}(f)$ is closed.