Analysis IV Spring 2011 Exercises 4

- (1) Let 0 < a < 1, and assume it is known that the functions $f_n(x) = nx(1-x)^n$ converge to f(x) = 0 as $n \to \infty$. Is the convergence uniform on [a, 1]? What about [0, 1]?
- (2) Prove: If $m^*(B) = 0$, then $m^*(A \cup B) = m^*(A)$.
- (3) Prove Corollary 2.4: If $A \subset \mathbb{R}^n$ is countable, then $m^*(A) = 0$.
- (4) Prove Theorem 2.6: Outer measure m^* is translation invariant, that is, if $a \in \mathbb{R}$, then $m^*(A + a) = m^*(A)$ for all $A \subset \mathbb{R}$.
- (5) Let A be the set of rational numbers between 0 and 1, and let $\{I_n\}$ be a finite collection of open intervals covering A. Prove that

$$\sum_{n} l(I_n) \ge 1.$$