Analysis IV
Spring 2011
Exercises 4 / Answers

(1) Let 0 < a < 1, and assume it is known that the functions
fn(x) = nx(l — x)" converge to f(z) = 0 as n — oo. Is the
convergence uniform on [a, 1]7 What about [0, 1]7
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We say that f,, converges uniformly to f if
sup{|fu(z) — f(x)| | xr € M} - 0 asn — oc.

Here we have the cases M = [a,1], 0 < a < 1, and M = [0,1
to consider. For both, we begin with writing out |f,(z) — f(x)
and finding its extremal values (ddriarvot).

First,

]
|

() = f(2)] = na(l — )" -0,

and since this is a continuous function, we know it gets its
largest values either at the zeros of its derivative (derivaatan
nollakohdissa) or at the endpoints of M. The derivative is

D(nz(l—z)")=n(1—2)" — an(l _ x)n—l’

and setting n(1 — z)" — n?z(1 — x)"~! = 0 we get, after some
bering interesting calculation, x = 1/(1 + n).

a) First, let M =[a,1], 0 <a < 1.

The possible points for the extremal values of |f,(z) — f(x)|
are t = 1/(14+n), x = a and = = 1. At these points we have

(@) = F(@)] = na(l )"
|fn(1) = f(1)]=0 and

1 1 n n+1
f"(l—l—n)_f(l—l—n)’:(n—kl) '

Now a is fixed, so as n — oo, we have na(l —a)” — 0. Also
because a is fixed, with large enough values of n we will have
1/(1 +n) < a, so the third extremal point will not be on M.
This means the convergence is uniform.

b) Second, let M = [0, 1].




This is the same case, except the third extremal point, z =
1/(n+ 1), will always be on M. Because

n+1
hm( " ) =e >0,
n—oo \ 1+ 1
we have

sup(Ifu(a) = @) [ € 0y = (. )

n+1

and
sup{|fu(2) = f(2)] |z € M} — e #0 asn — oo,

so the convergence is not uniform.
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Footnote: The tedious calculation bits.
1) Solving n(1 — x)" — n?z(1 — z)"~! = 0 for z. We take the
common factor n(1 — z)"~!, and get

n(l—z)" 11— (1+n)z)=0.

This holds when either (1 — )" ' = 0or 1 — (1 +n)z = 0.
The first gives x = 1, which is not interesting. The second gives
x=1/(1+n).

The first zero has a multiplicity n — 1 (on (n — 1)-kertainen
nollakohta) and the second is of multiplicity 1 (on yksinkertai-
nen nollakohta); this sums to n zeros of a n:th-degree polyno-
mial, so we can be sure we've gotten all zeroes there are.

2) When a is fixed, na(1 — a)® — 0 as n — oo. To see this,
notice that as 0 < @ < 1, we have 0 < (1 —a) < 1, and so
(1 —a)® — 0. That nb” — 0 when n — oo for all b such that
|b| < 1 is known. Also, remembered, possibly.

3) It is well known that limj_.. (1 + %)k = e”. Since 15 =

-1
1+ =5, we have

n+1 k
n —1
li = li 14— =&
im () = (1)

Prove: If m*(B) = 0, then m*(AU B) = m*(A).
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By subadditivity
m* (AU B) <m*(A) + m*(B) = m"(A).

Since AU B D A, by monotonicity m*(A U B) > m*(A). These
combined give the result.



(3) Prove Corollary 2.4: If A C R" is countable, then m*(A) = 0.
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Since A is countable, we can write

A={ar,a3,...} = | J{a:}.
i=1
Since m* is subadditive, we have

0<m*(A) < Zm*({ai}) = Zo = 0.

(4) Prove Theorem 2.6: Outer measure m* is translation invariant,
that is, if @ € R, then m*(A+ a) = m*(A) for all A C R.

X %k %k

In the lectures we defined the translation of a set £ with
a € R as
a+E={a+z|zeFE}
We’ve defined the outer measure as

m*(A) = inf {Z [(I,) | I,’s are open

intervals so thatA C U In} )

If I,, is such a sequence of open intervals that A C U, 1, then
A+ a C U,I, + a. This means any intervals that "work” for the
definition of m*(A) have a-shifted intervals that "work” for the
definition of m*(A+ a). Because the infimum which determines
m*(A+a) has at least elements as long as all those elements that
determine the infimum of m*(A), we know that m*(A4 + a) <
m*(A).

But if I, is such a sequence of intervals so that A+a C U, 1,
then A C U,I,, — a. Thus m*(A + a) > m*(A).



(5) Let A be the set of rational numbers between 0 and 1, and let
{I,} be a finite collection of open intervals covering A. Prove

that
> Ul =1
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Either [0, 1] C U, I, or not. If yes, then
1= 1([0,1]) = m*([0,1]) < m*(Unly)

< m (L) = Y1),

and we are done. If not, then there are points z € [0, 1] so that
x ¢ U,I,. Because these points x are not covered by any I,
they are not rational points. Because we know there is a rational
point between any two irrational points, we know these points
x are all isolated by the intervals [,,. The only way an isolated
irrational point can be not in the union of finite [, is if it is a
shared endpoint for two I,,: say I; =|a, z[ and I; =]z, b|. Because
there is only a finite number of I,,, they have a finite number of
endpoints, so there is only a finite number of points x. As they
are a finite set they are less than countable, their length is zero
(see Corollary 2.4); and so by Problem (2) above we have

m*([0,1]) = m*((Upln) N[0, 1]) + m*(U{z})
(L) N[01]).
Now
1 =m*((Upl,) N[0, 1]) < m*(U,1,)

<> mt(I) =) UIL).

n



