
Analysis IV
Spring 2011
Exercises 4 / Answers

(1) Let 0 < a < 1, and assume it is known that the functions
fn(x) = nx(1 − x)n converge to f(x) = 0 as n → ∞. Is the
convergence uniform on [a, 1]? What about [0, 1]?

* * *
We say that fn converges uniformly to f if

sup{|fn(x)− f(x)| | x ∈ M} → 0 as n →∞.

Here we have the cases M = [a, 1], 0 < a < 1, and M = [0, 1]
to consider. For both, we begin with writing out |fn(x)− f(x)|
and finding its extremal values (ääriarvot).

First,

|fn(x)− f(x)| = nx(1− x)n − 0,

and since this is a continuous function, we know it gets its
largest values either at the zeros of its derivative (derivaatan
nollakohdissa) or at the endpoints of M . The derivative is

D(nx(1− x)n) = n(1− x)n − n2x(1− x)n−1,

and setting n(1 − x)n − n2x(1 − x)n−1 = 0 we get, after some
boring interesting calculation, x = 1/(1 + n).

a) First, let M = [a, 1], 0 < a < 1.
The possible points for the extremal values of |fn(x)− f(x)|

are x = 1/(1 + n), x = a and x = 1. At these points we have

|fn(a)− f(a)| = na(1− a)n,

|fn(1)− f(1)| = 0 and∣∣∣∣fn

(
1

1 + n

)
− f

(
1

1 + n

)∣∣∣∣ =
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n
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)n+1

.

Now a is fixed, so as n → ∞, we have na(1 − a)n → 0. Also
because a is fixed, with large enough values of n we will have
1/(1 + n) < a, so the third extremal point will not be on M .
This means the convergence is uniform.

b) Second, let M = [0, 1].
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This is the same case, except the third extremal point, x =
1/(n + 1), will always be on M . Because

lim
n→∞

(
n

n + 1

)n+1

= e−1 > 0,

we have

sup{|fn(x)− f(x)| | x ∈ M} =

(
n

n + 1

)n+1

and

sup{|fn(x)− f(x)| | x ∈ M} → e−1 6= 0 as n →∞,

so the convergence is not uniform.
* * *

Footnote: The tedious calculation bits.
1) Solving n(1− x)n − n2x(1− x)n−1 = 0 for x. We take the

common factor n(1− x)n−1, and get

n(1− x)n−1(1− (1 + n)x) = 0.

This holds when either (1 − x)n−1 = 0 or 1 − (1 + n)x = 0.
The first gives x = 1, which is not interesting. The second gives
x = 1/(1 + n).

The first zero has a multiplicity n− 1 (on (n− 1)-kertainen
nollakohta) and the second is of multiplicity 1 (on yksinkertai-
nen nollakohta); this sums to n zeros of a n:th-degree polyno-
mial, so we can be sure we’ve gotten all zeroes there are.

2) When a is fixed, na(1 − a)n → 0 as n → ∞. To see this,
notice that as 0 < a < 1, we have 0 < (1 − a) < 1, and so
(1 − a)n → 0. That nbn → 0 when n → ∞ for all b such that
|b| < 1 is known. Also, remembered, possibly.

3) It is well known that limk→∞
(
1 + x

k

)k
= ex. Since n

n+1
=

1 + −1
n+1

, we have

lim
n→∞

(
n

n + 1

)n+1

= lim
k→∞

(
1 +

−1

k

)k

= e−1.

(2) Prove: If m∗(B) = 0, then m∗(A ∪B) = m∗(A).
* * *

By subadditivity

m∗(A ∪B) ≤ m∗(A) + m∗(B) = m∗(A).

Since A∪B ⊃ A, by monotonicity m∗(A∪B) ≥ m∗(A). These
combined give the result.
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(3) Prove Corollary 2.4: If A ⊂ Rn is countable, then m∗(A) = 0.
* * *

Since A is countable, we can write

A = {a1, a2, . . .} =
∞⋃
i=1

{ai}.

Since m∗ is subadditive, we have

0 ≤ m∗(A) ≤
∞∑
i=1

m∗({ai}) =
∞∑
i=1

0 = 0.

(4) Prove Theorem 2.6: Outer measure m∗ is translation invariant,
that is, if a ∈ R, then m∗(A + a) = m∗(A) for all A ⊂ R.

* * *
In the lectures we defined the translation of a set E with

a ∈ R as
a + E = {a + x | x ∈ E}.

We’ve defined the outer measure as

m∗(A) = inf

{∑
n

l(In) | In’s are open

intervals so thatA ⊂
⋃
n

In

}
.

If In is such a sequence of open intervals that A ⊂ ∪nIn, then
A + a ⊂ ∪nIn + a. This means any intervals that ”work” for the
definition of m∗(A) have a-shifted intervals that ”work” for the
definition of m∗(A+a). Because the infimum which determines
m∗(A+a) has at least elements as long as all those elements that
determine the infimum of m∗(A), we know that m∗(A + a) ≤
m∗(A).

But if In is such a sequence of intervals so that A+a ⊂ ∪nIn,
then A ⊂ ∪nIn − a. Thus m∗(A + a) ≥ m∗(A).
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(5) Let A be the set of rational numbers between 0 and 1, and let
{In} be a finite collection of open intervals covering A. Prove
that ∑

n

l(In) ≥ 1.

* * *
Either [0, 1] ⊂ ∪nIn or not. If yes, then

1 = l([0, 1]) = m∗([0, 1]) ≤ m∗(∪nIn)

≤
∑

n

m∗(In) =
∑

n

l(In),

and we are done. If not, then there are points x ∈ [0, 1] so that
x /∈ ∪nIn. Because these points x are not covered by any In,
they are not rational points. Because we know there is a rational
point between any two irrational points, we know these points
x are all isolated by the intervals In. The only way an isolated
irrational point can be not in the union of finite In is if it is a
shared endpoint for two In: say Ii =]a, x[ and Ij =]x, b[. Because
there is only a finite number of In, they have a finite number of
endpoints, so there is only a finite number of points x. As they
are a finite set they are less than countable, their length is zero
(see Corollary 2.4); and so by Problem (2) above we have

m∗([0, 1]) = m∗((∪nIn) ∩ [0, 1]) + m∗(∪{x})︸ ︷︷ ︸
=0

= m∗((∪nIn) ∩ [0, 1]).

Now
1 = m∗((∪nIn) ∩ [0, 1]) ≤ m∗(∪nIn)

≤
∑

n

m∗(In) =
∑

n

l(In).


