Analysis IV Spring 2011 Exercises 5 / Answer

(1) Let Ω be a arbitrary set. Let f be a function from all subsets of Ω to \mathbb{R} , defined as

$$f(A) = \begin{cases} 0 & \text{if } A = \emptyset, \text{ and} \\ 1 & \text{otherwise.} \end{cases}$$

Show that f is monotone and subadditive, that is,

- a) if $A \subset B \subset \Omega$ then $f(A) \leq f(B)$, and
- b) for any $A_i \subset \Omega$ it holds that $f(\bigcup_i A_i) \leq \sum_i f(A_i)$.

Monotonicity: If $A \subset B$ then $f(A) \leq f(B)$.

- If $B = \emptyset$ then $A = \emptyset$ and f(A) = 0 = f(B).
- If $B \neq \emptyset$ then f(B) = 1, and $f(A) \leq 1 = f(B)$ for all A.
- **Subadditivity**: For any A_i it holds that $f(\bigcup_i A_i) \leq \sum_i f(A_i)$.
 - If $\bigcup_i A_i = \emptyset$, then $A_i = \emptyset$ for each *i*. As $0 \le 0$, the condition holds.
 - If $\bigcup_i A_i \neq \emptyset$, the $A_i \neq \emptyset$ for at least one *i*, and so $f(\bigcup_i A_i) = 1 \leq \sum_i f(A_i)$.

If this course was about more general measure theory and not just the measure theory of \mathbb{R} , we would define the general outer measure to be any function from sets to real numbers that was monotone, subadditive and mapped the empty set to zero — that is, the function f of this problem is a general outer measure.

(2) Let f be a function, and let us define f⁺(x) = max{0, f(x)} and f⁻(x) = max{0, -f(x)}. Show that
a) f⁺(x) - f⁻(x) = f(x),
b) f⁺(x) + f⁻(x) = |f(x)| and
c) ¹/₂(|f| + f) = f⁺.

* * *

Simple calculation:

$$f^{+}(x) - f^{-}(x) = \begin{cases} f(x) - 0 & \text{if } f(x) \ge 0\\ 0 - (-f(x)) & \text{if } f(x) < 0 \end{cases} = f(x).$$

Also,

$$f^{+}(x) + f^{-}(x) = \begin{cases} f(x) + 0 & \text{if } f(x) \ge 0\\ 0 + (-f(x)) & \text{if } f(x) < 0 \end{cases} = |f(x)|.$$

By adding the previous two results, we get

$$2f^{+}(x) - f^{-}(x) + f^{-}(x) = f(x) + |f(x)|,$$

which gives the third once we divide by two.

(3) Let A be a non-measurable set. Let

$$f(x) = \begin{cases} 1 \text{ if } x \in A\\ -1 \text{ if } x \notin A. \end{cases}$$

Is f measurable? How about |f|?

The function f is measurable if $\{x \mid f(x) > \alpha\}$ is a measurable set for all $\alpha \in \mathbb{R}$. We choose $\alpha = 0$. Then

* * *

$$\{x \mid f(x) > 0\} = A_{i}$$

and as this is not a measurable set, f is not a measurable function.

The absolute value of f is define as

$$f(x) = \begin{cases} 1 \text{ if } x \in A \\ |-1| \text{ if } x \notin A \end{cases} = 1.$$

and as $\{x \mid |f(x)| > \alpha\}$ is, depending on the value of α , always either \emptyset or \mathbb{R} , which both are measurable sets, we know |f| is a measurable function.

(4) In the lectures, we asserted that

$$\{x \in E \mid f(x) \ge \alpha\} = \bigcap_{i=1}^{\infty} \{x \in E \mid f(x) > \alpha - 1/n\}.$$

Prove it.

* * *

This is the easiest to show by showing both sides are a subset of the other.

"⊂" Let $x \in E$ belong to the left-hand side set, that is, let $f(x) \ge \alpha$. Let $n \in \mathbb{N}$ be arbitrary (*mielivaltainen*). Then

$$f(x) \ge \alpha > \alpha - 1/n.$$

 $\mathbf{2}$

Thus $x \in \{x \in E \mid f(x) > \alpha - 1/n\}$ for every *n*, and so *x* is also in their intersection.

"⊃" Let $x \in E$ belong to the right-hand side set, that is, let $f(x) > \alpha - 1/n$ for each $n \in \mathbb{N}$. Does this mean that $f(x) \ge \alpha$? Let us assume for absolute clarity's sake (*rautalangasta vään-tääksemme*) that $f(x) = \alpha - h$ instead, for some h > 0. In that case we can still choose n so that n > 1/h and get

$$\alpha - 1/n > \alpha - h,$$

which is a contradiction. Thus $f(x) \ge \alpha$, and x is in the left-hand side set.

Because the left-hand side and the right-hand side sets are subsets of each other, they are exactly the same set.

(The proof of

$$\{x \in E \mid f(x) \le \alpha\} = \bigcap_{n=1}^{\infty} \{x \in E \mid f(x) < \alpha + 1/n\}$$

is very similar.)

(5) In the lectures, we asserted that

$$\{x \in E \mid (f+g)(x) < \alpha\} = \bigcup_{r \in \mathbb{Q}} \{x \in E \mid f(x) < r\} \cap \{x \in E \mid \alpha - g(x) > r\}$$

Prove it.

This is done the same way as the previous exercise.

" \subset " Let $x \in E$ so that $(f + g)(x) = f(x) + g(x) < \alpha$. Then $f(x) < \alpha - g(x)$. Now x is in the right-hand side set if there exists a rational number r so that f(x) < r and $r < \alpha - g(x)$. As $f(x) \neq \alpha - g(x)$ they values f(x) and $\alpha - g(x)$ are distinct real numbers, and we know we can always find some rational number r between them.

" \supset " Let $x \in E$ so that for some rational number r the following holds: f(x) < r and $r < \alpha - g(x)$. Then clearly $f(x) < \alpha - g(x)$, or $f(x) + g(x) < \alpha$, so x is in the left-hand side set.