Analysis IV Spring 2011 Exercises 6 / Answers

(1) Show: If E_1 and E_2 are measurable, $E_1 \cup E_2$ is measurable. *Hint.* If E_2 is measurable, the condition of Definition 2.7 holds for $A \cap (\mathbb{R} \setminus E_1)$.

* * *

We know that a set $E \subset \mathbb{R}$ is said to measurable, if for every other set $A \subset \mathbb{R}$ the following holds:¹

$$
m^*(A) = m^*(A \cap E) + m^*(A \setminus E).
$$

Because we want to show that $E_1 \cup E_2$ is measurable, we want to show that

$$
m^*(A) = m^*(A \cap (E_1 \cup E_2)) + m^*(A \setminus (E_1 \cup E_2)).
$$

for all $A \subset \mathbb{R}$. As always, we know " \leq " holds (subadditivity), so we only have to show " \geq ".

First, since E_2 is measurable, we have for the set $A \cap (\mathbb{R} \setminus E_1)$, where $A \subset \mathbb{R}$, the following:

$$
m^*(A \cap (\mathbb{R} \setminus E_1))
$$

=
$$
m^*(A \cap (\mathbb{R} \setminus E_1) \cap E_2)
$$

+
$$
m^*(\underbrace{(A \cap (\mathbb{R} \setminus E_1)) \setminus E_2}_{=A \cap (\mathbb{R} \setminus E_1) \cap (\mathbb{R} \setminus E_2)}).
$$

Second, since $A \cap (E_1 \cup E_2) = (A \cap E_1) \cup (A \cap E_2 \cap (\mathbb{R} \setminus E_1)),$ we have that

$$
m^*(A \cap (E_1 \cup E_2))
$$

\n
$$
\leq m^*(A \cap E_1) + m^*(A \cap E_2 \cap (\mathbb{R} \setminus E_1)).
$$

¹Some books write this as $m^*(A) = m^*(A \cap E) + m^*(A \cap (\mathbb{R} \setminus E))$, which is the same thing written in a different way. Whichever way seems more elegant to you is fine.

Third, since E_1 is measurable,

$$
m^*(A \cap (E_1 \cup E_2))
$$

+
$$
m^*(A \cap (\mathbb{R} \setminus E_1) \cap (\mathbb{R} \setminus E_2))
$$

\$\leq m^*(A \cap E_1) + m^*(A \cap E_2 \cap (\mathbb{R} \setminus E_1))\$
+
$$
m^*(A \cap (\mathbb{R} \setminus E_1) \cap (\mathbb{R} \setminus E_2))
$$

=
$$
m^*(A \cap E_1) + m^*(A \cap (\mathbb{R} \setminus E_1) = m^*(A)).
$$

Note. This could be generalized to show $\bigcup_{i=1}^{n} E_i$ is measurable. The union of countable measurable sets is also measurable, but this would be more difficult to show.

(2) Assuming (a, ∞) is measurable for all $a \in \mathbb{R}$, show that all other real intervals are measurable.

Hint. Because $E_1 \cap E_2 = \mathbb{R} \setminus ((\mathbb{R} \setminus E_1) \cup (\mathbb{R} \setminus E_2))$, the previous problem and Theorem 2.8 imply that $E_1 \cap E_2$ is measurable. * * *

It is shown on p. 59 of Royden's book that
$$
(a, \infty)
$$
 is measurable for all $a \in \mathbb{R}$.

- (a) Since every interval (a, ∞) is measurable, their complements, the intervals $(-\infty, a]$, are measurable.
- (b) Since every interval $(-\infty, a]$ is measurable, their countable intersections

$$
\bigcap_{n=1}^{\infty}(-\infty, a+1/n] = (-\infty, a)
$$

are measurable.

- (c) Since every interval $(-\infty, a)$ is measurable, their complements, the intervals $[a, \infty)$, are measurable.
- (d) Since $(-\infty, b)$ and (a, ∞) are measurable for any $a, b \in \mathbb{R}$, we know

$$
(a,b) = (-\infty, b) \cap (a, \infty)
$$

is measurable. Here $a < b$.

(e) Similarly, the intervals

$$
[b, a] = (-\infty, b] \cap [a, \infty)
$$

are measurable.

(3) Assuming $E_n \subset \mathbb{R}$, $n = 1, 2, \ldots$, are disjoint, show that

$$
m(\bigcup_n E_n)=\sum_n m(E_n).
$$

Hint. Clearly $\bigcup_{i=1}^n E_i \subset \bigcup_{i=1}^\infty E_i$ holds for any finite *n*. * * *

1. Proof for $n = 1, 2, ..., N$. By induction. If $N = 1$, clearly

$$
m(\bigcup_{n=1}^{1} E_n) = m(E_1) = \sum_{n=1}^{1} m(E_n).
$$

Assume the statement holds for $n = N - 1$. In the case $n = N$, since the sets E_n are disjoint, we have

$$
\bigcup_{n=1}^N E_n \cap E_N = E_N
$$

and

$$
\bigcup_{n=1}^N E_n \setminus E_N = \bigcup_{n=1}^{N-1} E_n.
$$

Because E_N is measurable,

$$
m^*(\bigcup_{n=1}^N E_n) = m^*(\bigcup_{n=1}^N E_n \cap E_N) + m^*(\bigcup_{n=1}^N E_n \setminus E_N)
$$

=
$$
m^*(E_N) + m^*(\bigcup_{n=1}^{N-1} E_n)
$$

=
$$
m^*(E_N) + \sum_{n=1}^{N-1} m^*(E_n).
$$

2. For any finite n we have

$$
\sum_{i=1}^{n} m(E_i) = m(\bigcup_{i=1}^{n} E_i) \le m(\bigcup_{i=1}^{\infty} E_i).
$$

As the right-hand side does not depend on n ,

$$
\sum_{i=1}^{\infty} m(E_i) \le m(\bigcup_{i=1}^{\infty} E_i).
$$

The opposite inequality comes from subadditivity.

(4) Let f and g be measurable functions. Show that $\max\{f, g\}$ is a measurable function.

Because f and g are measurable, $f - g$ is measurable (see Theorem 2.17). Because $f - g$ is measurable, $(f - g)^+$ is measurable. Because g and $(f - g)^+$ are measurable, $g + (f - g)^+$ is measurable.

Since

$$
g + (f - g)^{+} = g + \max\{f - g, 0\}
$$

=
$$
\begin{cases} g + f - g & \text{if } f \ge g \\ g + 0 & \text{if } f < g \end{cases} = \max\{f, g\},
$$

 $\max\{f, g\}$ is measurable.

(5) Let $f: E \to \hat{\mathbb{R}}$ be a measurable function. Show that $\{x \in E \mid \hat{\mathbb{R}}\}$ $f(x) = r$ is a measurable set. * * *

Sets $\{x \mid f(x) \ge r\}$ and $\{x \mid f(x) \le r\}$ are measurable. Their intersection, too.

11. Lemma: The interval (a, ∞) is measurable.

Proof: Let A be any set, $A_1 = A \cap (a, \infty)$, $A_2 = A \cap (-\infty, a]$. Then we must show $m^*A_1 + m^*A_2 \le m^*A$. If $m^*A = \infty$, then there is nothing to prove. If $m^*A < \infty$, then, given $\epsilon > 0$, there is a countable collection $\{I_n\}$ of open intervals which cover A and for which

$$
\sum l(I_n) \leq m^*A + \epsilon.
$$

Let $I'_n = I_n \cap (a, \infty)$ and $I''_n = I_n \cap (-\infty, a]$. Then I'_n and I''_n are intervals (or empty) and

$$
l(I_n) = l(I'_n) + l(I''_n) = m^*I'_n + m^*I''_n.
$$

Since $A_1 \subset \bigcup I'_n$, we have

$$
m^*A_1\leq m^*(\bigcup I'_n)\leq \sum m^*I'_n,
$$

and, since $A_2 \subset \bigcup I_n''$, we have

$$
m^*A_2\leq m^*(\bigcup I_n^{\prime\prime})\leq \sum m^*I_n^{\prime\prime}.
$$

Thus

$$
m^*A_1 + m^*A_2 \le \sum (m^*I'_n + m^*I''_n)
$$

$$
\le \sum l(I_n) \le m^*A + \epsilon
$$

But ϵ was an arbitrary positive number, and so we must have m^*A_1 + $m^* A_2 \leq m^* A.$