Analysis IV Spring 2011 Exercises 7 / Answers

(1) Show that if f is a measurable function and $[a, b]$ is a real interval, the set

$$
\{x \in \mathbb{R} \mid f(x) \in [a, b]\}
$$

is measurable.

$$

$$

Because $x \in [a, b]$ if and only if $x \ge a$ and $x \le b$, we have

$$
\{x \in \mathbb{R} \mid f(x) \in [a, b]\} = \{x \in \mathbb{R} \mid f(x) \ge a\} \cap \{x \in \mathbb{R} \mid f(x) \le b\}.
$$

(2) Prove Theorem 2.26 (b'): If $f \geq g$ and $\int f dm$ exists and $\int f dm < \infty$, then $\int g dm$ exists and

$$
\int f \, dm \ge \int \int g \, dm.
$$

The proof is similar to that of (b) .

We may as well suppose that $f \ge g \ge 0$. Let ϕ be a simple function so that $0 \leq \phi \leq g$. Then $0 \leq \phi \leq f$, and by Definition 2.24 we have

$$
\int \phi \, dm \le \int f \, dm.
$$

Since this holds for any simple function ϕ with $\phi \leq g$, we have

$$
\int g dm = \sup \{ \int \phi dm \mid \phi \text{ simple and } \phi \le g \} \le \int f dm
$$

for all functions f and g. Because $f \geq g$, we have $f^+ \geq g^+$ and $f^- \leq g^-$. (See note.¹) Further,

$$
\int f^+ dm - \int f^- dm
$$

¹This is obvious if you draw a picture, but a little bit messy to show. Remember that $f(x) = f^{+}(x) - f^{-}(x)$, and similarly for g. At any specific point x, we have either $f(x) = f^{+}(x)$ (if $f(x) \ge 0$) or $f(x) = -f^{-}(x)$ (if $f(x) < 0$). Let us consider the case $f(x) = f^{+}(x)$. At that point x either $g(x) = g^{+}(x)$ or $g(x) = -g^{-}(x)$. In the first case, since we have $f \geq g$ everywhere, we have $f^+(x) \geq g^+(x)$. In the second case, we have $g(x) < 0$, so $g^+(x) = 0$, and $f^+(x) \ge 0$. The other inequality comes from the case $f(x) = -f^{-}(x)$.

is defined, since $\int f dm$ exists. Since $\int f dm < \infty$, we know $\int f^+ dm < \infty$, and thus

$$
\int g^+ dm \le \int f^+ dm < \infty.
$$

Therefore $\int g dm$ exists, and we have

$$
\int g dm = \int g^+ dm - \int g^- dm \le \int f^+ dm - \int f^- dm = \int f dm.
$$

(3) Let f be a non-negative measurable function. Show that $\int f dm =$ 0 implies $f = 0$ a.e..

Assume the opposite: $\int f dm = 0$ and $f > 0$ in some $E \subset \mathbb{R}$, $m(E) > 0.$

* * *

We can assume $f > a > 0$ for some $a \in \mathbb{R}$ on $A \subset E$, $m(A) > 0²$ This means $f \ge \phi$ for the simple function

$$
\phi(x) = \begin{cases} a, & x \in A \\ 0, & \text{otherwise.} \end{cases}
$$

Because

$$
\int \phi \, dm = a \, m(A) > 0,
$$

by Theorem 2.26(d) we have

$$
\int f dm = \sup \left\{ \int \phi dm \mid \phi \text{ simple and } \phi \le f \right\} \ge a m(A) > 0,
$$

which is a contradiction.

(4) Let f be a measurable function. Show that if E is a measurable set and $m(E) = 0$, then $\int_E f dm = 0$.

Hint. Prove this first for simple functions. Then for $f \geq 0$ using Theorem 2.26(d). Then note that $f = f^+ - f^-$.

$$
\ast\ast\ast
$$

²If for all $a > 0$ the set where $f > a$ was of zero measure, we could say

$$
E = \bigcup_{n=1}^{\infty} \{ x \in E \mid f(x) > 1/n \},\
$$

and have

$$
m(E) \le \sum_{n=1}^{\infty} m(\{x \in E \mid f(x) > 1/n\}) = 0,
$$

which would be a contradiction because $m(E) > 0$.

1. Let $m(E) = 0$ and let f be a simple function, that is, let

$$
f(x) = \sum_{j=1}^{n} a_j \chi_{A_j}(x)
$$

for some $A_j \subset \mathbb{R}, a_j \in \mathbb{R}, j = 1, ..., n$. By definition, $\int_E f dm$ is

$$
\int_E f dm = \int f \chi_E dm = \sum_{j=1}^n a_j m(A_j \cap E).
$$

Since $m(E) = 0$ and $A_i \cap E \subset E$ for each j, we have $m(A_i \cap E) =$ 0 for each j , and so

$$
\sum_{j=1}^{n} a_j m(A_j \cap E) = 0.
$$

2. Let $m(E) = 0$ and let f be a non-negative function. By Theorem $2.26(d)$,

$$
\int_{E} f dm = \sup \left\{ \int_{E} \phi dm \mid \phi \text{ simple and } \phi \le f \right\}.
$$

Because $\int_E \phi \, dm = 0$ for all simple functions, $\int_E f \, dm = 0$.

3. Finally, let f be any measurable function. We can write $f =$ $f^+ - f^-$, and as $f^+ \geq 0$ and $f^- \geq 0$, we know that

$$
\int_E f^+ dm = 0 \quad \text{and} \quad \int_E f^- dm = 0.
$$

Since

$$
\int_{E} f dm = \int_{E} f^{+} dm - \int_{E} f^{-} dm,
$$

s $\int_{E} f dm = 0$

this means $\int_E f dm = 0$.

(5) Let $f : [0,1] \to \mathbb{R}$ be defined as

$$
f(x) = \begin{cases} 1, & x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0, 1] \\ 0, & x \in \mathbb{Q} \cap [0, 1]. \end{cases}
$$

Calculate

$$
\int_{[0,1]} f dm.
$$

$$
\begin{array}{c} * \\ * \end{array}
$$

Since f only gets the values 0 and 1, the integral is by definition

$$
\int_{[0,1]} f dm = 1 \cdot m((\mathbb{R} \setminus \mathbb{Q}) \cap [0,1]) + 0 \cdot m(\mathbb{Q} \cap [0,1]).
$$

We know that $\mathbb Q$ is countable, so its subset $\mathbb Q \cap [0,1]$ is also countable. By Corollary 2.4, $m(\mathbb{Q} \cap [0,1]) = 0$. Because

$$
[0,1] = \left(\left(\mathbb{R} \setminus \mathbb{Q} \right) \cap [0,1] \right) \cup \left(\mathbb{Q} \cap [0,1] \right),
$$

we have by Ex. 4.2 that

$$
m((\mathbb{R}\setminus\mathbb{Q})\cap[0,1])=m([0,1])=1.
$$

This means

$$
\int_{[0,1]} f \, dm = 1 \cdot 1 + 0 \cdot 0 = 1.
$$

(Note that the only fact we needed to remember of (ir)rational numbers is that the rational numbers are countable. All else was measure-theoretical trickery.)

(6) Prove Lemma 3.1.: If $a, b \ge 0$ and $0 < \lambda < 1$, then

$$
a^{\lambda}b^{1-\lambda} \leq \lambda a + (1 - \lambda)b.
$$

Hint. Consider the cases $b = 0$ and $b \neq 0$ separately. Notice that $g : [0, \infty[\rightarrow \mathbb{R},$

$$
g(t) = (1 - \lambda) + \lambda t - t^{\lambda}, \qquad 0 < \lambda < 1,
$$

has its minimum at $t = 1$.

$$
\ast\,\ast\,\ast
$$

If $b = 0$, the claim is that

$$
0 \leq \lambda a
$$

for all $a \geq 0$, $0 < \lambda < 1$. This is obviously true.

If $b \neq 0$, we can divide the claim by b, and get

$$
a^{\lambda}b^{-\lambda} \le \lambda a/b + (1 - \lambda).
$$

If we write a/b as t, this is

$$
t^{\lambda} \leq \lambda t + (1 - \lambda)
$$

or

$$
0 \leq \lambda t + (1 - \lambda) - t^{\lambda}.
$$

For $g(t) = \lambda t + (1 - \lambda) - t^{\lambda}$, we have $g(1) = \lambda + (1 - \lambda) - 1 = 0$. By the hint this is the minimum of q , and thus the inequality

$$
0 \le \lambda t + (1 - \lambda) - t^{\lambda}
$$

holds for all $t \in [0, \infty), 0 < \lambda < 1$.