
Analysis IV
Spring 2011
Exercises 7 / Answers

(1) Show that if f is a measurable function and [a, b] is a real in-
terval, the set

{x ∈ R | f(x) ∈ [a, b]}
is measurable.

* * *
Because x ∈ [a, b] if and only if x ≥ a and x ≤ b, we have

{x ∈ R | f(x) ∈ [a, b]}
= {x ∈ R | f(x) ≥ a} ∩ {x ∈ R | f(x) ≤ b}.

(2) Prove Theorem 2.26 (b’): If f ≥ g and
∫

f dm exists and∫
f dm < ∞, then

∫
g dm exists and∫
f dm ≥

∫
g dm.

* * *
The proof is similar to that of (b).
We may as well suppose that f ≥ g ≥ 0. Let φ be a simple

function so that 0 ≤ φ ≤ g. Then 0 ≤ φ ≤ f , and by Definition
2.24 we have ∫

φ dm ≤
∫

f dm.

Since this holds for any simple function φ with φ ≤ g, we have∫
g dm = sup{

∫
φ dm | φ simple and φ ≤ g} ≤

∫
f dm

for all functions f and g. Because f ≥ g, we have f+ ≥ g+ and
f− ≤ g−. (See note.1) Further,∫

f+ dm−
∫

f− dm

1This is obvious if you draw a picture, but a little bit messy to show. Remember
that f(x) = f+(x) − f−(x), and similarly for g. At any specific point x, we have
either f(x) = f+(x) (if f(x) ≥ 0) or f(x) = −f−(x) (if f(x) < 0). Let us consider
the case f(x) = f+(x). At that point x either g(x) = g+(x) or g(x) = −g−(x).
In the first case, since we have f ≥ g everywhere, we have f+(x) ≥ g+(x). In the
second case, we have g(x) < 0, so g+(x) = 0, and f+(x) ≥ 0. The other inequality
comes from the case f(x) = −f−(x).
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is defined, since
∫

f dm exists. Since
∫

f dm < ∞, we know∫
f+ dm < ∞, and thus∫

g+ dm ≤
∫

f+ dm < ∞.

Therefore
∫

g dm exists, and we have∫
g dm =

∫
g+ dm−

∫
g− dm ≤

∫
f+ dm−

∫
f− dm =

∫
f dm.

(3) Let f be a non-negative measurable function. Show that
∫

f dm =
0 implies f = 0 a.e..

* * *
Assume the opposite:

∫
f dm = 0 and f > 0 in some E ⊂ R,

m(E) > 0.
We can assume f > a > 0 for some a ∈ R on A ⊂ E,

m(A) > 0.2 This means f ≥ φ for the simple function

φ(x) =

{
a, x ∈ A

0, otherwise.

Because ∫
φ dm = a m(A) > 0,

by Theorem 2.26(d) we have∫
f dm = sup

{∫
φ dm | φ simple and φ ≤ f

}
≥ a m(A) > 0,

which is a contradiction.

(4) Let f be a measurable function. Show that if E is a measurable
set and m(E) = 0, then

∫
E

f dm = 0.
Hint. Prove this first for simple functions. Then for f ≥ 0

using Theorem 2.26(d). Then note that f = f+ − f−.
* * *

2If for all a > 0 the set where f > a was of zero measure, we could say

E =
∞⋃

n=1

{x ∈ E | f(x) > 1/n},

and have

m(E) ≤
∞∑

n=1

m({x ∈ E | f(x) > 1/n}) = 0,

which would be a contradiction because m(E) > 0.
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1. Let m(E) = 0 and let f be a simple function, that is, let

f(x) =
n∑

j=1

ajχAj
(x)

for some Aj ⊂ R, aj ∈ R, j = 1, . . . , n. By definition,
∫

E
f dm

is ∫
E

f dm =

∫
fχE dm =

n∑
j=1

ajm(Aj ∩ E).

Since m(E) = 0 and Aj∩E ⊂ E for each j, we have m(Aj∩E) =
0 for each j, and so

n∑
j=1

ajm(Aj ∩ E) = 0.

2. Let m(E) = 0 and let f be a non-negative function. By
Theorem 2.26(d),∫

E

f dm = sup

{∫
E

φ dm | φ simple and φ ≤ f

}
.

Because
∫

E
φ dm = 0 for all simple functions,

∫
E

f dm = 0.

3. Finally, let f be any measurable function. We can write f =
f+ − f−, and as f+ ≥ 0 and f− ≥ 0, we know that∫

E

f+ dm = 0 and
∫

E

f− dm = 0.

Since ∫
E

f dm =

∫
E

f+ dm−
∫

E

f− dm,

this means
∫

E
f dm = 0.

(5) Let f : [0, 1] → R be defined as

f(x) =

{
1, x ∈ (R \Q) ∩ [0, 1]

0, x ∈ Q ∩ [0, 1].

Calculate ∫
[0,1]

f dm.

* * *
Since f only gets the values 0 and 1, the integral is by defi-

nition∫
[0,1]

f dm = 1 ·m((R \Q) ∩ [0, 1]) + 0 ·m(Q ∩ [0, 1]).
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We know that Q is countable, so its subset Q ∩ [0, 1] is also
countable. By Corollary 2.4, m(Q ∩ [0, 1]) = 0. Because

[0, 1] = ((R \Q) ∩ [0, 1]) ∪ (Q ∩ [0, 1]) ,

we have by Ex. 4.2 that

m((R \Q) ∩ [0, 1]) = m([0, 1]) = 1.

This means ∫
[0,1]

f dm = 1 · 1 + 0 · 0 = 1.

(Note that the only fact we needed to remember of (ir)rational
numbers is that the rational numbers are countable. All else
was measure-theoretical trickery.)

(6) Prove Lemma 3.1.: If a, b ≥ 0 and 0 < λ < 1, then

aλb1−λ ≤ λa + (1− λ)b.

Hint. Consider the cases b = 0 and b 6= 0 separately. Notice
that g : [0,∞[→ R,

g(t) = (1− λ) + λt− tλ, 0 < λ < 1,

has its minimum at t = 1.
* * *

If b = 0, the claim is that

0 ≤ λa

for all a ≥ 0, 0 < λ < 1. This is obviously true.
If b 6= 0, we can divide the claim by b, and get

aλb−λ ≤ λa/b + (1− λ).

If we write a/b as t, this is

tλ ≤ λt + (1− λ)

or
0 ≤ λt + (1− λ)− tλ.

For g(t) = λt+(1−λ)− tλ, we have g(1) = λ+(1−λ)− 1 = 0.
By the hint this is the minimum of g, and thus the inequality

0 ≤ λt + (1− λ)− tλ

holds for all t ∈ [0,∞[, 0 < λ < 1.


