Analysis IV
Spring 2011
Exercises 7 / Answers

(1) Show that if f is a measurable function and [a, b] is a real in-
terval, the set

{z eR| f(z) € [a, 0]}
is measurable.
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Because z € [a,b] if and only if x > a and x < b, we have
{r eR [ f(z) €a,0]}
={zeR|f(z) za}n{zr eR| f(z) <b}.

(2) Prove Theorem 2.26 (b’): If f > ¢ and [ fdm exists and
[ fdm < oo, then [ gdm exists and

[ ram= [ gam.
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The proof is similar to that of (b)

We may as well suppose that f > g
function so that 0 < ¢ < g. Then 0 < ¢
2.24 we have

> 0. Let ¢ be a simple
< f, and by Definition

[odm< [ am

Since this holds for any simple function ¢ with ¢ < g, we have

/gdm:sup{/gbdm|¢simple and¢§g}§/fdm

for all functions f and g. Because [ > ¢, we have fT > ¢g* and
f~ < g~. (See note.) Further,

/f+dm /f dm

IThis is obvious if you draw a picture, but a little bit messy to show. Remember
that f(z) = f*(z) — f~(x), and similarly for g. At any specific point z, we have
either f(z) = f™(x) (if f(x) > 0) or f(z) = —f(x) (if f(z) < 0). Let us consider
the case f(x) = f¥(x). At that point z either g(x) = g™ (z) or g(z) = —g~ (2).
In the first case, since we have f > g everywhere, we have fT(z) > g*(x). In the
second case, we have g(z) < 0, so g*(z) =0, and f*(z) > 0. The other inequality
comes from the case f(x) = —f ()



is defined, since [ fdm exists. Since [ fdm < oo, we know
[ fTdm < oo, and thus

/g+dm§/f+dm<oo.

Therefore | gdm exists, and we have

Joan=[gran- [gan< [seian- [ an— [ rin

(3) Let f be a non-negative measurable function. Show that [ f dm =
0 implies f =0 a.e..
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Assume the opposite: [ fdm =0 and f > 0 in some £ C R,
m(E) > 0.

We can assume f > a > 0 for some a € Ron A C F,
m(A) > 0.2 This means f > ¢ for the simple function

¢<x>:{a, reA

0, otherwise.

Because
/¢dm—am A) >0,

by Theorem 2.26(d) we have

/fdm = Sup{/qbdm | ¢ simple and ¢ < f} >am(A) >0,
which is a contradiction.

(4) Let f be a measurable function. Show that if £ is a measurable
set and m(E) = 0, then [, fdm = 0.
Hint. Prove this first for simple functions. Then for f > 0
using Theorem 2.26(d). Then note that f = f* — f~.
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2If for all a > 0 the set where f > a was of zero measure, we could say

E=J{re B f2)>1/n},

n=1

and have
oo

<S m{z e B f(x) > 1/n}) =0,

n=1

which would be a contradiction because m(E) > 0.



1. Let m(E) = 0 and let f be a simple function, that is, let

1 =3 a2

for some A; C R, a; € R, j =1,...,n. By definition, [, fdm

1S

Since m(E) = 0 and A;NE C E for each j, we have m(A,NE) =
0 for each 7, and so

Zajm(Aj N E) =0.
7=1

2. Let m(FE) = 0 and let f be a non-negative function. By
Theorem 2.26(d),

/fdmzsup{/gbdm]<bsimpleand¢§f}.
E E

Because [, ¢dm = 0 for all simple functions, [, fdm = 0.

3. Finally, let f be any measurable function. We can write f =
ft—f",and as ft >0 and f~ > 0, we know that

/f+dm—0 and /Efdm:o.
/Efdm:/Eﬁdm—/Ef—dm,

this means [, f dm = 0.
Let f:[0,1] — R be defined as

)L ze (R\Q)NI0,1]
f(x)_{o, zeQn(o,1].

Since

Calculate

fdm.
[0,1]
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Since f only gets the values 0 and 1, the integral is by defi-
nition

/mufdm:1-m((R\@)ﬂ[0,1])+0.m((@m[071])'



We know that Q is countable, so its subset Q N [0,1] is also
countable. By Corollary 2.4, m(Q N [0, 1]) = 0. Because

[0,1] = (RAQ) N [0,1]) U (QN[0,1]),
we have by Ex. 4.2 that
m((R\ Q) N[0,1]) = m([0,1]) = 1.

This means

fdm=1-1+0-0=1.
0,1]

(Note that the only fact we needed to remember of (ir)rational
numbers is that the rational numbers are countable. All else
was measure-theoretical trickery.)

Prove Lemma 3.1.: If a,b > 0 and 0 < A < 1, then
a*b'™ < Aa+ (1 — )b

Hint. Consider the cases b = 0 and b # 0 separately. Notice
that g : [0, 00[— R,

gty =1 =N+ Xt -t 0<A<]1,

has its minimum at ¢t = 1.

If b =0, the claim is that
0<\a

for all @ > 0, 0 < A < 1. This is obviously true.
If b # 0, we can divide the claim by b, and get

b < Aa/b+ (1 —A).
If we write a/b as t, this is
<A+ (1=

or

0< M+ (1—N) -t
For g(t) = At + (1 —X\) —t*, we have g(1) = A+ (1—-A)—1=0.
By the hint this is the minimum of ¢, and thus the inequality

0< M+ (1—-N) -t
holds for all t € [0,00[, 0 < A < 1.



