Analysis IV Spring 2011 Exercises 9

- (1) Prove Lemma 3.9.
- (2) Prove Hölder's inequality for series (line (3.4) in the lectures).
- (3) Prove Minkowski's inequality for series (line (3.5) in the lectures).
- (4) Prove Lemma 3.15 for $p = \infty$.
- (5) Let $1 \leq p < q < \infty$. Define f and g as $f : [0, 2\pi] \to \hat{\mathbb{R}}$ and $g : [0, 2\pi] \to \hat{\mathbb{R}}$, $f(\theta) = \theta^{-1/q}$ and $g(\theta) = \theta^{-1/2q}$. Show that $f \in L^p[0, 2\pi]$, $f \notin L^q[0, 2\pi]$, $g \in L^q[0, 2\pi]$, and $g \notin$

Show that $f \in L[0, 2\pi]$, $f \notin L[0, 2\pi]$, $g \in L[0, 2\pi]$, and g $L^{\infty}[0, 2\pi]$. (You can assume f and g to be measurable.)

(6) Let
$$f \in L^1$$
 and $g \in L^\infty$. Show that

$$\int |fg| \, dm \leq d_{L^1}(f,0) d_{L^\infty}(g,0).$$

We write $\hat{\mathbb{R}}$ as a short for $\mathbb{R} \cup \{\infty\} \cup \{-\infty\}$, the extended real interval. We write $L^p[0, 2\pi]$ for $L^p([0, 2\pi])$.