
Analysis IV
Spring 2011
Exercises 9 / Answers

(1) Prove Lemma 3.9: If {fn} is a Cauchy sequence in the metric
dLp , 1 ≤ p < ∞, then {fn} is a Cauchy sequence in the measure
m.

* * *

Because the sequence {fn} is a Cauchy sequence in the metric
dLp , we have for any ε > 0 a number N so that

d(fm, fn) =

(∫
|fn − fm|p dm

)1/p

< ε

for all m, n > N .

We say that {fn} is a Cauchy sequence in the measure m, if for
each ε > 0 and each δ > 0 there exists a N such that

m({x | |fn(x)− fm(x)| ≥ ε}) < δ

for all m, n > N .

Suppose that {fn} is not a Cauchy sequence in m. Then there
exists a pair ε0 and δ0 so that for any N we can find a pair
m, n > N so that

m({x | |fn(x)− fm(x)| ≥ ε0}) ≥ δ0.

If we write

E = {x | |fn(x)− fm(x)| ≥ ε0},

we have m(E) ≥ δ0, and we get the following contradiction:(∫
|fn − fm|p dm

)1/p

≥
(∫

E

|fn − fm|p dm

)1/p

≥
(∫

E

εp
0 dm

)1/p

≥ ε0

(∫
E

1 dm

)
︸ ︷︷ ︸

= m(E)

1/p

≥ ε0δ
1/p
0 .
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(2) Prove Hölder’s inequality for series: Let 1 < p < ∞ and 1 <
q < ∞ be such that 1

p
+ 1

q
= 1. Suppose that {an} ∈ `p and

{bn} ∈ `q. Then {anbn} ∈ `1 and

∞∑
n=1

|anbn| ≤

(
∞∑

n=1

|an|p
)1/p( ∞∑

n=1

|bn|q
)1/q

.

* * *

If {an}∞n=1 = {0}∞n=1 or {bn}∞n=1 = {0}∞n=1, both sides of the
inequality are zero and we are done. Thus we can assume that∑∞

n=1 |an|p > 0 and
∑∞

n=1 |bn|q > 0.

We write A = (
∑∞

n=1 |an|p)1/p and B = (
∑∞

n=1 |bn|q)1/q. Note
that A and B are constants that do not depend on n. By Young’s
inequality (Lemma 3.1)1, we have

an

A

bn

B
≤ ap

n

App
+

bq
n

Bqq
.

Summing over n, we get

∞∑
n=1

|an|
A

|bn|
B

≤
∞∑

n=1

(
|an|p

App
+
|bn|q

Bqq

)
=

∑∞
n=1 |an|p

App
+

∑∞
n=1 |bn|q

Bqq

=
Ap

App
+

Bq

Bqq
=

1

p
+

1

q
= 1.

When we multiply this with AB = (
∑∞

n=1 |an|p)1/p
(
∑∞

n=1 |bn|q)1/q,
we get

∞∑
n=1

|anbn| ≤

(
∞∑

n=1

|an|p
)1/p( ∞∑

n=1

|bn|q
)1/q

.

1Perhaps it’s not immediately obvious how this is done. We choose λ = 1/p, and
so get 1− λ = 1− 1/p = 1/q by the choice of p and q, and choose a = (an/A)p and
b = (bn/B)q, and Lemma 3.1 simplifies into the form used.
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(3) Prove Minkowski’s inequality for series: Let 1 ≤ p < ∞. Sup-
pose that {an} ∈ `p and {bn} ∈ `p. Then {an + bn} ∈ `p and(

∞∑
n=1

|an + bn|p
)1/p

≤

(
∞∑

n=1

|an|p
)1/p

+

(
∞∑

n=1

|bn|p
)1/p

.

* * *

Because |an + bn| ≤ 2p−1|ab| + 2p−1|bn| (see lectures), we know
the left-hand side is well defined. If {an} = {0}, {bn} = {0}
or {an + bn} = {0} the claim holds, so we can assume none of
these three is a zero sequence. Next, we rearrange the sums:

∞∑
n=1

|an + bn|p =
∞∑

n=1

|an + bn||an + bn|p−1

≤
∞∑

n=1

(|an|+ |bn|) |an + bn|p−1

≤
∞∑

n=1

(
|an||an + bn|p−1 + |bn||an + bn|p−1

)
≤

∞∑
n=1

|an||an + bn|p−1 +
∞∑

n=1

|bn||an + bn|p−1.

Here we use Hölder’s inequality. Note that the exponent q for
which 1

p
+ 1

q
= 1 holds is q = p/(p− 1).

≤

(
∞∑

n=1

|an|p
)1/p( ∞∑

n=1

|an + bn|(p−1)p/(p−1)

)(p−1)/p

+

(
∞∑

n=1

|bn|p
)1/p( ∞∑

n=1

|an + bn|(p−1)p/(p−1)

)(p−1)/p

=

( ∞∑
n=1

|an|p
)1/p

+

(
∞∑

n=1

|bn|p
)1/p

( ∞∑
n=1

|an + bn|p
)1−1/p

.

We divide (
∑∞

n=1 |an + bn|p)1−1/p to the left-hand side, and get(
∞∑

n=1

|an + bn|p
)1/p

≤

(
∞∑

n=1

|an|p
)1/p

+

(
∞∑

n=1

|bn|p
)1/p

.



4

(4) Prove Lemma 3.15 for p = ∞: If {xn,k} ⊂ `∞ is a Cauchy
sequence, then there exists a uniform constant C > 0 such that

sup
k∈N

|xn,k| ≤ C

for all n ∈ N.2

* * *

Since {xn,k} is a Cauchy sequence, we know that for each ε > 0
there is a N so that

sup
k
|xm,k − xn,k| < ε

when m, n > N . Let us choose ε = 1. Then for all n > N we
have

sup
k
|xN+1,k − xn,k| < 1,

or
sup

k
|xn,k| < 1 + sup

k
|xN+1,k|.

Since each individual sequence {xn,k}∞k=1 ∈ `∞, we have
sup

k
|xn,k| < ∞

for each n = 1, 2, . . . , N . Combining these two estimates, we
have

sup
k
|xn,k| < 1 + sup

k
|xN+1,k|+ max

n=1,...,N
{sup

k
|xn,k|}︸ ︷︷ ︸

= C

for all n = 1, 2, . . ..

(Compare Ex. 2.4, which is very much like this problem.)

2Recall that {xn,k} ⊂ `∞ means {xn,k} is a sequence of sequences (jonojen jono)
with each element (with a fixed n) being a sequence xn,k ∈ `∞. (And {xn,k} ∈ `∞

is defined as supk |xn,k| < ∞.) The index n tells which sequence we are dealing
with; the index k which element of that n:th sequence. That is,

{xn,k} = {{x1,k}, {x2,k}, . . .} = {{x1,k}∞k=1, {x2,k}∞k=1, . . .}.
(To be really consistent, we should write {{xn,k}} instead of {xn,k}, that is, a
sequence (the first {. . .}) of sequences {xn,k}; but that would not look good.)
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(5) Let 1 ≤ p < q < ∞. Define f and g as f : [0, 2π] → R̂ and
g : [0, 2π] → R̂,

f(θ) = θ−1/q and g(θ) = θ−1/2q.

Show that f ∈ Lp[0, 2π], f /∈ Lq[0, 2π], g ∈ Lq[0, 2π], and g /∈
L∞[0, 2π]. (You can assume f and g to be measurable.)

* * *

We remember that for 1 < p < ∞, f ∈ Lp(U) if
∫

U
|f |p dm <

∞. Let us first consider the claim that f ∈ Lp[0, 2π]. Because
p < q, we know that −p/q > −1, and 1− p/q > 0, so∫
|f |p dm =

∫
[0,2π]

θ−p/q dm
(1)
=

∫ 2π

0

(−p/q)θ1−p/q dθ < ∞.

Read that carefully. The equality (1) is just substituting the
old Riemannian integral for our new Lebesgue integral; when-
ever we can calculate the Riemannian integral for something,
the Lebesgue integral has the same value.

Similarly, for f /∈ Lq[0, 2π] we see that∫
|f |q dm =

∫
[0,2π]

θ−q/q dm =

∫ 2π

0

θ−1 dθ =
∣∣2π

0
ln θ = ∞.

For g ∈ Lq[0, 2π], we see that∫
|g|q dm =

∫
[0,2π]

θ−q/2q dm =

∫ 2π

0

θ−1/2 dθ =
∣∣2π

0
θ1/2/2 =

√
2π/2 < ∞.

Finally, to see that g /∈ L∞[0, 2π] we have to see that the con-
dition

ess sup[0,2π] |g| < ∞
does not hold. But since sup[0,2π] |g| = ∞ (when θ → 0), and
g is a continuous function, the supremum of g is infinity even
outside any arbitrary set of zero measure, so

ess sup[0,2π] |g| = ∞.
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(6) Let f ∈ L1 and g ∈ L∞. Show that∫
|fg| dm ≤ dL1(f, 0) dL∞(g, 0).

* * *

Because g ∈ L∞, we know that
dL∞(g, 0) = ess sup |g(x)| < ∞.

The value of an integral isn’t affected by the values of a function
in a set of measure zero. Thus∫

|fg| dm ≤
∫
|f | ess sup |g|︸ ︷︷ ︸

constant

dm = dL∞(g, 0)

∫
|f | dm = dL1(f, 0)dL∞(g, 0).

(If we wanted to be really explicit, we could note that the con-
dition ess sup |g(x)| < ∞ means supX\A |g| < ∞ for some set A
with m(A) = 0. Then we’d note that∫

|fg| dm =

∫
X\A

|fg| dm +

∫
A

|fg| dm︸ ︷︷ ︸
=0

,

and then treat
∫

X\A |fg| dm as we treat
∫
|fg| dm above.)


