

(1) Let $f_n : \mathbb{R} \to \mathbb{R}$, be defined as

$$
f_n(x) = \begin{cases} 1/n^2, & \text{when } x \in [-n, n] \\ 0, & \text{elsewhere.} \end{cases}
$$

Does f_n converge to $f(x) = 0$

- (a) pointwise,
- (b) in the measure m ,
- (c) with respect to d_{L^p} metric, $1 < p < \infty$,
- (d) with respect to $d_{L^{\infty}}$ metric?
- (2) Let f be defined as $f : [0,1] \to \mathbb{R}$, $f(x) = x^n$, $n \in \mathbb{N}$. Calculate the norm of f in
	- (a) $C_{\mathbb{R}}([0,1])$ and
	- (b) $L^1([0,1]).$
- (3) Show that the standard norms of ℓ^p are norms; that is, show that $1/p$

$$
\|\{x_n\}\|_p = \left(\sum_n |x_n|^p\right)^{\frac{1}{p}}
$$

is a norm for $\{x_n\} \in \ell^p$, $1 < p < \infty$, and show that

$$
\|\{x_n\}\|_{\infty} = \sup_n |x_n|
$$

is a norm for $\{x_n\} \in \ell^{\infty}$.

(4) Show that in the space $C_{\mathbb{R}}([0,1])$ the norms

$$
||f||_1 = \int_0^1 (1-t) |f(t)| dt
$$

and

$$
||f||_2 = \int_0^1 (1 - t^3) |f(t)| dt
$$

are equivalent. (See Definition 4.4. In this and the next problem, you don't need to prove these functions are norms.)

(5) Let $P([0, 1])$ be the space of polynomials defined on [0, 1]. Show that the norms

$$
||p||_a = \sup\{|p(x)| \mid x \in [0, 1]\}
$$

and

$$
||p||_b = \int_0^1 |p(x)| \, dx,
$$

where $p \in P([0, 1])$, are not equivalent.