
Analysis IV
Spring 2011
Exercises 10 / Answers

(1) Let fn : R → R, be defined as

fn(x) =

{
1/n2, when x ∈ [−n, n]

0, elsewhere.

Does fn converge to f(x) = 0

(a) pointwise,
(b) in the measure m,
(c) with respect to dLp metric, 1 < p < ∞,
(d) with respect to dL∞ metric?

* * *

The answers are yes, yes, yes and yes.

(a) pointwise convergence; that is, is limn→∞ fn(x) = f(x) for
all x? First, note that with big enough n, any fixed point
x is in [−n, n]. Thus we can assume fn(x) = 1/n2. Next,
obviously

lim
n→∞

1/n2 = 0 = f(x),

so fn → f pointwise.
(b) convergence in the measure m, that is, is there a N for

each ε, δ > 0 so that m({x | |fn(x) − f(x)| ≥ ε}) < δ
when n ≥ N? The answer is yes, for for any ε > 0 we can
choose N = 1 + 1√

ε
. Then 1/n2 < ε for every n ≥ N , and

as |fn(x)− f(x)| ≤ 1/n2, we have

m({x | |fn(x)− f(x)| ≥ ε}) = 0 < δ

regardless of the choice of δ.
(c) convergence with respect to dLp metric, 1 < p < ∞, that

is, is there a N so that(∫
|fn − f |p dm

)1/p

< ε

for all n > N? Let us see what is the value of that integral:(∫
|fn − f |p dm

)1/p

=

(∫
[−n,n]

1/n2p dm

)1/p

=

(
2n

n2p

)1/p

= 21/pn
1
p
−2.
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Since 1 < p < ∞, we know 1
p
− 2 < 0. Then

lim
n→∞

n
1
p
−2 = 0,

and we have convergence in the dLp metric.
(d) convergence with respect to dL∞ metric, that is, is there a

N so that

ess sup |fn − f | < ε

for all n > N? Now this is

ess sup |fn − f | = 1/n2 < ε;

are this will be true when n > 1/
√

ε.

(2) Let f be defined as f : [0, 1] → R, f(x) = xn, n ∈ N. Calculate
the norm of f in

(a) CR([0, 1]) and
(b) L1([0, 1]).

* * *

(a) The CR([0, 1])-norm of f is

‖f‖ = sup{f(x) | x ∈ [0, 1]} = sup{xn | x ∈ [0, 1]} = 1.

(b) The L1([0, 1])-norm of f is

‖f‖ =

∫
[0,1]

xn dm =

/1

0

1

n + 1
xn+1 =

1

n + 1
.

(3) Show that the standard norms of `p are norms; that is, show
that

‖{xn}‖p =

(∑
n

|xn|p
)1/p

is a norm for {xn} ∈ `p, 1 < p < ∞, and show that

‖{xn}‖∞ = sup
n
|xn|

is a norm for {xn} ∈ `∞.

* * *

A function f : X → R is a norm if (i) f(x) ≥ 0, (ii) f(x) = 0
if and only if x = 0, (iii) f(αx) = |α|f(x), and (iv) f(x + y) ≤
f(x) + f(y).

(i) is trivial in both cases.

(ii) is easy: if (
∑

n |xn|p)1/p = 0 then
∑

n |xn|p = 0 then |xn| = 0
for every n then {xn} = {0}; and the other direction is trivial.
Similarly, we know that |xn| ≥ 0 regardless of {xn}, and so if
supn |xn| = 0, we have 0 ≤ |x0| ≤ 0, that is xn = 0, for every n.
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(iii) is trivial: (
∑

n |αxn|p)1/p = (|α|p
∑

n |xn|p)1/p = |α| (
∑

n |xn|p)1/p.

(iv), the triangle inequality, is the most difficult of these four,
and is also easy. One could do an immense amount of work, but
one doesn’t need to: the triangle inequality for `p, 1 < p < ∞,
is the series version of the Minkowski inequality, Ex. 9.3.

The triangle inequality for `∞ is easier:

‖{xn + yn}‖∞ = sup
n
|xn + yn|

≤ sup
n

(|xn|+ |yn|)

≤ sup
n
|xn|+ sup

n
|yn|

= ‖{xn}‖∞ + ‖{yn}‖∞.

(4) Show that in the space CR([0, 1]) the norms

‖f‖1 =

∫ 1

0

(1− t)|f(t)| dt

and

‖f‖2 =

∫ 1

0

(1− t3)|f(t)| dt

are equivalent. (See Definition 4.4. In this and the next problem,
you don’t need to prove these functions are norms.)

* * *

Two norms ‖ · ‖1 and ‖ · ‖2 are equivalent if there is a constant
C so that

1

C
‖f‖1 ≤ ‖f‖2 ≤ C‖f‖1

for every f ; in our case for every f ∈ CR([0, 1]), the space of all
functions continuous and defined on [0, 1]. Now this claim is

1

C

∫ 1

0

(1− t)|f(t)| dt ≤
∫ 1

0

(1− t3)|f(t)| dt

≤ C

∫ 1

0

(1− t)|f(t)| dt,

and this holds if we can find a constant C so that
1

C
(1− t) ≤ (1− t3) ≤ C(1− t)

for all t ∈ [0, 1]. (Actually, we just need to find a C so this holds
for all t ∈ (0, 1); two points are a set of zero measure and don’t
affect the value of the integral.) The first of these inequalities
is 1

C
(1− t) ≤ 1− t3, and simplifies to

1/C ≤ 1− t3

1− t
=

(1− t)(1 + t + t2)

1− t
= 1 + t + t2.
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This holds for all t ∈ (0, 1) if C ≥ 1. The second inequality is
(1− t3) ≤ C(1− t) or

C ≥ 1− t3

1− t
= 1 + t + t2,

which holds for any t ∈ (0, 1) if C ≥ 3. We choose C = 3, and
have

1

3
‖f‖1 ≤ ‖f‖2 ≤ 3‖f‖1

for all f ∈ CR([0, 1]).

(Note that, if we were in the mood, we could write that as
1
3
‖f‖1 ≤ ‖f‖2 and ‖f‖2 ≤ 3‖f‖1, divide those to get ‖f‖1 ≤

3‖f‖2 and 1
3
‖f‖2 ≤ ‖f‖1, and combine these as

1

3
‖f‖2 ≤ ‖f‖1 ≤ 3‖f‖2.

When we prove equivalency, it doesn’t matter which norm is ”in
the middle”.)

(5) Let P ([0, 1]) be the space of polynomials defined on [0, 1]. Show
that the norms

‖p‖a = sup{|p(x)| | x ∈ [0, 1]}
and

‖p‖b =

∫ 1

0

|p(x)| dx,

where p ∈ P ([0, 1]), are not equivalent.

* * *

To show the norms are not equivalent, we have to show there is
no C so that

1

C
‖p‖a ≤ ‖p‖b ≤ C‖p‖a

for all p ∈ P ([0, 1]). There are two ways to do this; two that
immediately come to mind, that is. The first would be to find
a p ∈ P ([0, 1]) so that one of its norms is finite and the other
infinite. The second would be to find a sequence pn so that
one of the norms is a constant (or bounded) and the other
increases or decreases without bounds. We use this second way:
Let pn : [0, 1] → R be defined as

pn(x) = (1− x)n.

Very clearly this is a polynomial; we do not want to expand
it. This is a function that has its maximum at x = 0 with
pn(0) = 1, and for which

∫ 1

0
pn(x) dx = 1/(n+1). This is to say

‖pn‖b = 1/(n + 1),

but
‖pn‖a = 1,
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so any C that would show equivalency would have to have
1

C
≤ 1/(n + 1) ≤ C

for every n = 1, 2, . . ., which is impossible: for any fixed C, we
can always find a bigger n so that the first inequality does not
hold.


