(1) Let $f_n : \mathbb{R} \to \mathbb{R}$, be defined as

$$f_n(x) = \begin{cases} 1/n^2, & \text{when } x \in [-n, n] \\ 0, & \text{elsewhere.} \end{cases}$$

Does f_n converge to f(x) = 0

- (a) pointwise,
- (b) in the measure m,
- (c) with respect to d_{L^p} metric, 1 ,
- (d) with respect to $d_{L^{\infty}}$ metric?

* * *

The answers are yes, yes, yes and yes.

(a) pointwise convergence; that is, is $\lim_{n\to\infty} f_n(x) = f(x)$ for all x? First, note that with big enough n, any fixed point x is in [-n, n]. Thus we can assume $f_n(x) = 1/n^2$. Next, obviously

$$\lim_{n \to \infty} 1/n^2 = 0 = f(x),$$

so $f_n \to f$ pointwise.

(b) convergence in the measure m, that is, is there a N for each $\epsilon, \delta > 0$ so that $m(\{x \mid |f_n(x) - f(x)| \ge \epsilon\}) < \delta$ when $n \ge N$? The answer is yes, for for any $\epsilon > 0$ we can choose $N = 1 + \frac{1}{\sqrt{\epsilon}}$. Then $1/n^2 < \epsilon$ for every $n \ge N$, and as $|f_n(x) - f(x)| \le 1/n^2$, we have

$$m(\{x \mid |f_n(x) - f(x)| \ge \epsilon\}) = 0 < \delta$$

regardless of the choice of δ .

(c) convergence with respect to d_{L^p} metric, 1 , thatis, is there a N so that

$$\left(\int |f_n - f|^p \, dm\right)^{1/p} < \epsilon$$

for all n > N? Let us see what is the value of that integral:

$$\left(\int |f_n - f|^p \, dm\right)^{1/p} \\ = \left(\int_{[-n,n]} 1/n^{2p} \, dm\right)^{1/p} \\ = \left(\frac{2n}{n^{2p}}\right)^{1/p} = 2^{1/p} n^{\frac{1}{p}-2}.$$

Since $1 , we know <math>\frac{1}{p} - 2 < 0$. Then

$$\lim_{n \to \infty} n^{\frac{1}{p}-2} = 0$$

and we have convergence in the d_{L^p} metric.

(d) convergence with respect to $d_{L^{\infty}}$ metric, that is, is there a N so that

$$\operatorname{ess\,sup}|f_n - f| < \epsilon$$

for all n > N? Now this is

 $\operatorname{ess\,sup}|f_n - f| = 1/n^2 < \epsilon;$

are this will be true when $n > 1/\sqrt{\epsilon}$.

- (2) Let f be defined as $f:[0,1] \to \mathbb{R}, f(x) = x^n, n \in \mathbb{N}$. Calculate the norm of f in
 - (a) $C_{\mathbb{R}}([0,1])$ and
 - (b) $L^1([0,1])$.

* * *

- (a) The $C_{\mathbb{R}}([0,1])$ -norm of f is $||f|| = \sup\{f(x) \mid x \in [0,1]\} = \sup\{x^n \mid x \in [0,1]\} = 1.$
- (b) The $L^1([0,1])$ -norm of f is

$$||f|| = \int_{[0,1]} x^n dm = \Big/ \int_0^1 \frac{1}{n+1} x^{n+1} = \frac{1}{n+1}.$$

(3) Show that the standard norms of ℓ^p are norms; that is, show that

$$\|\{x_n\}\|_p = \left(\sum_n |x_n|^p\right)$$

is a norm for $\{x_n\} \in \ell^p$, 1 , and show that

$$\|\{x_n\}\|_{\infty} = \sup_{n} |x_n|$$

is a norm for $\{x_n\} \in \ell^{\infty}$.

* * *

A function $f: X \to \mathbb{R}$ is a norm if (i) $f(x) \ge 0$, (ii) f(x) = 0if and only if x = 0, (iii) $f(\alpha x) = |\alpha|f(x)$, and (iv) $f(x + y) \le f(x) + f(y)$.

(i) is trivial in both cases.

(ii) is easy: if $(\sum_n |x_n|^p)^{1/p} = 0$ then $\sum_n |x_n|^p = 0$ then $|x_n| = 0$ for every *n* then $\{x_n\} = \{0\}$; and the other direction is trivial. Similarly, we know that $|x_n| \ge 0$ regardless of $\{x_n\}$, and so if $\sup_n |x_n| = 0$, we have $0 \le |x_0| \le 0$, that is $x_n = 0$, for every *n*.

(iii) is trivial:
$$(\sum_{n} |\alpha x_{n}|^{p})^{1/p} = (|\alpha|^{p} \sum_{n} |x_{n}|^{p})^{1/p} = |\alpha| (\sum_{n} |x_{n}|^{p})^{1/p}$$

(iv), the triangle inequality, is the most difficult of these four, and is also easy. One could do an immense amount of work, but one doesn't need to: the triangle inequality for ℓ^p , 1 , is the series version of the Minkowski inequality, Ex. 9.3.

The triangle inequality for ℓ^{∞} is easier:

$$\|\{x_n + y_n\}\|_{\infty} = \sup_{n} |x_n + y_n|$$

$$\leq \sup_{n} (|x_n| + |y_n|)$$

$$\leq \sup_{n} |x_n| + \sup_{n} |y_n|$$

$$= \|\{x_n\}\|_{\infty} + \|\{y_n\}\|_{\infty}.$$

(4) Show that in the space $C_{\mathbb{R}}([0,1])$ the norms

$$||f||_1 = \int_0^1 (1-t)|f(t)|\,dt$$

and

$$||f||_2 = \int_0^1 (1 - t^3) |f(t)| \, dt$$

are equivalent. (See Definition 4.4. In this and the next problem, you don't need to prove these functions are norms.)

* * *

Two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent if there is a constant C so that

$$\frac{1}{C} \|f\|_1 \le \|f\|_2 \le C \|f\|_1$$

for every f; in our case for every $f \in C_{\mathbb{R}}([0,1])$, the space of all functions continuous and defined on [0,1]. Now this claim is

$$\begin{aligned} \frac{1}{C} \int_0^1 (1-t) |f(t)| \, dt &\leq \int_0^1 (1-t^3) |f(t)| \, dt \\ &\leq C \int_0^1 (1-t) |f(t)| \, dt \end{aligned}$$

and this holds if we can find a constant C so that

$$\frac{1}{C}(1-t) \le (1-t^3) \le C(1-t)$$

for all $t \in [0, 1]$. (Actually, we just need to find a C so this holds for all $t \in (0, 1)$; two points are a set of zero measure and don't affect the value of the integral.) The first of these inequalities is $\frac{1}{C}(1-t) \leq 1-t^3$, and simplifies to

$$1/C \le \frac{1-t^3}{1-t} = \frac{(1-t)(1+t+t^2)}{1-t} = 1+t+t^2.$$

This holds for all $t \in (0, 1)$ if $C \ge 1$. The second inequality is $(1 - t^3) \le C(1 - t)$ or

$$C \geq \frac{1-t^3}{1-t} = 1+t+t^2,$$

which holds for any $t \in (0, 1)$ if $C \ge 3$. We choose C = 3, and have

$$\frac{1}{3}||f||_1 \le ||f||_2 \le 3||f||_1$$

for all $f \in C_{\mathbb{R}}([0,1])$.

(Note that, if we were in the mood, we could write that as $\frac{1}{3}||f||_1 \leq ||f||_2$ and $||f||_2 \leq 3||f||_1$, divide those to get $||f||_1 \leq 3||f||_2$ and $\frac{1}{3}||f||_2 \leq ||f||_1$, and combine these as

$$\frac{1}{3} \|f\|_2 \le \|f\|_1 \le 3 \|f\|_2.$$

When we prove equivalency, it doesn't matter which norm is "in the middle".)

(5) Let P([0, 1]) be the space of polynomials defined on [0, 1]. Show that the norms

$$||p||_a = \sup\{|p(x)| \mid x \in [0,1]\}$$

and

$$||p||_b = \int_0^1 |p(x)| \, dx,$$

where $p \in P([0, 1])$, are not equivalent.

* * *

To show the norms are not equivalent, we have to show there is no C so that

$$\frac{1}{C} \|p\|_a \le \|p\|_b \le C \|p\|_a$$

for all $p \in P([0, 1])$. There are two ways to do this; two that immediately come to mind, that is. The first would be to find a $p \in P([0, 1])$ so that one of its norms is finite and the other infinite. The second would be to find a sequence p_n so that one of the norms is a constant (or bounded) and the other increases or decreases without bounds. We use this second way: Let $p_n : [0, 1] \to \mathbb{R}$ be defined as

$$p_n(x) = (1-x)^n.$$

Very clearly this is a polynomial; we do not want to expand it. This is a function that has its maximum at x = 0 with $p_n(0) = 1$, and for which $\int_0^1 p_n(x) dx = 1/(n+1)$. This is to say

$$||p_n||_b = 1/(n+1),$$

but

$$\|p_n\|_a = 1$$

so any C that would show equivalency would have to have

$$\frac{1}{C} \le 1/(n+1) \le C$$

for every n = 1, 2, ..., which is impossible: for any fixed C, we can always find a bigger n so that the first inequality does not hold.