

(1) Prove Theorem 4.7 (b) and (c).

(2) Let

$$
c = \{ \{x_n\}_{n=1}^{\infty} \mid x_n \in \mathbb{R}, \lim_{n \to \infty} x_n \text{ exists} \}
$$

and

$$
c_0 = \{ \{x_n\}_{n=1}^{\infty} \mid x_n \in \mathbb{R}, \lim_{n \to \infty} x_n = 0 \}.
$$

Prove true or false.

- (i) $c_0 \subset \ell$ (i) $c_0 \subset \ell^1$ (ii) If $\{x_n\} \in \ell^p$ and $\{y_n\} \in \ell^{p/(p-1)}, 1 < p < \infty$, then $\{x_n y_n\} \in$ $\ell^1.$
- (iii) If $x \in c$, there exists such $y \in c$ that $x + y \in c_0$.

(3) Let c and c_0 be as above, and let

$$
c_{0,0} = \{ \{x_n\}_{n=1}^{\infty} \mid x_n \in \mathbb{R}, \exists N \in \mathbb{N} \text{ so that } x_n = 0 \,\forall n > N \}.
$$

Prove that $c_{0,0} \subset \ell^p \subset \ell^{\infty}$ $(1 \le p < \infty)$ and $c_{0,0} \subset c_0 \subset c \subset \ell^{\infty}$.

(4) Let X be a space with a norm $\|\cdot\|_X$. Let $x \in X \setminus \{0\}$ and $r \in \mathbb{R}$, $r > 0$. Find a scalar $\alpha \in \mathbb{R}$ so that

$$
\|\alpha x\|_X = r.
$$

(5) Draw the unit circles defined by the following norms:

$$
||x||_1 = |x_1| + |x_2|,
$$

\n
$$
||x||_2 = \sqrt{|x_1|^2 + |x_2|^2}
$$
 and
\n
$$
||x||_3 = |x_1| + 3|x_2|,
$$

where $x \in \mathbb{R}^2$. (The unit circle defined by $\|\cdot\|$ consists of those points x for which $||x|| = 1.$)