(1) Prove Theorem 4.7 (b) and (c):

Theorem 4.7 Let X be a vector space and let $\|\cdot\|_1$ and $\|\cdot\|_2$ be equivalent norms on X. Let d_1 and d_2 be metrics defined by $d_1(x, y) = \|x - y\|_1$ and $d_2(x, y) = \|x - y\|_2$. Let $\{x_n\} \in X$ be a sequence.

- (a) $\{x_n\}$ converges to x in the metric space (X, d_1) if and only if $\{x_n\}$ converges to x in the metric space (X, d_2) .
- (b) $\{x_n\}$ is a Cauchy sequence in the metric space (X, d_1) if and only if $\{x_n\}$ is a Cauchy sequence in the metric space (X, d_2) .
- (c) (X, d_1) is complete if and only if (X, d_2) is complete.

* * *

(b) Let $\{x_n\}$ be a Cauchy sequence in (X, d_1) , that is, let there be for every $\epsilon_1 > 0$ a number N so that $d_1(x_m, x_n) < \epsilon_1$ if m, n > N.

We will show the Cauchy condition holds for $\{x_n\}$, d_2 and $\epsilon_2 > 0$. Since the norms are equivalent, there is some constant C so that

$$d_2(x_m, x_n) = ||x_m - x_n||_2$$

$$\leq C ||x_m - x_n||_1 = C d_1(x_m, x_n),$$

and since $\{x_n\}$ is a Cauchy sequence in d_1 , for some N we have (with $\epsilon_1 = \epsilon_2/C$) the inequality

$$Cd_1(x_m, x_n) \le C\frac{\epsilon_2}{C} = \epsilon_2$$

when m, n > N.

(c) Assume that (X, d_1) is complete, that is, assume that every Cauchy sequence in d_1 converges in d_1 . Let $\{x_n\}$ be a Cauchy sequence in (X, d_2) . By (b), $\{x_n\}$ is a Cauchy sequence in (X, d_1) . Because (X, d_1) is complete, $\{x_n\}$ converges in (X, d_1) . By (a), $\{x_n\}$ converges in (X, d_2) .

(2) Let

$$c = \{\{x_n\}_{n=1}^{\infty} \mid x_n \in \mathbb{R}, \lim_{n \to \infty} x_n \text{ exists}\}\$$

and

$$c_0 = \{\{x_n\}_{n=1}^{\infty} \mid x_n \in \mathbb{R}, \lim_{n \to \infty} x_n = 0\}$$

Prove true or false.

 $\mathbf{2}$

- (i) $c_0 \subset \ell^1$
- (ii) If $\{x_n\} \in \ell^p$ and $\{y_n\} \in \ell^{p/(p-1)}, 1 , then <math>\{x_n y_n\} \in \ell^1$.
- (iii) If $x \in c$, there exists such $y \in c$ that $x + y \in c_0$.

* * *

(i) $c_0 \subset \ell^1$: False. Clearly $\{1/n\}_{n=1}^{\infty} \in c_0$, but

$$\sum_{n=1}^{\infty} 1/n = \infty$$

so $\{1/n\} \notin \ell^1$.

(ii) If $\{x_n\} \in \ell^p$ and $\{y_n\} \in \ell^{p/(p-1)}, 1 , then <math>\{x_n y_n\} \in \ell^1$: True. For $\{x_n y_n\}$, we have by Hölder's inequality that

$$\sum_{n=1}^{\infty} x_n y_n \le \left(\sum_{n=1}^{\infty} x_n^p\right)^{1/p} \left(\sum_{n=1}^{\infty} x_n^{p/(p-1)}\right)^{(p-1)/p} < \infty.$$

(iii) If $x \in c$, there exists such $y \in c$ that $x + y \in c_0$: True. Let $\{x_n\} \in c$. Then $\{-x_n\} \in c$, and $\{x_n\} + \{-x_n\} = \{0\} \in c_0$.

(3) Let c and c_0 be as above, and let

$$c_{0,0} = \{\{x_n\}_{n=1}^{\infty} \mid x_n \in \mathbb{R}, \exists N \in \mathbb{N} \text{ so that } x_n = 0 \ \forall n > N\}.$$

Prove that $c_{0,0} \subset \ell^p \subset \ell^\infty$ $(1 \le p < \infty)$ and $c_{0,0} \subset c_0 \subset c \subset \ell^\infty$. * * *

(a) $c_{0,0} \subset \ell^p \ (1 \le p < \infty)$ Let $\{x_n\} \in c_{0,0}$. Then for some N

$$\left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} = \left(\sum_{n=1}^{N} |x_n|^p\right)^{1/p},$$

which is finite because each x_n is finite.

(b) $\ell^p \subset \ell^\infty \ (1 \le p < \infty)$

If $\{x_n\} \in \ell^p$, then $\sum_{n=1}^{\infty} |x_n|^p < \infty$. This means that $|x_n| < \infty$ for each n, and $\lim_{n\to\infty} |x_n| = 0$. Thus there is a N so that $|x_n| < 1$ when n > N, and so

$$|x_n| \le \max\{|x_1|, \dots, |x_N|, 1\} < \infty.$$

Because this is one upper limit for $|x_n|$ and the supremum is the smallest upper limit,

$$\sup_{n} |x_n| < \infty.$$

(Just noting $|x_n| < \infty$ for each n is not enough. That holds for $\{n\}_{n=1}^{\infty} \notin \ell^{\infty}$ too.)

(c)
$$c_{0,0} \subset c_0$$

Obvious, since if $\{x_n\} \in c_{0,0}$, then for some N

$$\lim_{n \to \infty} x_n = \lim_{\substack{n \to \infty \\ n > N}} 0 = 0.$$

(d) $c_0 \subset c$

Also obvious, because if the limit exists and is zero, the limit exists. (In addition to obvious, slightly dim as well.)

(e) $c \subset \ell^{\infty}$

Let $\{x_n\} \in c$. Then $x = \lim_{n\to\infty} x_n$ exists and (though this could have been made clearer in the definition) $x \in \mathbb{R}$, that is, $|x| < \infty$. Because $x_n \in \mathbb{R}$ for every n, we know $|x_n| < \infty$ for all nas well. Since $\{x_n\}$ converges to x, we can have $|x_n - x| < 1$ with every n > N for some N, and by the usual argument,

$$|x_n| \le \max\{|x_1|, \dots, |x_N|, |x|+1\} < \infty.$$

(4) Let X be a space with a norm $\|\cdot\|_X$. Let $x \in X \setminus \{0\}$ and $r \in \mathbb{R}$, r > 0. Find a scalar $\alpha \in \mathbb{R}$ so that

$$\begin{aligned} \|\alpha x\|_X &= r. \\ &* * \end{aligned}$$

Because $x \neq 0$, we know that $||x|| \neq 0$. Choose $\alpha = r/||x|| \in \mathbb{R}$. Then

$$\|\alpha x\| = |\alpha| \|x\| = \frac{r\|x\|}{\|x\|} = r.$$

(5) Draw the unit circles defined by the following norms:

$$\begin{aligned} \|x\|_1 &= |x_1| + |x_2|, \\ \|x\|_2 &= \sqrt{|x_1|^2 + |x_2|^2} \text{ and} \\ \|x\|_3 &= |x_1| + 3|x_2|, \end{aligned}$$

where $x \in \mathbb{R}^2$. (The unit circle defined by $\|\cdot\|$ consists of those points x for which $\|x\| = 1$.)

* * *

The unit circles can be found by solving ||x|| = 1 for x. That is, for example, in the case of the third norm, solving $|x_1| + 3|x_2| = 1$ for (x_1, x_2) . The results are as follows:

- For $\|\cdot\|_1$, a diamond shape (*vinoneliö*) with corners at (1,0), (0,1), (-1,0) and (0,-1).
- For $\|\cdot\|_2$, the "normal" circle of radius 1 and center (0,0).
- For $\|\cdot\|_3$, an elongated diamond (*virutettu vinoneliö*?) with corners at (1,0), (0,1/3), (-1,0) and (0,-1/3).