(1) Prove Theorem 4.7 (b) and (c):

Theorem 4.7 Let X be a vector space and let $\|\cdot\|_1$ and $\|\cdot\|_2$ be equivalent norms on X. Let d_1 and d_2 be metrics defined by $d_1(x, y) = ||x - y||_1$ and $d_2(x, y) = ||x - y||_2$. Let $\{x_n\} \in X$ be a sequence. (a) $\{x_n\}$ converges to x in the metric space (X, d_1) if

- and only if $\{x_n\}$ converges to x in the metric space $(X, d_2).$
- (b) $\{x_n\}$ is a Cauchy sequence in the metric space (X, d_1) if and only if $\{x_n\}$ is a Cauchy sequence in the metric space (X, d_2) .
- (c) (X, d_1) is complete if and only if (X, d_2) is complete.

* * *

(b) Let $\{x_n\}$ be a Cauchy sequence in (X, d_1) , that is, let there be for every $\epsilon_1 > 0$ a number N so that $d_1(x_m, x_n) < \epsilon_1$ if $m, n > N$.

We will show the Cauchy condition holds for $\{x_n\}$, d_2 and ϵ_2 0. Since the norms are equivalent, there is some constant C so that

$$
d_2(x_m, x_n) = ||x_m - x_n||_2
$$

\n
$$
\leq C||x_m - x_n||_1 = C d_1(x_m, x_n),
$$

and since $\{x_n\}$ is a Cauchy sequence in d_1 , for some N we have (with $\epsilon_1 = \epsilon_2/C$) the inequality

$$
Cd_1(x_m, x_n) \le C\frac{\epsilon_2}{C} = \epsilon_2
$$

when $m, n > N$.

(c) Assume that (X, d_1) is complete, that is, assume that every Cauchy sequence in d_1 converges in d_1 . Let $\{x_n\}$ be a Cauchy sequence in (X, d_2) . By (b), $\{x_n\}$ is a Cauchy sequence in (X, d_1) . Because (X, d_1) is complete, $\{x_n\}$ converges in (X, d_1) . By (a), $\{x_n\}$ converges in (X, d_2) .

(2) Let

$$
c = \{ \{x_n\}_{n=1}^{\infty} \mid x_n \in \mathbb{R}, \lim_{n \to \infty} x_n \text{ exists} \}
$$

and

$$
c_0 = \{ \{x_n\}_{n=1}^{\infty} \mid x_n \in \mathbb{R}, \lim_{n \to \infty} x_n = 0 \}.
$$

Prove true or false.

- 2
- (i) $c_0 \subset \ell^1$
- (ii) If $\{x_n\} \in \ell^p$ and $\{y_n\} \in \ell^{p/(p-1)}, 1 < p < \infty$, then $\{x_n y_n\} \in$ ℓ .
- (iii) If $x \in c$, there exists such $y \in c$ that $x + y \in c_0$.

* * *

(i) $c_0 \subset \ell^1$: False. Clearly $\{1/n\}_{n=1}^{\infty} \in c_0$, but

$$
\sum_{n=1}^{\infty} 1/n = \infty,
$$

so $\{1/n\} \notin \ell^1$.

(ii) If $\{x_n\} \in \ell^p$ and $\{y_n\} \in \ell^{p/(p-1)}, 1 < p < \infty$, then $\{x_n y_n\} \in$ ℓ^1 : True. For $\{x_n y_n\}$, we have by Hölder's inequality that

$$
\sum_{n=1}^{\infty} x_n y_n \le \left(\sum_{n=1}^{\infty} x_n^p\right)^{1/p} \left(\sum_{n=1}^{\infty} x_n^{p/(p-1)}\right)^{(p-1)/p} < \infty.
$$

(iii) If $x \in c$, there exists such $y \in c$ that $x + y \in c_0$: True. Let ${x_n} \in c$. Then ${-x_n} \in c$, and ${x_n} + {-x_n} = \{0\} \in c_0$.

(3) Let c and c_0 be as above, and let

$$
c_{0,0} = \{ \{x_n\}_{n=1}^{\infty} \mid x_n \in \mathbb{R}, \exists N \in \mathbb{N} \text{ so that } x_n = 0 \ \forall n > N \}.
$$

Prove that $c_{0,0} \subset \ell^p \subset \ell^\infty$ $(1 \leq p < \infty)$ and $c_{0,0} \subset c_0 \subset c \subset \ell^\infty$. * * *

(a) $c_{0,0} \subset \ell^p \ (1 \leq p < \infty)$ Let $\{x_n\} \in c_{0,0}$. Then for some N

$$
\left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} = \left(\sum_{n=1}^{N} |x_n|^p\right)^{1/p},
$$

which is finite because each x_n is finite.

(b) $\ell^p \subset \ell^\infty \ (1 \leq p < \infty)$ If $\overline{(x_n)} \in \ell^p$, then $\sum_{n=1}^{\infty} |x_n|^p < \infty$. This means that $|x_n| < \infty$ for each n, and $\lim_{n\to\infty} |x_n| = 0$. Thus there is a N so that $|x_n| < 1$ when $n > N$, and so

$$
|x_n| \leq \max\{|x_1|, \ldots, |x_N|, 1\} < \infty.
$$

Because this is one upper limit for $|x_n|$ and the supremum is the smallest upper limit,

$$
\sup_n |x_n| < \infty.
$$

(Just noting $|x_n| < \infty$ for each *n* is not enough. That holds for ${n}_{n=1}^{\infty} \notin \ell^{\infty}$ too.)

$$
(c) \ c_{0,0} \subset c_0
$$

Obvious, since if $\{x_n\} \in c_{0,0}$, then for some N

$$
\lim_{n \to \infty} x_n = \lim_{\substack{n \to \infty \\ n > N}} 0 = 0.
$$

(d) $c_0 \subset c$

Also obvious, because if the limit exists and is zero, the limit exists. (In addition to obvious, slightly dim as well.)

(e) $c \subset \ell^{\infty}$

Let $\{x_n\} \in c$. Then $x = \lim_{n \to \infty} x_n$ exists and (though this could have been made clearer in the definition) $x \in \mathbb{R}$, that is, $|x| < \infty$. Because $x_n \in \mathbb{R}$ for every n, we know $|x_n| < \infty$ for all n as well. Since $\{x_n\}$ converges to x, we can have $|x_n-x| < 1$ with every $n > N$ for some N, and by the usual argument,

$$
|x_n| \le \max\{|x_1|, \dots, |x_N|, |x|+1\} < \infty.
$$

(4) Let X be a space with a norm $\lVert \cdot \rVert_X$. Let $x \in X \setminus \{0\}$ and $r \in \mathbb{R}$, $r > 0$. Find a scalar $\alpha \in \mathbb{R}$ so that

$$
\|\alpha x\|_X = r.
$$

** $**$

Because $x \neq 0$, we know that $||x|| \neq 0$. Choose $\alpha = r/||x|| \in \mathbb{R}$. Then

$$
\|\alpha x\| = |\alpha| \|x\| = \frac{r\|x\|}{\|x\|} = r.
$$

(5) Draw the unit circles defined by the following norms:

$$
||x||_1 = |x_1| + |x_2|,
$$

\n
$$
||x||_2 = \sqrt{|x_1|^2 + |x_2|^2}
$$
 and
\n
$$
||x||_3 = |x_1| + 3|x_2|,
$$

where $x \in \mathbb{R}^2$. (The unit circle defined by $\|\cdot\|$ consists of those points x for which $||x|| = 1.$)

* * *

The unit circles can be found by solving $||x|| = 1$ for x. That is, for example, in the case of the third norm, solving $|x_1|+3|x_2|=$ 1 for (x_1, x_2) . The results are as follows:

- For $\|\cdot\|_1$, a diamond shape (vinoneliö) with corners at $(1, 0), (0, 1), (-1, 0)$ and $(0, -1)$.
- For $\|\cdot\|_2$, the "normal" circle of radius 1 and center $(0, 0)$.
- For $\|\cdot\|_3$, an elongated diamond (*virutettu vinoneliö*?) with corners at $(1, 0), (0, 1/3), (-1, 0)$ and $(0, -1/3)$.