
Analysis IV
Spring 2011
Exercises 11 / Answers

(1) Prove Theorem 4.7 (b) and (c):

Theorem 4.7 Let X be a vector space and let ‖ · ‖1 and
‖ ·‖2 be equivalent norms on X. Let d1 and d2 be metrics
defined by d1(x, y) = ‖x − y‖1 and d2(x, y) = ‖x − y‖2.
Let {xn} ∈ X be a sequence.
(a) {xn} converges to x in the metric space (X, d1) if

and only if {xn} converges to x in the metric space
(X, d2).

(b) {xn} is a Cauchy sequence in the metric space
(X, d1) if and only if {xn} is a Cauchy sequence in
the metric space (X, d2).

(c) (X, d1) is complete if and only if (X, d2) is complete.

* * *

(b) Let {xn} be a Cauchy sequence in (X, d1), that is, let there
be for every ε1 > 0 a number N so that d1(xm, xn) < ε1 if
m, n > N .

We will show the Cauchy condition holds for {xn}, d2 and ε2 >
0. Since the norms are equivalent, there is some constant C so
that

d2(xm, xn) = ‖xm − xn‖2

≤ C‖xm − xn‖1 = Cd1(xm, xn),

and since {xn} is a Cauchy sequence in d1, for some N we have
(with ε1 = ε2/C) the inequality

Cd1(xm, xn) ≤ C
ε2

C
= ε2

when m,n > N .

(c) Assume that (X, d1) is complete, that is, assume that every
Cauchy sequence in d1 converges in d1. Let {xn} be a Cauc-
hy sequence in (X, d2). By (b), {xn} is a Cauchy sequence in
(X, d1). Because (X, d1) is complete, {xn} converges in (X, d1).
By (a), {xn} converges in (X, d2).

(2) Let
c = {{xn}∞n=1 | xn ∈ R, lim

n→∞
xn exists}

and
c0 = {{xn}∞n=1 | xn ∈ R, lim

n→∞
xn = 0}.

Prove true or false.
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(i) c0 ⊂ `1

(ii) If {xn} ∈ `p and {yn} ∈ `p/(p−1), 1 < p < ∞, then {xnyn} ∈
`1.

(iii) If x ∈ c, there exists such y ∈ c that x + y ∈ c0.

* * *

(i) c0 ⊂ `1 : False. Clearly {1/n}∞n=1 ∈ c0, but
∞∑

n=1

1/n = ∞,

so {1/n} /∈ `1.
(ii) If {xn} ∈ `p and {yn} ∈ `p/(p−1), 1 < p < ∞, then {xnyn} ∈

`1 : True. For {xnyn}, we have by Hölder’s inequality that

∞∑
n=1

xnyn ≤

(
∞∑

n=1

xp
n

)1/p( ∞∑
n=1

xp/(p−1)
n

)(p−1)/p

< ∞.

(iii) If x ∈ c, there exists such y ∈ c that x + y ∈ c0 : True. Let
{xn} ∈ c. Then {−xn} ∈ c, and {xn}+ {−xn} = {0} ∈ c0.

(3) Let c and c0 be as above, and let

c0,0 = {{xn}∞n=1 | xn ∈ R,∃N ∈ N so that xn = 0 ∀n > N}.

Prove that c0,0 ⊂ `p ⊂ `∞ (1 ≤ p < ∞) and c0,0 ⊂ c0 ⊂ c ⊂ `∞.

* * *

(a) c0,0 ⊂ `p (1 ≤ p < ∞)
Let {xn} ∈ c0,0. Then for some N(

∞∑
n=1

|xn|p
)1/p

=

(
N∑

n=1

|xn|p
)1/p

,

which is finite because each xn is finite.
(b) `p ⊂ `∞ (1 ≤ p < ∞)

If {xn} ∈ `p, then
∑∞

n=1 |xn|p < ∞. This means
that |xn| < ∞ for each n, and limn→∞ |xn| = 0.
Thus there is a N so that |xn| < 1 when n > N ,
and so

|xn| ≤ max{|x1|, . . . , |xN |, 1} < ∞.

Because this is one upper limit for |xn| and the
supremum is the smallest upper limit,

sup
n
|xn| < ∞.

(Just noting |xn| < ∞ for each n is not enough.
That holds for {n}∞n=1 /∈ `∞ too.)

(c) c0,0 ⊂ c0



3

Obvious, since if {xn} ∈ c0,0, then for some N

lim
n→∞

xn = lim
n→∞
n>N

0 = 0.

(d) c0 ⊂ c
Also obvious, because if the limit exists and is
zero, the limit exists. (In addition to obvious,
slightly dim as well.)

(e) c ⊂ `∞

Let {xn} ∈ c. Then x = limn→∞ xn exists and
(though this could have been made clearer in
the definition) x ∈ R, that is, |x| < ∞. Because
xn ∈ R for every n, we know |xn| < ∞ for all n
as well. Since {xn} converges to x, we can have
|xn−x| < 1 with every n > N for some N , and
by the usual argument,

|xn| ≤ max{|x1|, . . . , |xN |, |x|+ 1} < ∞.

(4) Let X be a space with a norm ‖·‖X . Let x ∈ X \{0} and r ∈ R,
r > 0. Find a scalar α ∈ R so that

‖αx‖X = r.

* * *

Because x 6= 0, we know that ‖x‖ 6= 0. Choose α = r/‖x‖ ∈ R.
Then

‖αx‖ = |α|‖x‖ =
r‖x‖
‖x‖

= r.

(5) Draw the unit circles defined by the following norms:

‖x‖1 = |x1|+ |x2|,

‖x‖2 =
√
|x1|2 + |x2|2 and

‖x‖3 = |x1|+ 3|x2|,

where x ∈ R2. (The unit circle defined by ‖ · ‖ consists of those
points x for which ‖x‖ = 1.)

* * *

The unit circles can be found by solving ‖x‖ = 1 for x. That is,
for example, in the case of the third norm, solving |x1|+3|x2| =
1 for (x1, x2). The results are as follows:

• For ‖ · ‖1, a diamond shape (vinoneliö) with corners at
(1, 0), (0, 1), (−1, 0) and (0,−1).

• For ‖ · ‖2, the ”normal” circle of radius 1 and center (0, 0).
• For ‖·‖3, an elongated diamond (virutettu vinoneliö?) with

corners at (1, 0), (0, 1/3), (−1, 0) and (0,−1/3).


