
Analysis IV
Spring 2011
Exercises 12 / Answers

(1) Prove the second example on p. 30 of the lectures: If f, g ∈ L2,
then fg ∈ L1 and

< f, g >=

∫
fg dm

is an inner product.

* * *

Definition. (abbreviated.) A function < ·, · >: X × X → R
is an inner product, if the following four conditions hold for
x, y ∈ X:

(a) < x, x >≥ 0 (note: for < x, x >, not < x, y >!),

(b) < x, x >= 0 if and only if x = 0,

(c) < αx + βy, z >= α < x, z > +β < y, z > and

(d) < x, y >=< y, x >.

In this particular case, we deal with a possible inner product
defined for functions f, g, h ∈ L2, that is, are functions so that∫
|f |2 dm < ∞ and the same for g and h. Remember that (as

by Theorem 3.4) for L2 we write f = g if f = g a.e.; we treat
two functions as the same if they are different only in a set of
zero measure.1 Here the conditions take the following form

(a)
∫

ff dm =
∫
|f |2 dm ≥ 0 (clear because |f |2 ≥ 0)

(b) If
∫
|f |2 dm = 0, then |f |2 = 0 a.e. and f = 0 a.e.; and in

L2, that means f = 0. If, on the other hand, f = 0, then clearly∫
|f |2 dm = 0.

(c) By the basic properties of the integral (see chapter 2 for the
theorems),

< αf + βg, h > =

∫
(αf + βg)g dm

= α

∫
fh dm + β

∫
gh dm

= α < f, h > +β < g, h > .

1Why yes, this does mean that f = g if f = 0 and

g(x) =

{
0 x 6= 0
1 x = 0.

This ”makes sense” because the two functions have no difference that the integral
L2 norm can ”see”.
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(d) Clearly ∫
fg dm =

∫
gf dm.

Finally, we have to show that ”if f, g ∈ L2, then fg ∈ L1”. This is
pretty important, since if we don’t know that fg ∈ L1 we could
be dealing with a function < ·, · > that is not well defined; an
infinity would not be difficult, but the integral being undefined
would be really, really bad. But we know that ”if f, g ∈ L2,
then fg ∈ L1”, because this is just Hölder’s inequality with
p = q = 2.

(2) Prove the third example on p. 30 of the lectures: If a = {an}, b =
{bn} ∈ `2, then {anbn} ∈ `1 and

< a, b >=
∞∑

n=1

anbn

is an inner product.

* * *

First, ”if a = {an}, b = {bn} ∈ `2, then {anbn} ∈ `1”. This holds
by the same as in the previous problem: by Hölder’s inequality,
though in this case for series.

Second, the four conditions of an inner product go as follows,
for a, b, c ∈ `2:

(a)
∑∞

n=1 a2
n ≥ 0 because a2

n ≥ 0 for each n,

(b) If
∑∞

n=1 a2
n = 0 then a2

n = 0 for each n because each a2
n is

non-negative; and so an = 0 for each n, that is,2 {an} = 0. If
{an} = 0, well, obviously

∑∞
n=1 a2

n = 0.

(c) Now

< αa + βb, c >=
∞∑

n=1

(αan + βbn)cn

≤ α
∞∑

n=1

ancn + β
∞∑

n=1

bncn = α < a, c > +β < b, c > .

2It is convenient, though potentially confusing, that we can write {an} = 0.
Remember that this means ”the sequence of the numbers an, where n is the index,
is the same as the zero-of-`2, that is, the sequence of zero, zero, zero, and so on”.
We don’t write {an}∞n=1 because we hope the index is clear from the context, and
likewise don’t write {0}∞n=1 because we hope a reasonable reader would presume
that a sequence can only be equal to a sequence, so 0 must stand for the zero of
the space {an} is in; which is, the zero of `2, which is the sequence of zeros. See
Exercises 9 for more `p funtime.

The same principle is at work when a mathematician write
∑

or
∑

n for
∑∞

n=1:
she is leaving things out because of laziness, and because she hopes the audience
will understand what is meant, and concentrate on the important bits instead of
notation details.
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Note that to separate the sums we need to know that
∑

n ancn

and
∑

n bncn are well defined; we know this because ac, bc ∈ `1.

(d) Clearly

< a, b >=
∞∑

n=1

anbn =
∞∑

n=1

bnan =< b, a > .

(3) Prove Lemma 5.6: Let X be an inner product space with inner
product < ·, · >. Then for all u, v, x, y ∈ X,

(a) < u+v, x+y > − < u−v, x−y >= 2 < u, y > +2 < v, x >,
(b) for complex X,

4 < u, y > =< u + v, x + y > − < u− v, x− y >

+ i < u + iv, x + iy > −i < u− iv, x− iy > .

* * *

(a) Brute calculation; here (c) and (d) stand for the third and
fourth properties of an inner product:

< u + v, x + y > − < u− v, x− y >

(c)
=< u, x + y > + < v, x + y > − < u, x− y > + < v, x− y >

(d)
=< x + y, u > + < x + y, v > − < x− y, u > + < x− y, v >

(c)
=< x, u > + < y, u > + < x, v > + < y, v >

− < x, u > + < y, u > + < x, v > − < y, v >

=< y, u > +2 < x, v > + < y, u >

(d)
= 2 < u, y > +2 < v, x >

(b) Let us take the four inner products on the right-hand side
and calculate them separately:

For the first part, we use (a) above:

< u + v, x + y >

= 2 < u, y > +2 < v, x > + < u− v, x− y > .

We keep the second part as it is:

− < u− v, x− y > .

For the third, we use (a):

i < u + iv, x + iy >

= 2i < u, iy > +2i < iv, x > +i < u− iv, x− iy > .

And we keep the fourth part as it is:

−i < u− iv, x− iy > .
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Adding these four together, this much remains:

2 < u, y > +2 < v, x > +2i < u, iy > +2i < iv, x >

= 2 < u, y > +2 < v, x > +2i< iy, u > + 2 i2︸︷︷︸
=−1

< v, x >

= 2 < u, y > +2 ii︸︷︷︸
=−i2=1

< u, y >

= 4 < u, y > .

(4) Prove Theorem 5.7: Let X be an inner product space with inner
product < ·, · > and induced norm ‖ · ‖. Then for all x, y ∈ X,

(a) the parallelogram rule (suunnikassääntö):

‖x + y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2),

(b) for real X, 4 < x, y >= ‖x + y‖2 − ‖x− y‖2,
(c) for complex X, the polarization identity:

4 < x, y > = ‖x + y‖2 − ‖x− y‖2

+ i‖x + iy‖2 − i‖x− iy‖2.

* * *

(a) Remember that ‖x‖ =
√

< x, x >. Then

‖x + y‖2 + ‖x− y‖2

=< x + y, x + y > + < x− y, x− y >,

and by Lemma 5.4 (c),

= < x, x > + < x, y > +< x, y >+ < y, y >

+ < x, x > − < x, y > −< x, y >+ < y, y >

=2 < x, x > +2 < y, y >

=2(‖x‖2 + ‖y‖2).

(b) Here as in (a), except with < x, y >= < x, y >,

‖x + y‖2 =< x, y > +2 < x, y > + < y, y >

and

‖x− y‖2 < x, x > −2 < x, y > + < y, y >,

and substracting the second from the first gives

‖x + y‖2 − ‖x− y‖2 = 4 < x, y > .

(c) Here the difference is that the condition (d) for an inner
product is < x, y >= < y, x > and not < x, y >=< y, x >.
Thus

‖x + y‖2 =< x, x > + < x, y > + < y, x > + < y, y >

and

‖x− y‖2 =< x, x > − < x, y > − < y, x > + < y, y >,
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so

‖x + y‖2 − ‖x− y‖2 = 2 < x, y > +2 < y, x > . (1)

(Note that this is not the equality of (b), because for complex
inner products < x, y >6=< y, x >.) Next, by Lemma 5.4 (c) we
have

‖x + iy‖2 =< x + iy, x + iy >

=< x, x > −i < x, y > +i < y, x > − < y, y >

and

‖x− iy‖2 =< x− iy, x− iy >

=< x, x > +i < x, y > −i < y, x > − < y, y > .

Thus

i‖x + iy‖2 − i‖x− iy‖2 = i(−2i < x, y > +2i < y, x >)

= 2 < x, y > −2 < y, x >,

and adding this to (1) gives

‖x + y‖2 − ‖x− y‖2 + i‖x + iy‖2 − i‖x− iy‖2

= 4 < x, y > .

(5) Let 1 ≤ p < q < ∞. Prove that `p ⊂ `q. (Hint: start with those
x ∈ `p for which ‖x‖p = 1.)

* * *

Let us assume ‖x‖p = 1, that is,(
∞∑

n=1

|xn|p
)1/p

= 1.

Then
∑∞

n=1 |xn|p = 1, and |xn|p ≤ 1 for each n. (To assume
otherwise would be an instant contradiction.)

Because |xn|p ≤ 1 for all n for some 1 < p < ∞, then |xn| ≤ 1
for all n. By this,

|xn|q < |xn|p

for 1 < p < q < ∞ and all n. Because x ∈ `p, we know that
∞∑

n=1

|xn|q ≤
∞∑

n=1

|xn|p < ∞,

so (
∞∑

n=1

|xn|q
)1/q

< ∞,

that is, x ∈ `q.

Next, if x ∈ `p and ‖x‖p = 0, then x = 0, and x ∈ `q.
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Now, if x ∈ `p and ‖x‖p 6= 0, 1, we can take the sequence
y = x/‖x‖p ∈ `p, for which

‖y‖p =

∥∥∥∥ x

‖x‖p

∥∥∥∥
p

=
1

‖x‖p

‖x‖p = 1.

By the preceding, y ∈ `q. Since x ∈ `p, we know 0 < ‖x‖p < ∞.
Thus (

∞∑
n=1

|xn|q
)1/q

=

(
∞∑

n=1

∣∣∣∣xn
‖x‖p

‖x‖p

∣∣∣∣q
)1/q

=

(
‖x‖q

p

∞∑
n=1

∣∣∣∣xn
1

‖x‖p

∣∣∣∣q
)1/q

= ‖x‖p

(
∞∑

n=1

|yn|q
)1/q

< ∞,

and we have x ∈ `q as well.


