(1) Let the angle between $x, y \in \ell^2$ be defined as

$$
\theta(x, y) = \cos^{-1}\left(\frac{< x, y>}{\|x\| \|y\|}\right)
$$

with the standard inner product and norm of ℓ^2 .

Let $x = \{1/2^{n}\}_{n=1}^{\infty}$ and $y = \{C/3^{n}\}_{n=1}^{\infty}$, where $C \in \mathbb{R}$. For what value of C does $\theta(x, y) = \pi/3$? For which value of C does $\theta(x, y) = \pi/2?$

* * *

For the $\pi/3$ case, we need to solve

$$
\pi/3 = \cos^{-1}\left(\frac{< x, y>}{\|x\| \|y\|}\right)
$$

or

$$
\frac{< x, y>}{\|x\| \|y\|} = \frac{1}{2}.\tag{1}
$$

Here

$$
\langle x, y \rangle = \sum_{n=1}^{\infty} x_n y_n = \sum_{n=1}^{\infty} \frac{C}{2^n 3^n} = C \sum_{n=1}^{\infty} \frac{1}{6^n} = \frac{C}{5}.
$$

Because

$$
||x||^2 = \sum_{n=1}^{\infty} x_n^2 = \sum_{n=1}^{\infty} \frac{1}{(2^n)^2} = \sum_{n=1}^{\infty} \frac{1}{4^n} = 1/3
$$

and

$$
||y||^{2} = \sum_{n=1}^{\infty} \frac{C^{2}}{(3^{n})^{2}} = C^{2} \sum_{n=1}^{\infty} \frac{1}{9^{n}} = C^{2} 1/8,
$$

we have $||x|| = 1/$ $\sqrt{3}$ and $||y|| = C/\sqrt{8}$. Thus, the equation (1) becomes √

$$
\frac{1}{2} = \frac{C/5}{\sqrt{1/3} C \sqrt{1/8}} = \frac{\sqrt{24}}{5} \quad (\approx 0.98).
$$

This is not soluble¹ since C is eliminated and what remains is not equal; thus the answer to both questions is "for no value of C ".

¹ "soluble" means "having a solution", "being something that can be solved". For example, $\frac{1}{9}x^5 - \frac{9}{5}x^3 + \frac{5}{\pi}x^2 = 0$ no doubt is soluble for $x \in \mathbb{R}$, though I have no idea what the solution might be.

For $\pi/2$ the necessary equation would be $0 = \langle x, y \rangle / (||x|| ||y||),$ so the answer remains the same. (If $\langle x, y \rangle = 0$ then $C = 0$ then $||y|| = 0$, and then a divide by zero error.)

(2) What is the angle between x^2 and x ? Use the standard inner product and norm of $L^2([0,1])$.

* * *

By the same definition of an angle as above,

$$
||x||^2 = \int_0^1 x^2 dx = \int_0^1 \frac{1}{3}x^3 = \frac{1}{3}
$$

so $||x|| = 1/$ 3, and

$$
||x^2||^2 = \int_0^1 (x^2)^2 dx = \int_0^1 \frac{1}{5}x^5 = \frac{1}{5}
$$

so $||x^2|| = 1/$ 5, and

$$
\langle x, y \rangle = \int_0^1 xx^2 \, dx = \int_0^1 \frac{1}{4} x^4 = \frac{1}{4}.
$$

Thus

2

$$
\theta(x, x^2) = \cos^{-1} \frac{1/4}{\sqrt{1/3}\sqrt{1/5}} = \cos^{-1} \frac{\sqrt{15}}{4} \approx 0.08\pi.
$$

(3) Let $T: C_{\mathbb{R}}([0,1]) \to \mathbb{R}$ be defined by

$$
T(f) = \int_0^1 f(x) \, dx.
$$

Show that T is continuous.

$$
\ast\ast\ast
$$

By Lemma 6.1 (d), T is continuous if there is a $k > 0$ so that $||T(f)|| \leq k$ for every f with $||f|| \leq 1$. Here $||f|| \leq 1$ is

$$
||f||_{C_{\mathbb{R}}([0,1])} = \sup_{x \in [0,1]} f(x) \le 1,
$$

and if this condition holds, then

$$
||T(f)||_{\text{real numbers}} = \left| \int_0^1 f(x) dx \right| \le |\int_0^1 1 dx| = 1.
$$

We choose $k = 1$, and Lemma 6.1 (d) holds.

(4) Let $h \in L^{\infty}([0,1])$. Show that $T: L^2([0,1]) \to L^2([0,1])$, $T(f) = hf$,

is continuous.

* * *

Since $h \in L^{\infty}([0,1])$, we know that $\operatorname{ess} \sup_{[0,1]} h < \infty$, that is, we know there is some $M > 0$ so that $h(x) \leq M$ for all $x \in [0,1] \backslash A$, where $m(A) = 0$. Thus

$$
||T(f)||^2 = \int_{[0,1]} (hf)^2 dm
$$

=
$$
\int_{[0,1]\setminus A} (hf)^2 dm
$$

$$
\leq \int_{[0,1]\setminus A} (Mf)^2 dm
$$

=
$$
M^2 \int_{[0,1]} f^2 dm = M^2 ||f||^2
$$

,

and T is continuous by Lemma 6.1 (e), $k = M$.

(5) Show that if $(x_1, x_2, ...) \in \ell^2$, then $(0, 4x_1, x_2, 4x_3, x_4, 4x_5, x_6, \ldots) \in \ell^2$.

Let $T: \ell^2 \to \ell^2$ be defined by

$$
T(x_1, x_2, \ldots) = (0, 4x_1, x_2, 4x_3, x_4, 4x_5, x_6, \ldots).
$$

Show that T is continuous.

* * *

 $x_n^2 < \infty$.

If $(x_1, x_2, ...) \in \ell^2$, then \sum^{∞}

Now
$$
(0, 4x_1, x_2, 4x_3, x_4, ...)
$$
 $\in \ell^2$, because
\n $0 \le 0 + (4x_1)^2 + x_2^2 + (4x_3)^2 + x_4^2 + (4x_5)^2 + x_6^2 + ...$
\n $\le 0 + (4x_1)^2 + (4x_2)^2 + (4x_3)^2 + (4x_4)^2 + (4x_5)^2 + (4x_6)^2 + ...$,
\nand

 $n=1$

and

$$
\sum_{n=1}^{\infty} (4x_n)^2 = 16 \sum_{n=1}^{\infty} x_n^2 < \infty.
$$

Next, to show that T is continuous — well, the lines above show that $||T(x)||^2 \le 16||x||^2$, or

 $||T(x)|| < 4||x||,$

and by Lemma 6.1 (e) we are done.

The second exam is from the beginning of Chapter 3 to Theorem 6.5, and the exercises from the sixth problem of Exercises 7 to the last of Exercises 13.