- (1) Let f be defined as $f:[0,1] \to \mathbb{R}$, $f(x) = x^n$, $n \in \mathbb{N}$. Calculate the norm of f in
 - (a) $C_{\mathbb{R}}([0,1])$ and
 - (b) $L^{p}([0,1])$, where $1 \le p < \infty$.
- (2) Let $z_n = (1+i)n^{-1/3}$. Show that $\{z_n\} \in \ell^p(\mathbb{C})$, when p > 3 and $\{z_n\} \notin l^3(\mathbb{C})$.
- (3) Let

 $\mathcal{P} = \{ x \mid x \text{ is a polynomial with real coefficients } \}.$

Define the inner product in \mathcal{P} by setting

$$\langle x, y \rangle = \int_0^1 x(t)y(t) \, dt.$$

Let $x_1(t) = 1$, $x_2(t) = a + t$ and $x_3(t) = b + ct + t^2$.

- (i) Calculate the inner products $\langle x_1, x_2 \rangle$, $\langle x_1, x_3 \rangle$ and $\langle x_2, x_3 \rangle$.
- (ii) Determine a, b and c such that $\{x_1, x_2, x_3\}$ is an orthogonal set, i.e., polynomials x_1, x_2, x_3 are orthogonal to each other.

(4) Let
$$\{x_n\}$$
 be a sequence of vectors in a Hilbert space such that

$$\sum_{k=1}^{\infty} \|x_k\| < \infty,$$

and define

$$y_n = \sum_{k=1}^n x_k.$$

Prove that $\{y_n\}$ is a Cauchy sequence.

(5) Let $T: C_{\mathbb{R}}([0,1]) \to \mathbb{R}$ be defined by

$$T(f) = \int_0^1 f(x) \, dx$$

Show that T is continuous.