
Analysis IV
Spring 2011
Exercises 14 (⇔ Second exam) / Answers

(1) Let f be defined as f : [0, 1] → R, f(x) = xn, n ∈ N. Calculate
the norm of f in

(a) CR([0, 1]) and
(b) Lp([0, 1]), where 1 ≤ p < ∞.

* * *

See Exercises 10 problem 2.

(2) Let zn = (1 + i)n−1/3. Show that {zn} ∈ `p(C), when p > 3 and
{zn} /∈ l3(C).

* * *

Note that we deal with the complex `p space `p(C). Thus i is
the complex unit, or the number for which i2 = −1, and | · |
stands for the complex absolute value,

|x + iy| = (x2 + y2)1/2.

To see whether {zn} ∈ `p, we need to see if
∞∑

n=1

|zn|p

is finite (then {zn} is in `p) or infinite (then {zn} is not in `p).
Now

∞∑
n=1

|zn|p =
∞∑

n=1

|1 + i|pn−p/3

= (12 + 12)p/2

∞∑
n=1

n−p/3

= 2p/2

∞∑
n=1

n−p/3,

and we know from earlier analysis courses that
∑

n(1/n)p/3 con-
verges if p/3 > 1, and diverges when p/3 ≤ 1. This is to say,∑

n(1/n)p/3 < ∞ when p > 3, and
∑

n n−p/3 = ∞ if p = 3.
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Finally, to show that {zn} ∈ `∞(C), we have to show that
supn |zn| < ∞. This is clear, because

sup
n
|zn| =

√
2 sup

n
n−1/3︸ ︷︷ ︸
=1

=
√

2 < ∞.

(3) Let
P = {x | x is a polynomial with real coefficients }.

Define the inner product in P by setting

< x, y >=

∫ 1

0

x(t)y(t) dt.

Let x1(t) = 1, x2(t) = a + t and x3(t) = b + ct + t2.

(i) Calculate the inner products < x1, x2 >, < x1, x3 > and
< x2, x3 >.

(ii) Determine a, b and c such that {x1, x2, x3} is an orthogonal
set, i.e., polynomials x1, x2, x3 are orthogonal to each other.

* * *

(i) The inner products are:

< x1, x2 > =

∫ 1

0

a + t dt = a + 1/2,

< x1, x3 > =

∫ 1

0

b + ct + t2 dt = b + c/2 + 1/3 and

< x2, x3 > =

∫ 1

0

(a + t)(b + ct + t2) dt

=

∫ 1

0

ab + (ac + b)t + (a + c)t2 + t3 dt

= ab + (ac + b)/2 + (a + c)/3 + 1/4.

(ii) Two objects x and y are defined to be orthogonal if < x, y >= 0.
We choose a, b and c so that the three inner products are all
equal to zero. This is,

a + 1/2 = 0

b + c/2 + 1/3 = 0

ab + (ac + b)/2 + (a + c)/3 + 1/4 = 0.

This gives a = −1/2, b = 1/6 and c = −1.
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(4) Let {xn} be a sequence of vectors in a Hilbert space such that
∞∑

k=1

‖xk‖ < ∞, (1)

and define

yn =
n∑

k=1

xk.

Prove that {yn} is a Cauchy sequence.

* * *

A ”Hilbert space” is a complete inner product space: it has ob-
jects for which we have an inner product < ·, · >, it has a norm
‖ · ‖ defined as

‖x‖ =
√

< x, x >

(see Lemma 5.5), and a metric d(·, ·) defined by that norm,

d(x, y) = ‖x− y‖
(see Lemma 4.2). Finally, because the space is complete, all
Cauchy sequences of such objects (in that metric) converge.
This all so far is good to know, but not terribly important for
this problem.

To prove that {yn} is a Cauchy sequence, let us take two ele-
ments from it, yn and ym, and show that for any ε > 0 we
have

d(yn, ym) = ‖yn − ym‖ < ε

if m, n > N for some sufficiently large N .

We can assume n > m. Now

‖yn − ym‖ =

∥∥∥∥∥
n∑

k=1

xk −
m∑

k=1

xk

∥∥∥∥∥ =

∥∥∥∥∥
n∑

k=m+1

xk

∥∥∥∥∥ .

Next, we use the triangle inequality n−m− 1 times, and get∥∥∥∥∥
n∑

k=m+1

xk

∥∥∥∥∥ ≤
n∑

k=m+1

‖xk‖ ≤
∞∑

k=m+1

‖xk‖.

Because of (1), we know that if m is sufficiently large, we can
get

∑∞
k=m+1 ‖xk‖ to be as small as we want — which means,

for any ε > 0 we can find a N so that

‖yn − ym‖ < ε



4

when n,m > N .

(5) Let T : CR([0, 1]) → R be defined by

T (f) =

∫ 1

0

f(x) dx.

Show that T is continuous.

* * *

See Exercises 13 problem 3.


