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Chapitre 1

Barycenters

To acquire a new concept you have often to give up some pre-
judices. Here the prejudices are : one cannot multiply a point by a
number ; one cannot add two points. The idea of barycentric calcu-
lation is to give a meaning to these two operations. Let A and B
be two points of a plane P, the symbol AC B indicates an object
which does not belong to the plane, but which is associated with a
point ofP : the pointM middle of segmentAB .ACB will be the
double of the pointM :

ACB D 2M
We recognize the usual vector calculus. Let us invent a point O
which is anywhere but not in the plane itself

B

P

O

A

2M

�!
OAC�!OB D 2��!OM

The new object, 2M , is a VECTOR of a space
�!
E which in-

cludes the plane P . We will see that this space
�!
E contains also

the set
�!
P of the vectors

�!
AB for A 2 P and B 2 P . Unfortu-

nately, following the tradition we call "mass points" the elements of�!
E even though these objects are not points but vectors. The linear

space or vector space
�!
E is called the universal covering space of

the plane P .

We say that a line is a geometric object of dimension 1 because
one number is enough to locate a point on a line. A plane has dimen-
sion 2. Ordinary space has dimension 3. Space-time has dimension
4. We can invent and use spaces of any dimension : we may think of
the dimension as the number of independent parameters necessary
to characterize an element.

The barycentric calculus in a space of dimension n is actually a
vector calculus in a space of dimension nC1. Knowledge of linear
algebra makes it possible to give simple constructive definitions of
affine spaces on any field. They make it possible to better unders-
tand the structures underlying geometry, but they are not necessary
for a practical use of the barycentric calculus described in this first
chapter.

To make it easy we restrict ourselves to barycentric calculus
in the real plane. The generalization to an affine space of any di-
mension and on any field can be done without any difficulty. Let us
denote the affine spaces by Latin capitals and the vector spaces by
Latin capitals surmounted by an arrow. In an affine line (respecti-
vely plane / space) all the points play the same role. In a vectorial
line (respectively plane / space) there is one element which is intrin-
sically different from the others : the zero vector denoted E0, O or
simply 0.

P

O

E

P

3
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4 CHAPITRE 1. BARYCENTERS

§ 1. Observation in (ordinary) space of a horizontal plane of altitude 1

The spaceE is the "ordinary" space of geometry. We assume that it has a frame .O;E{; E|; Ek/.
We may choose E{ and E| horizontal and Ek vertical upward. We denote by

�!
E the set of vectors

ofE. We supposeO fixed which gives rise to a natural bijection ofE onto
�!
E :M 7�! ��!OM .

E

M

O

E
OM .

This bijection makes it possible to identify the points ofE and the vectors of
�!
E :M D ��!OM .

Warning ! This identification has no meaning as long as you do not have chosen a frame or
when you have several frames !

Let .E{; E|; Ek/ be a basis of
�!
E . There is a natural bijection of

�!
E onto R3 which associates

to each vector
��!
OM its coordinates .x; y;m/ such that

��!
OM D xE{ C y E| C m Ek. We denote

by m the third coordinate because we will call it "mass" more often than "altitude" .
We want to observe the set P of points M with mass 1 (or altitude 1). Note that P is a

plane that does not pass throughO . It is called an affine plane. The equation of P ism D 1.

m·D¹1

A vector
��!
AB in the plane P is a vector belonging to

�!
E and having its 3rd coordinate

null. A point M in E is such that
��!
OM D ��!AB where A and B belong to P if and only if M

is in the plane of equation m D 0. The planes P and
�!
P are parallel since it is impossible to

have at the same time m D 1 and m D 0.

m·D¹0
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§ 1.. OBSERVATION IN (ORDINARY) SPACE OF A HORIZONTAL PLANE OF ALTITUDE 15

Let A and B be two points in P . We have identified them with the vectors
�!
OA and

��!
OB

in
�!
E . These two vectors can be added. Let S be the point of E such that

��!
OS D �!OA+

��!
OB .

The point S does not belong to P since its mass is 1 C 1 D 2. But the point M such that��!
OM D 1

2

��!
OS is the middle of the segment AB and belongs to the plane P .

B
P

O

A

S

M

Let A be a point in P and let �!u D ��!OT be a vector in
�!
P . We can compute AC �!u D�!

OA C �!u , getting a vector in
�!
E with mass 1 ; this vector is therefore a point B in P . The

point B is given by
��!
OB D �!OAC�!u .

B

P

O

A

u
P

Let A and B be two points in P , identified with the
�!
OA and

��!
OB vectors in

�!
E that can

be subtracted. Let D be the point of E such that
��!
OD D ��!OB � �!OA. The point D does not

belong to P , but belongs to
�!
P since its mass is 1 � 1 D 0.

BP

O

A

DP

We see that the identification ofM with
��!
OM makes it possible to consider the points in

P and the vectors in
�!
P as vectors in a common vector space of dimension 3. The idea of

barycentric calculus is to consider a plane P and its set of associated vectors
�!
P as subsets

of a vector space
�!
E . We can therefore consider objects such as AC�!u or AC B although

we do not put arrows above the letters designating points.
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6 CHAPITRE 1. BARYCENTERS

§ 2. Operations on points and vectors of a plane P

Theorem (without proof). Let P be a plane 1 with a frame .K;E{; E|/ and let
�!
P be the set of

vectors of P . The triplet .E{; E|;K/ is a base of a 3-dimensional vector space
�!
E containing

P and
�!
P . The points of P are the vectors in

�!
E whose 3rd coordinate is 1. The vectors

belonging to
�!
P are the vectors of

�!
E whose 3rd coordinate is 0.

LetM be a vector belonging to
�!
E and let .xM ; yM ; mM / be its coordinates, thenM D

xME{CyM E|CmMK. When a vector of
�!
E belongs to

�!
P , it is often written with one or two

letters topped by an arrow. For example, �!u D x�!
u
E{ C y�!

u
E| C 0K. This makes it possible

to preserve the usual notations in elementary geometry, but this is not necessary.

B

mB·D·mC·D·1·D·mM

yM

M

xM

xB

yC

xC

yB

C

Example 1. Middle. Let M be the "middle" (or "midpoint") of the segment BC

xM D 1

2
.xB C xC / yM D 1

2
.yB C yC / mM D 1

2
.mB CmC /

The relation is written M D 1
2
.B C C/ or M D 1

2
B C 1

2
C . If B and C belong to P , then

M belongs also to P since 1
2
.1C 1/ D1.

Example 2. Vector belonging to
�!
P . Let A and B be two points of P , the vector

��!
AB is by

definition ��!
AB D .xB � xA/E{ C .yB � yA/ E|

Since mA D mB D 1, we have mA �mB D 0 and thus
��!
AB D B � A.

B
A

AB

Example 3. Line in P . Let A 2 P and �!u 2 �!P . Let D be the line passing through A and
parallel to �!u . A point M belongs to this line if and only if there exists a real t such that

xM D xA C tx�!u yM D yA C ty�!u
Since mM D mA D 1 and m�!

u
D 0, we have also mM D mA C tm�!u , thus

M D AC t�!u

Let A and B be two distinct points of P ; a point M belongs to the line AB if there exists t
such that M D AC t .B � A/ or M D .1 � t /AC tB .

B
A

M

u
M 2 lineAB ” 9t 2 R M D .1 � t /AC tB

If a and b are two numbers such that aCb ¤ 0, we say thatM is barycentre of the points A
and B with the masses a and b respectively if .aC b/M D aAC bB . By putting t D b

aCb ,
this relation is equivalent to M D .1 � t /A C tB . The line AB is therefore the set of
barycenters of A and B .

A straight line is the set of all the barycenters of any two given points of that line.

1. Strictly speaking, we should specify : affine plane on the field R or the field C or any other field K. To
allow a simple intuitive image we assume that P is a real affine plane
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§ 2.. OPERATIONS ON POINTS AND VECTORS OF A PLANE P 7

Example 4. Center of gravity of a triangle of P . Let A, B and C be three points of P . We
denote A0 the middle of the segment BC , B 0 the middle of CA and C 0 the middle of AB .
We define the center of gravity G of A, B and C by

3G D AC B C C

Or G D 1
3
.A C B C C/. From 2A0 D B C C , we deduce 3G D A C 2A0. The point

G is therefore a barycenter of A and A0 and thus belongs to the median AA0. The point G
B

A

C

O

G

A·C¹B·C¹C
A·C¹C

also belongs to the medians BB 0 and CC 0. These three lines are therefore concurrent. The
point G is the center of gravity of the triangle ABC . In addition, 3.GA/ D 2.A0 � A/ or
��!
AG D 2

3

��!
AA0 which is translated as : "center of gravity of a triangle is situated at two-thirds

of the medians".

Exercice 1. Show that G is also the center of gravity of the triangle A0B 0C 0.

Example 5. Parallelogram of P . Let A, B , C and D four points of P . The quadrilateral
ABCD is a parallelogram if one of the following equivalent conditions is satisfied

(i) B � A D C �D (translation :
��!
AB D ��!DC )

(ii) B CD D AC C (translation : diagonals intersect each other in their midpoints)

(iii) D � A D C � B (translation :
��!
AD D ��!BC )

(iv) 9˛ W B � A D ˛.C �D/ et 9ˇ W D � A D ˇ.C � B/ (translation : AB �DC and
AD � BC )

(Condition (iv) is equivalent only if the points are not aligned.) The only non-trivial

B

A

C

O

D

B·C¹D·D¹¹A·C¹C

verification is the verification of .iv/! .i/ : the data relations express the existence of two
real numbers ˛ and ˇ such that

( ��!
AB � ˛��!AC C ˛��!AD D 0
�ˇ��!AB C ˇ��!AC � ��!AD D 0

Hence .1 � ˛ˇ/��!AB C .˛ˇ � ˛/��!AC D 0. Since A, B and C are not aligned, the .1 � ˛ˇ/
and .˛ˇ � ˛/ coefficients are both null and ˛ D ˛ˇ D 1.

Exercice 2. Show that the midpoints of the sides of any quadrilateral are the vertices of a
parallelogram.
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8 CHAPITRE 1. BARYCENTERS

affine½ vector affine½ metric

The word "affine" is opposite either to the word "vectorial" or to the word "metric".
——————————————————————————–

In the first meaning, the affine plane P is the plane whose elements are points as opposed to
the vectorial plane

�!
P whose elements are vectors.

In an affine plane all points play the same role. In a vectorial plane, there is a particular element : the vector E0.

The set of vectors of an affine planeP form the associated vectorial

plane denoted by
�!
P . If one chooses a point A in an affine plane, it

becomes "vectorialised" and there is a natural bijection between the

points of P and the vectors of
�!
P :

P �! �!P ; B 7�! �!AB
Conversely, if one pretends to forget where the null vector is, one

can always consider the vectorial plane as an affine plane. The vec-

torial plane associated with
�!
P considered as an affine plane is the

vectorial plane
�!
P itself. This is why, when we compute the deriva-

tive of a moving pointM.t/ in an affine plane, the derivative is not a
point but a vector, the velocity vector, and when the velocity vector
is derived, the derivative is again a vector, the vector acceleration.

——————————————————————————–
The second meaning of the word "affine" is opposite to the notion of "metric" : a property is
affine if it is independent of the choice of a scalar product. The properties or concepts that
presuppose the choice of a scalar product are called metric.

Some affine properties and affine notions :

— point alignment

— parallelism

— middle and more generally barycenters

— ellipse

— area ratio, algebraic area ratio

Some properties or notions which are not affines :

— scalar product (inner product)

— orthogonality and perpendicularity

— distances

— angles

— circle

— areas, algebraic areas
APPLICATION. The ratio of the area of an ellipse to the circumscribed rectangle is equal to the ratio of the
area of the disc to a circumscribed square, since an affinity transforms one of the figures into the other :

2a

2b
area of the ellipse

2a � 2b D area of the disc
.2R/2

2R

2R

Areas are metric notions, but the ratios of areas are affine. One knows how to compute the areas of the square,
the disc and the rectangle. From this we deduce the metric formula giving the area of the ellipse as a function
of the semi-major axis a and the semi-minor axis b :

�ab

1. The two different meanings of the word "affine".
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§ 3.. BARYCENTRIC CALCULUS IN A REAL AFFINE PLANE 9

§ 3. Barycentric calculus in a real affine plane
Definition. Let P be a real affine plane. A mass point of P is a couple mA where m 2 R�
and A 2 P . Let .miAi /iD1;2;:::;n be a finite sequence of mass points of P such thatPn
iD1mi ¤ 0. We call barycenter of the points Ai with the massesmi the pointG such that� nX
iD1

mi

�
G D

nX
iD1

miAi .

Proposition. Let P be a real affine plane and .miAi /iD1;2;:::;n a finite sequence of mass
points of P such that

Pn
iD1mi ¤ 0. The barycenter of the points Ai assigned to the masses

mi is the unique point G such that

nX
iD1

mi
��!
GAi D E0 .�/

or, equivalently, such that for a point � in P , we have

��!
�G D 1Pn

iD1mi

nX
iD1

mi
��!
�Ai .��/

(If the relation .��/ is true for one point�, then it is true for all other choices. If we choose
� D G then we get .�/).
C 1. Prove the proposition above.

Remark. if
Pn
iD1mi D 0, the element

Pn
iD1miAi in

�!
E belongs to

�!
P . For any pointK in

the plane P , we have :

nX
iD1

miAi D
nX
iD1

miAi � 0K D
nX
iD1

miAi �
nX
iD1

miK D
nX
iD1

mi .Ai �K/ D
nX
iD1

mi
��!
KAi

Associativity of barycenters

The "associativity of barycenters" is simply the associativity of the addition in the linear
space

�!
E . It may be written :

.m1 C � � � Cmn/G D m1A1 C � � � CmnAn
D .m1A1 C � � � CmpAp/C .mpC1ApC1 C � � � CmnAn/
D .m1 C � � � Cmp/G1 C .mpC1 C � � � Cmn/G2

There are many awkward ways to express that property. We give here some usual formula-
tion just to show how awful it looks.
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10 CHAPITRE 1. BARYCENTERS

Proposition. Let .miAi /iD1;2;:::;n be a finite sequence of mass points in P such thatPn
iD1mi ¤ 0 and let G be the barycenter of the points A1, A2, . . . , An assigned to the

masses m1, m2, . . . , mn.
We suppose that

Pp
iD1mi ¤ 0 and

Pn
iDpC1mi ¤ 0.

Let us denote byG1 the barycenter of the points A1, A2, . . . , Ap assigned to the massesm1,
m2, . . . ,mp and let G2 be the barycenter of the points ApC1, ApC2, . . . , An assigned to the
masses mpC1, mpC2, . . . , mn. The point G is then the barycenter of G1 and G2 assigned
the masses .m1 C m2 C � � � C mp/ and .mpC1 C mpC2 C � � � C mn/. Forget it as soon as
possible ! ! !

Theorem of parallel lines (in french Thalès’ theorem)

Proposition. Let P be a real affine plane and let .miAi /iD1;2;:::;n be a sequence of n mass
points in P such that

Pn
iD1mi ¤ 0. If all the points Ai are on a same line D, then their

barycenter G belongs to that line D.

Proof. Let �!u be a vector in
�!
D different from

�!
0 . In the relation .��/ above, let us choose a

point � belonging to D ; all the vectors
��!
�Ai are linearly dependent with �!u , and thus

��!
�G

is also linearly dependent with �!u , which proves that G 2 D.�

Lemma. Let A, B and C be three aligned points such that A ¤ C and let � 2 R ; then

�!
AB�!
AC
D � ” B is barycenter of A and C assigned to masses 1 � � and �

Proof. The relation
�!
AB�!
AC
D � means

��!
AB D �

��!
AC , that is to say B � A D �.C � A/, and

that relation is equivalent to

B D .1 � �/AC �C �

Proposition and definition. The parallelism is an equivalence relation in the set of lines in
P . The equivalence classes are called line directions. (The direction of a line ı is thus the
set of lines parallel to ı).

Theorem. The parallel projection of a line on an other preserves the barycenters.

Proof. Let D and D0 be two lines in P and let ı be a line direction which does not contain D
nor D0. Let .miAi /iD1;2;:::;n be a finite sequence of mass points of P such that

Pn
iD1mi ¤

0 and such that the pointsAi all belong to the line D. For each i , letA0i be the intersection of
D0 with the line belonging to the direction ı and containing Ai and letG0 be the intersection
of D0 with the line belonging to the direction ı and containing G. We have to prove that if
G is the barycenter of the Ai assigned with the masses mi , then G0 is the barycenter of the
points A0i assigned with the same masses mi .
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§ 3.. BARYCENTRIC CALCULUS IN A REAL AFFINE PLANE 11

D D
0

A1

A2

G

An

A0
2

G0

A0
n

A0
1

If n D 2, it follows immediately the theorem of parallel lines and the lemma above. To prove
the theorem for any n, use mathematical induction and the associativity of barycenters.�
Remark. This theorem is just a special case of the general theorem that says that the maps
that preserve barycenters are the affine maps.

B

xC

C

A

xA xB

yA

yC

yB

��!
AB
��!
AC
D � B D .1 � �/AC �C

.�C �/B D �AC �C ,
8<:
.�C �/xB D �xA C �xC
and
.�C �/yB D �yA C �yC

B barycenter of
A and C with as-
signed masses �
and � ~w�
B D �AC �C

If the points A, B and C
are collinear

then the three following
statements

are equivalent :

(i) .�C �/B D �AC �C
(ii) .�C�/xB D �xAC�xC

(iii) .�C�/yB D �yAC�yC

2. A sketch that one encounters often
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§ 4. Barycentric coordinates

In the following paragraph we use determinants of order 3.
Let us change the basis of the linear space

�!
E . The new basis is a triplet of vectors which

are three non collinear points in P .

Définition. LetABC be a triangle inP (the three vertices are not collinear). The normalized
barycentric coordinates of a pointM are the coordinates ˛, ˇ and  ofM as a vector in the
basis .A;B; C / of the linear space

�!
E

M D ˛AC ˇB C C

Every triplet .�˛; �ˇ; �/ which is a non-zero multiple of .˛; ˇ; / is a triplet of unnor-
malized coordinates of the same M . In fact, they are the coordinates of �M in the basis
.A;B; C /.

Remark. LetABC be a (non-flat) triangle inP . LetU and V be two points with normalized
barycentric coordinates .˛U ; ˇU ; U / and .˛V ; ˇV ; V / respectively. A point M in P is
barycenter of U and V assigned with the masses � and � if and only if the coordinates
.˛M ; ˇM ; M / of M are such that ˛M is barycenter of ˛U and ˛V assigned with masses �
and �, ˇM is barycenter of ˇU and ˇV assigned with masses � and � and M is barycenter
of U and V assigned with masses � and �.

Exercice 3. Prove the statement done in the above remark.

Equation of a line. Let ABC be a triangle in P . We consider the normalized barycentric
coordinates relative to the triangle ABC . Three points M , U and V in P are collinear if
and only if they are as vectors in

�!
E linearly dependent, that is to say that their determinant

is zero ˇ̌̌̌
ˇ̌ ˛M ˛U ˛V
ˇM ˇU ˇV
M U V

ˇ̌̌̌
ˇ̌ D 0

Exercice 4. Prove that the equality above is a necessary and suffisent condition for colli-
nearity even if the coordinates are not normalized.

We suppose U ¤ V which means that the second and the third columns of the determi-
nant are linearly independent. Then a point M with barycentric coordinates (normalized or
not) .˛; ˇ; / belong to the line UV if and only if its coordinates are such that

p˛ C qˇ C r D 0
where 8<: p D � .ˇU V � ˇV U /

q D � .U˛V � V ˛U /
r D � .˛UˇV � ˛V ˇU /

This relation between ˛, ˇ and  is called the equation of the line UV .

Remark. Here .p; q; r/ is a solution of the system�
˛U p C ˇU q C U r D 0

˛V p C ˇV q C V r D 0
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It is often useful to know how to solve a linear system of 2 equations with 3 unknown when
the rank of the system is 2 �

ax C by C c´ D 0

a0x C b0y C c0´ D 0

The solution is the set of triplets .x; y; ´/ which are multiples of8<: x0 D bc0 � cb0
y0 D ca0 � ac0
´0 D ab0 � ba0

To remember this result, one may think of the vectorial product in R324 x0
y0
´0

35 D
24 a

b

c

35 �
24 a0
b0
c0

35
Intersection of two lines. To find the coordinates of the point of intersection of two distinct
lines we have to solve the linear system of rank 2�

p ˛ C q ˇ C r  D 0

p0 ˛ C q0 ˇ C r 0  D 0

As we have just seen above the solutions of this system are the multiples of8<: ˛0 D qr 0 � rq0
ˇ0 D rp0 � pr 0
0 D pq0 � qp0

Notice the we cannot normalize these coordinates if (and only if) ˛0Cˇ0C0 D 0. This
relation expresses then the parallelism of the two lines. From that we deduce the following
proposition.

Proposition. Two lines whose equations in barycentric coordinates

p ˛ C q ˇ C r  D 0

and
p0 ˛ C q0 ˇ C r 0  D 0

are parallel if and only if

qr 0 � rq0 C rp0 � pr 0 C pq0 � qp0 D 0

Exemple. Remember that the barycentric coordinates of B and C relative to the triangle
ABC are respectively .0; 1; 0/ and .0; 0; 1/. The equation of the line BC is thusˇ̌̌̌

ˇ̌ ˛ 0 0

ˇ 1 0

 0 1

ˇ̌̌̌
ˇ̌ D 0
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or simpler
˛ D 0

A line with equation p ˛ C q ˇ C r  D 0 is parallel to BC if and only if

q 0 � r 0C r 1 � p 0C p 0 � q 1 D 0
or simply q D r . Example : the line ` which goes through the midpoints C 0 and B 0 of
the sides AB and AC . The equation of the line ` isˇ̌̌̌

ˇ̌ ˛ 1 1

ˇ 1 0

 0 1

ˇ̌̌̌
ˇ̌ D ˛ � ˇ �  D 0

The line ` is parallel to BC since its coefficients .p; q; r/ are equal to .1;�1;�1/ and we
have indeed q D r .

Barycentric coordinates in terms of algebraic areas. From now on, we suppose that a
scalar product (or inner product) has been defined on

�!
P . Then the metric notions are defined

on P . Examples of such notions are : distances, angles, heights and bisectors in a triangle
(the medians are just affine notions and need no scalar product to be defined). We suppose
also that the distance between P and

�!
P has been chosen. Let us take it equal to 1.

Recall that the algebraic volume of a parallelepiped constructed on 3 linearly inde-
pendent vectors is equal to the determinant of these 3 vectors. Recall that the algebraic
area of a parallelogram constructed on two independent vectors is equal to the determinant
of these two vectors. Recall also the formula giving the volume of a tetrahedron

V D 1

3
height � base D 1

3
heigth � algebraic area of the triangle at the bottom

Using the properties of determinants like det.˛ACˇBCC;B;C / D ˛ det.A;B; C /, and
so on, we see that the following sequences are proportional :

det.A;B; C / det.M;B;C / det.M;C;A/ det.M;A;B/
areaABC areaMBC areaMCA areaMAB

1 ˛ ˇ 

An immediate consequence of this is that the barycentric coordinates of the center of
the incircle ABC are .a; b; c/ where a D BC , b D CA and c D AB are the lengths of
the sides of the triangle ABC . In the same way we get that the barycentric coordinates of
inexcircles are .�a; b; c/, .a;�b; c/ and .a; b;�c/.
Distance between two points. Let U and V be two points in the plane P where the ba-
rycentric coordinates are relative to the triangle ABC . We put a D BC , b D CA and
c D AB . Let .˛U ; ˇU ; U / be barycentric coordinates of U and .˛V ; ˇV ; V / barycentric
coordinates of V . We put mU D ˛U C ˇU C U and mV D ˛V C ˇV C V . The square of
the distance between the points U and V is given by

UV 2 D

X
perm circ

h
� a2�mV ˇU �mUˇV ��mV U �mU V �i

m2Um
2
V
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where the sum has to be taken over the circular permutions .a; ˛U ; ˛V /! .b; ˇU ; ˇV /!
.c; U ; V / ! .a; ˛U ; ˛V /. The first term of that sum is the expression between brackets,
the second term is obtained by replacing a by b, ˇV by V , and so on. The third and last
term begins as

h
� c2�.˛U C ˇU C U /˛V � � � �

If we use normalized barycentric coordinates, the formula takes the simpler shape

UV 2 D �a2.ˇU �ˇV /.U �V /�b2.U �V /.˛U �˛V /� c2.˛U �˛V /.ˇU �ˇV /

To prove these two formulae, let us first notice that the first formula follows the simpler
one by replacing in it ˛U by ˛U

˛UCˇUCU
, . . . , V by V

˛VCˇVCV
.

On the other hand, if we make the computations with normalized coordinates
��!
UV D V �U D .˛V�˛U /AC.ˇV�ˇU /BC.V�U /C D .ˇV�ˇU /��!ABC.V�U /��!AC
Then
UV 2 D .ˇU � ˇV /2c2 C .U � V /2b2 C 2.ˇU � ˇV /.U � V /��!AB � ��!AC

Since 2
��!
AB ���!AC D b2Cc2�a2, the coefficient of a2 is the one expected. By symmetry

the coefficients of b2 and of c2 are also those of the formula. Now, if you are not convinced
by these arguments, make the computations to the end using the relations ˛UCˇUCU D 1
and ˛V C ˇV C V D 1.

˛·D¹0

ˇ·D·0 ·D·0

˛·>·0

ˇ·<·0

·<·0
˛·>·0

ˇ·<·0

·>·0

˛·>·0

ˇ·>·0

·<·0 ˛·>·0

ˇ·>·0

·>·0

˛·<·0

ˇ·>·0

·<·0

˛·<·0

ˇ·<·0

·>·0

’·<·0

ˇ·>·0

·>·0

A

CB

3. Regionalization of the plane following normalized barycentric coordinates : ˛ C ˇ C  D 1.
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Exercice 5. Let ABCD be a square in a usual euclidean plane. Find the normalized bary-
centric coordinates of the point D relative to the triangle ABC .

Exercice 6. Let ABCD be a parallelogram in a usual affine plane. Find the normalized ba-
rycentric coordinates of the pointD relative to the triangle ABC . Compare with exercise 5.

Exercice 7. Let A, B , C andD be points of an affine plane P . When is it possible to define�!
AB��!
CD

? when it is, what is the meaning you give to that symbol ?

Exercice 8. Let ABC be a triangle in an affine plane P . Let d1, d2 and d3 be three lines in
P . We write the equations of these three lines

pi˛ C qiˇ C ri D 0
for i D 1, 2 and 3. Show that these three lines are concurrent (that means that they have a
common point) if and only if ˇ̌̌̌

ˇ̌p1 q1 r1
p2 q2 r2
p3 q3 r3

ˇ̌̌̌
ˇ̌ D 0

Exercice 9. Write the barycentric equations of the three medians of a triangle (barycentric
coordinates relatively to that triangle). Check that these three lines are concurrent in a point
G. What are the coordinates of G ?

** Exercice 10. Let ABC be a triangle in an euclidean plane P . We denote the length of
the sides a D BC , b D CA and c D AB .

a) Show that the scalar product
��!
AB � ��!AC D 1

2
.�a2 C b2 C c2/.

b) Show that
�
.a2 � b2C c2/.a2C b2 � c2/; .a2C b2 � c2/.�a2C b2C c2/; .�a2C

b2Cc2/.a2�b2Cc2/
�

are barycentric coordinates of the orthocenter of the triangleABC .

Exercice 11. Let ABC be a triangle in an affine plane P . Let R be a point on the line BC ,

S a point on CA and T a point on AB . a) Prove that if a point R is such that
�!
RB��!
RC
D k where

k is a real number, then the barycentric equation of the line AR is kˇ �  D 0.
b) Prove Ceva’s theorem : the lines AR, BS and CT are concurrent if and only if

��!
RB
��!
RC

��!
SC
�!
SA

��!
TC
�!
TB
D �1

c) Prove Menelaus’ theorem : the points R, S and T are collinear if and only if

��!
RB
��!
RC

��!
SC
�!
SA

��!
TC
�!
TB
D 1

*** Exercice 12. Feuerbach’s theorem, published by Feuerbach in 1822, states more gene-
rally that the nine-point circle is tangent to the three excircles of the triangle as well as its
incircle.

Prove Feuerbach’s theorem using barycentric calculus.


