
Chapitre 1

One-dimensional mechanics on a
half-line of two mass-points with
equal masses

Mechanics is one of the motivations to study
billiards. Her we see how to translate into geome-

try the simplest mechanical system.

§ 1. What is a mathematical billiard ?

We simplify as much as possible : there will be only ONE ball and this
ball will be reduced to one point. We accept billiard tables of any shape
in any kind of geometry. Let us call D the billiard table. To begin, we shall
supposeD in the usual Euclidean plane and we denote the border ofD by  .
The "ball" is moving freely inside D, that is, with a constant speed inside D
but when it comes to the border it bounces following usual reflection laws :
it comes off with a vectorial speed symmetric to the ingoing vectorial speed
with respect to the normal to the border

Since there is no friction, the travel of the point will never end. The set
of successive locations of the point is its trajectory. We want to study the
aspects of that trajectory when time goes on forever.
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§ 2. Two equal mass-points on a half-line

Let us start with an example : we consider two point-masses X and Y
on a half-line. We put the origin of the half-line O at its end-point and call
the abscissa of X by x.t/ and the abscissa of Y by y.t/ depending on the
time t . We suppose that they are placed on the half-line in such a way that
y.0/ 6 x.0/

O y.t/

Y

x.t/

X

To make it even simpler we suppose that X and Y have the same mass
m and that the shock between them is elastic, which means in this case that
the two point-masses just exchange their speeds. Thus we have y.t/ 6 x.t/

for all t . What happens if Y comes to the end-point O : it just bumps back
with the same speed as it has arriving at the point O .

Let us call vx the speed of the mass-point X before a shock and ux the
speed of that point after the shock. In the same way, let vy and uy be the
speeds of Y before and after the shock :

1. Shock between X and Y : �
ux D vy
uy D vx

2. Shock between Y and O : �
ux D vx
uy D �vy

§ 3. Configuration space of a mechanical system

We want to represent the state of the mechanical system by one point. All
the possible points form the configuration space. This is not a mathematical
definition, but let us illustrate the concept by some examples.

1. Example 1. A pendulum can be described by a moving segment ` with
one end fixed in a point O and moving freely in a vertical plane. Let
� be the oriented angle from the vertical line pointing down and the
segment `. If the pendulum oscillates between two extremal angles,
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we can take as configuration space the set Œ��max; �max� ; this set is just
a closed finite interval of R.
If we manage so that the pendulum may make a complete tour, we
have to take Œ��; ��, but the two ends of that interval describe the
same configuration : we have to glue them together getting a circle. A
nice configuration space will be the unit circle in R2, which is denoted
S1 since it is a 1-dimensional sphere.

O

�

2. Example 2. A double pendulum organized in such a way that both
pendula are in the same plane and can go around a whole circle.

O

�1

�2

S1 � S1 D T 2, two-dimensional torus.

3. Example 3. An oriented line going through the origin in R3. Configu-
ration spaceD S2, ordinary sphere.

4. Example 4. A non-oriented line in the plane. Configuration space D
the projective plane PR2.

5. Example 5. A non-oriented line in the plane. Configuration space D
Möbius strip.
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§ 4. A configuration space of the system of §2

Question : give a configuration space for the two mass-points X and Y
on a half-line. The abscissae of these points are depending on the time t . Let
us call them x.t/ and y.t/. The constraints are

0 6 y.t/ 6 x.t/

Thus we can choose as configuration space the wedge in R2 limited by the
lines with equations y D 0 (the x-axis) and x D y (the first bisector). Let
us use a metric such that the canonical basis ..1; 0/; .0; 1// is orthonormal.
Then the angle of the wedge is 45° or better �

4
rad. The mechanical system

is described by the point M.t/ D .x.t/; y.t// in the wedge. The velocity of
M is a vector

�!
V D

dM
dt
D .x0.t/; y 0.t//

x

y

O

w

�!
V

M.t/

x.t/

y.t/

When there is a shock let us call
�!
V the velocity of M before the shock

and
�!
U after. If the shock is between the two mass-points X and Y we have

seen that
�!
V D .vx; vy/ is changed into

�!
U D .vy; vx/, that is that

�!
V and

�!
U are symmetrical relatively to the first diagonal. If the shock is between Y
and the origin

�!
V D .vx; vy/ is changed into

�!
U D .vx;�vy/, thus

�!
U is the

image of
�!
V in the symmetry with respect to the x-axis.



§ 5.. STUDY OF A TRAJECTORY IN THE CONFIGURATION SPACE OF THE SYSTEM OF §25

Finally we see that we describe the mechanical system by a billiard
whose table is the wedge xOw where Ow is the ray such that the orien-
ted angle .Ox;Ow/ has mesure 45° or �

4
.

§ 5. Study of a trajectory in the configuration space
of the system of §2

By applying the law of reflection we get

x

y

O

w

�!
V

M.t/

45°

But instead of reflecting the trajectory we may take the symmetric of the
domain D and then through the image of Ox in that symmetry and so on.
This method of "unfolding" is shown in the following picture.
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