
Chapitre 3

Billiard trajectories

I.F.Fagnano posed in 1775 the following pro-
blem : "To inscribe in a given acute-angle triangle

the triangle of a minimum perimeter".

§ 1. The Fagnano trajectory

1.1. Preliminaries

Among the oriented angles in the plane we have

1. the angles between rays or vectors

arrival

departure

˛˛

In radians, the measure ˛ of that angle belongs to R=2�Z, which
means that ˛ is an equivalence class modulo 2� . For instance in an

equilateral triangle ABC (oriented positively) B C

A

the

1
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measure of the oriented angle of rays (or vectors) .
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If you divide by 2 you get an element of R=�Z
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2. the angles between lines

arrival

departure

ˇ
ˇ

ˇ

ˇ

In radians, the measure ˇ of that angle belongs to R=�Z, which means
that ˛ is an equivalence class modulo 2� . For instance in a rectangle

ABCD (oriented positively) A B

CD

the measure of the
oriented angle of lines between the two diagonals .
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Think of two parallel lines, their angle is 0 modulo � or

ˇ D fk� I k 2 Zg

.

Theorem 1. Let � be a circle with center O and let A and B be two
distinct points belonging to � . A point M belongs to � if and only if

.MA;MB/ D
1

2
.
�!
OA;
��!
OB/
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A B

O

M

�

If you measure the angles on the picture you get ˛ D 1AOB D 143:35°
and ˇ D 1AMB D 108:32°. How does it fit with ˇ D 1

2
˛ ?

Définition. Points in an Euclidean plane are said to be cocyclic (or concy-
clic) if they lie to a common circle or a common line.

Theorem 2. Four points A, B , C and D are cocyclic if and only if the
following equality between oriented angles of lines holds :

.CA;CB/ D .DA;DB/ (*)

Proof. Suppose the points are on a line, then .CA;CB/ D 0 and .DA;DB/ D 0.
Thus .�/ holds. Suppose now the points are on a common circle. LetO be the
center of that circle. Following the theorem 1 above, we have .CA;CB/ D
1
2
.
�!
OA;
��!
OB/ and similarly .DA;DB/ D 1

2
.
�!
OA;
��!
OB/, thus .�/ holds.

Conversely, suppose the four points verify .�/. Let � be the circle or
line ABC . If � is a line, then .CA;CB/ D 0, and from .�/ we have
.DA;DB/ D 0which implies thatD belongs to the lineAB and the theorem
is proved. If � is a circle, the converse of theorem 1 shows that D belongs
to � .

1.2. The orthic triangle of a triangle

Definition. Let ABC be a triangle. Let P be the point of BC such that
AP is the height of that triangle issued from A. Similarly, let Q be the point
ofCA andR the point ofAB such thatBQ andCR are the two other heights.
The triangle PQR is called the orthic triangle of the triangle ABC .
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B

A

C

R

Q

P

H

The three heights meet at a pointH called orthocenter. Notice that since
.PH;PC/ D a right angleD .QH;QC/, the pointsH , C , P andQ are on
a common circle. Similarly, since .RH;RB/ D .PH;PB/, there is a circle
going through the four points H , B , R and P .

B

A

C

R

Q

P

H

Theorem. Let PQR be the orthic triangle of a triangle ABC , then we
have the following equalities of measures of angles

1CPQ D1BPR 1AQR D 1CQP 1ARQ D1BRP
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B
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C

R

Q

P

H

˛˛0

Proof. Let us call ˛ D .PC;PQ/ and ˛0 D .PR;PB/. Since the
points C , Q, H and P are on common circle, we have ˛ D .PC;PQ/ D

.HC;HQ/. The lineHC is the same as the lineHR and the lineHQ is the
same as the line HB , thus ˛ D .HR;HB/. Since the four points H , R, B
and P are cocyclic .HR;HB/ D .PR;PB/ thus ˛ D ˛0.

1.3. Solving Fagnanos problem

Definition. Let ABC be an acuteangled triangle. A triangle PQR is
inscribed in the triangle ABC if P is a point on the segment BC , Q a point
on CA and R a point on AB .

The perimeter p of a triangle PQR is the sum of the length of the sides
of the triangle p D jQRj C jRP j C jPQj.

Theorem. Let ABC be an acuteangled triangle. Among all the inscribed
inscribed in ABC , the triangle with smallest perimeter is the orthic triangle.

Proof. We do the proof in two steps. In the first step we suppose P fixed
and we look for Q and R such that the perimeter p of the inscribed triangle
PQR is minimum. In the second step we choose P along BC mnimising p.

First step. Let P1 be the point image of P in the reflection along the line
AB .

B A

P

P1

�

�
Q
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Notice that the symmetry gives us the equality of length AP1 D AP and
the equality of angles 1BAP1 D 1PAB and thus 1PAP1 D 21PAB . Notice
also that since Q is a point on the axis of reflection, we have the equality of
length P1Q D PQ.

Let P2 be the point image of P in the reflection along the line AC .

B

A

C
P

P1

P2

R

Q

We get similarly AP2 D AP , 1PAP2 D 21PAC and RP2 D PR.
Consider the triangle AP1P2. The angle 2P1AP2 is twice the angle 1BAC

at the vertex A of the initial triangle. That angle is constant. The triangle is
isoceles since AP1 D AP D AP2.

The length of the broken line P1QRP2 is equal to the perimeter p of the
inscribed triangle PQR since P1Q D PQ and RP2 D RP and thus

P1QCQRCRP2 D PQCQRCRP D p

Then for the fixed P the perimeter p will be minimal if the broken line
P1QRP2 has minimal length. But we know that the shortest path from P1
to P2 is the straight line. Thus to find Q and R we just have to draw the line
P1P2 and mark the intersections with the sides AB and AC .

B

A

C
P

P1

P2Q R
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Second step. Now we have to choose the point P on the segment BC in
such a way that p D P1P2 is minimum. For eachP we get a triangleAP1P2.
These triangles are all isosceles with same angle at the vertex A, namely
21BAC . The basis P1P2 will be minimum if the length of the equal sides is
minimum. But the length of the sides is the length of the segment AP , and
this segment has minimum length when P is the orthogonal projection of
A on the side BC , that is when P is the foot of the height issued from the
vertex A. But then by symmetry reasons Q and R have also to be the feet of
the respective heights and thus PQR has to be the orthic triangle.QED

1.4. The Fagnanos trajectory

Let ABC be an acuteangled triangle and let us take it as the border of a
billiard. Let PQR be the orthic triangle of ABC .

Let us start a trajectory at P in the direction of Q, when the ball arrives
at Q it bounces following the reflection law and since the angles 1CQP and
1RQA are equal it goes in the direction ofR and inR it bounces back into the
direction of P coming back to the departure point after having run through 3
segments. After that the trajectory do again and again the same travel : The
trajectory is said to be 3-periodic. Since it follows the border of the triangle
solving the Fagnanos problem, it is called the Fagnano trajectory.

B

A

C

R

Q

P

˛˛

ˇ

ˇ




1.5. A family of 6-periodic trajectories

Let us first consider parallel trajectories bouncing on a common line
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d d

` D d sin˛

˛ ˛ ˛ ˛

We see that the distance between the two trajectories before and after the
shocks with the border are the same : it is an invariant in polygonal billiards.

Let us use the same billiard and start a trajectory from a point M on the
segmentPC strictly betweenP andC , not too far fromP . We put ` D PM .
Let us start in the direction parallel to PQ. The billiard ball will bounce on
the side AC in a point M1 between Q and C such that MM1 is parallel to
PQ. Following the reflection law it will leave M1 in a direction parallel to
QR and meet the side AB in a point M2 between R and B . Then it goes on
to M3 on BC between P and B such that M2M3 is parallel to RP .

The distance d between the parallel lines MM1 and PQ is d D ` sin˛.
This distance will be the same between M1M2 and QR and it will also be
the distance between M2M3 and RP . Thus PM3 D

d
sin˛ D `.

The trajectory continues after M3 to M4 on CA, M5 on AB and M6

on BC . By the same reasoning as above we get PM6 D PM3, and thus
PM6 D PM . Since M and M6 are on the same side of P on BC , we have
M6 D M . We also have 3PM6M5 D 2BMM1 ; thus the trajectory will start
again towards M1. Finally we have proved that the trajectory is 6-periodic.

§ 2. Circular billiards

LetD be limited by a circle. Let us start from a point A on the circle in a
direction such that the angle of the first segment with the half-tangent in the
positive direction is ˛ measured in radians. We have two possibilities : the
ratio ˛

�
is or is not a rational number. We say that ˛ is or is not �-rational.

2.1. ˛ is �-rational

Let p and q be two integers which are relatively prime and such that
˛ D p

q
� . The numbers p and q have no common divider other than 1 and

thus the fraction p

q
cannot be simplified.
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O
A

M1

˛
�

When the trajectory reaches the border for the first time in a pointM1, we
have 2AOM1 D 2˛. Let us call this angle � . Next pointM2 will be the image
of M1 in the rotation with center O and angle � . After q bounces the image
Mq will be such that the oriented angle of rays .OA;OMq/ D q � 2p

q
� D

2�p. ThusMq is the same point asA and the trajectory is q-periodic (and we
also see that the star-shaped polygon has turned p times around the center.

2.2. ˛ is �-irrational

The trajectory cannot be periodic since then it would be �-rational. But
we have

Theorem. The vertices of a trajectory on a circle with angle ˛ which is
�-irrational is equidistributed on the circle.

Definition. Let I be any interval on the circle and denote by jI j the
length of that interval. Let .xn/n2N be a sequence of points on the circle and
for each n call k.n/ the number of elements among the n first of the sequence
belonging to I , that is

k.n/ D Cardfj 2 NI j < n and xj 2 I g

The sequence .xn/n2N is equidistributed if

lim
n!1

k.n/

n
D
jI j

2�

The theorem is a consequence of following theorem of Kronecker and Weyl.
Let us call U the unit circle.

Theorem. If f W U ! R; x 7! f .x/ is integrable function defined on
the circle, then

lim
n!1

1

n

n�1X
jD0

f .xj / D
1

2�

Z 2�

0

f .x/dx
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To see that the former theorem follows from this one just take f to be
the characterstic function of the interval I

f .x/ D 1I .x/ D

�
1 if x 2 I

0 if x … I

and let the sequence be xn D x0 C n� .
Sketch of the proof of the theorem. One may approximate f by trigo-

nometric polynomials that is linear combinations of functions cos kx and
sin kx for k 2 Z. In fact it is easier to go to the complex functions since
cos kx and sin kx are linear combinations of eikx. So the problem reduces
to the proof for all k of

lim
n!1

1

n

n�1X
jD0

eik.x0Cj�/ D
1

2�

Z 2�

0

eikxdx (*)

In the case where k D 0, the left side of the equality reduces to
limn!1

1
n

Pn�1
jD0 1 D

1
n
n D 1 and the righthandside becomes

1
2�

R 2�
0

dx D 1. In that case .�/ is verified.
In the case were k ¤ 0, we have

n�1X
jD0

eik.x0Cj�/ D eikx0

n�1X
jD0

n
eik�

oj
But one knows that

Pn�1
jD0 a

j D
1�an

1�a
for any a ¤ 1. Thus

ˇ̌̌ n�1X
jD0

eik.x0Cj�/
ˇ̌̌
D

ˇ̌̌1 � eikn�
1 � eik�

ˇ̌̌
6
ˇ̌̌ 2

1 � eik�

ˇ̌̌
and then the lefthand side of .�/ tends to 0 when n!1. The righthandside
of .�/ is also 0 sinceZ 2�

0

eikxdx D
1

ik

h
eikx

i2�
0
D

1

ik
.1 � 1/ D 0

§ 3. Elliptical billiards


